/usr/share/dynare/matlab/newrat.m is in dynare-common 4.4.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 | function [xparam1, hh, gg, fval, igg] = newrat(func0, x, analytic_derivation, ftol0, nit, flagg, DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults)
% [xparam1, hh, gg, fval, igg] = newrat(func0, x, hh, gg, igg, ftol0, nit, flagg, varargin)
%
% Optimiser with outer product gradient and with sequences of univariate steps
% uses Chris Sims subroutine for line search
%
% func0 = name of the function
% there must be a version of the function called [func0,'_hh.m'], that also
% gives as second OUTPUT the single contributions at times t=1,...,T
% of the log-likelihood to compute outer product gradient
%
% x = starting guess
% analytic_derivation = 1 if analytic derivs
% ftol0 = ending criterion for function change
% nit = maximum number of iterations
%
% In each iteration, Hessian is computed with outer product gradient.
% for final Hessian (to start Metropolis):
% flagg = 0, final Hessian computed with outer product gradient
% flagg = 1, final 'mixed' Hessian: diagonal elements computed with numerical second order derivatives
% with correlation structure as from outer product gradient,
% flagg = 2, full numerical Hessian
%
% varargin = list of parameters for func0
% Copyright (C) 2004-2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global objective_function_penalty_base
icount=0;
nx=length(x);
xparam1=x;
%ftol0=1.e-6;
htol_base = max(1.e-7, ftol0);
flagit=0; % mode of computation of hessian in each iteration
ftol=ftol0;
gtol=1.e-3;
htol=htol_base;
htol0=htol_base;
gibbstol=length(BayesInfo.pshape)/50; %25;
% func0 = str2func([func2str(func0),'_hh']);
% func0 = func0;
[fval0,gg,hh]=feval(func0,x,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults);
fval=fval0;
% initialize mr_gstep and mr_hessian
outer_product_gradient=1;
if isempty(hh)
mr_hessian(1,x,[],[],[],DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults);
[dum, gg, htol0, igg, hhg, h1]=mr_hessian(0,x,func0,flagit,htol,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults);
if isempty(dum),
outer_product_gradient=0;
igg = 1e-4*eye(nx);
else
hh0 = reshape(dum,nx,nx);
hh=hhg;
if min(eig(hh0))<0
hh0=hhg; %generalized_cholesky(hh0);
elseif flagit==2
hh=hh0;
igg=inv(hh);
end
end
if htol0>htol
htol=htol0;
end
else
hh0=hh;
hhg=hh;
igg=inv(hh);
h1=[];
end
H = igg;
disp(['Gradient norm ',num2str(norm(gg))])
ee=eig(hh);
disp(['Minimum Hessian eigenvalue ',num2str(min(ee))])
disp(['Maximum Hessian eigenvalue ',num2str(max(ee))])
g=gg;
check=0;
if max(eig(hh))<0, disp('Negative definite Hessian! Local maximum!'), pause, end,
save m1.mat x hh g hhg igg fval0
igrad=1;
igibbs=1;
inx=eye(nx);
jit=0;
nig=[];
ig=ones(nx,1);
ggx=zeros(nx,1);
while norm(gg)>gtol && check==0 && jit<nit
jit=jit+1;
tic
icount=icount+1;
objective_function_penalty_base = fval0(icount);
disp([' '])
disp(['Iteration ',num2str(icount)])
[fval,x0,fc,retcode] = csminit1(func0,xparam1,fval0(icount),gg,0,H,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults);
if igrad
[fval1,x01,fc,retcode1] = csminit1(func0,x0,fval,gg,0,inx,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults);
if (fval-fval1)>1
disp('Gradient step!!')
else
igrad=0;
end
fval=fval1;
x0=x01;
end
% if icount==1 || (icount>1 && (fval0(icount-1)-fval0(icount))>1) || ((fval0(icount)-fval)<1.e-2*(gg'*(H*gg))/2 && igibbs),
if length(find(ig))<nx
ggx=ggx*0;
ggx(find(ig))=gg(find(ig));
if analytic_derivation,
hhx=hh;
else
hhx = reshape(dum,nx,nx);
end
iggx=eye(length(gg));
iggx(find(ig),find(ig)) = inv( hhx(find(ig),find(ig)) );
[fvala,x0,fc,retcode] = csminit1(func0,x0,fval,ggx,0,iggx,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults);
end
[fvala, x0, ig] = mr_gstep(h1,x0,func0,htol,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults);
nig=[nig ig];
disp('Sequence of univariate steps!!')
fval=fvala;
% end
if (fval0(icount)-fval)<ftol && flagit==0
disp('Try diagonal Hessian')
ihh=diag(1./(diag(hhg)));
[fval2,x0,fc,retcode2] = csminit1(func0,x0,fval,gg,0,ihh,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults);
if (fval-fval2)>=ftol
disp('Diagonal Hessian successful')
end
fval=fval2;
end
if (fval0(icount)-fval)<ftol && flagit==0
disp('Try gradient direction')
ihh0=inx.*1.e-4;
[fval3,x0,fc,retcode3] = csminit1(func0,x0,fval,gg,0,ihh0,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults);
if (fval-fval3)>=ftol
disp('Gradient direction successful')
end
fval=fval3;
end
xparam1=x0;
x(:,icount+1)=xparam1;
fval0(icount+1)=fval;
if (fval0(icount)-fval)<ftol
disp('No further improvement is possible!')
check=1;
if analytic_derivation,
[fvalx,gg,hh]=feval(func0,xparam1,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults);
hhg=hh;
H = inv(hh);
else
if flagit==2
hh=hh0;
elseif flagg>0
[dum, gg, htol0, igg, hhg,h1]=mr_hessian(0,xparam1,func0,flagg,ftol0,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults);
if flagg==2
hh = reshape(dum,nx,nx);
ee=eig(hh);
if min(ee)<0
hh=hhg;
end
else
hh=hhg;
end
end
end
disp(['Actual dxnorm ',num2str(norm(x(:,end)-x(:,end-1)))])
disp(['FVAL ',num2str(fval)])
disp(['Improvement ',num2str(fval0(icount)-fval)])
disp(['Ftol ',num2str(ftol)])
disp(['Htol ',num2str(htol0)])
disp(['Gradient norm ',num2str(norm(gg))])
ee=eig(hh);
disp(['Minimum Hessian eigenvalue ',num2str(min(ee))])
disp(['Maximum Hessian eigenvalue ',num2str(max(ee))])
g(:,icount+1)=gg;
else
df = fval0(icount)-fval;
disp(['Actual dxnorm ',num2str(norm(x(:,end)-x(:,end-1)))])
disp(['FVAL ',num2str(fval)])
disp(['Improvement ',num2str(df)])
disp(['Ftol ',num2str(ftol)])
disp(['Htol ',num2str(htol0)])
htol=htol_base;
if norm(x(:,icount)-xparam1)>1.e-12 && analytic_derivation==0,
try
save m1.mat x fval0 nig -append
catch
save m1.mat x fval0 nig
end
[dum, gg, htol0, igg, hhg, h1]=mr_hessian(0,xparam1,func0,flagit,htol,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults);
if isempty(dum),
outer_product_gradient=0;
end
if htol0>htol
htol=htol0;
skipline()
disp('Numerical noise in the likelihood')
disp('Tolerance has to be relaxed')
skipline()
end
if ~outer_product_gradient,
H = bfgsi1(H,gg-g(:,icount),xparam1-x(:,icount));
hh=inv(H);
hhg=hh;
else
hh0 = reshape(dum,nx,nx);
hh=hhg;
if flagit==2
if min(eig(hh0))<=0
hh0=hhg; %generalized_cholesky(hh0);
else
hh=hh0;
igg=inv(hh);
end
end
H = igg;
end
elseif analytic_derivation,
[fvalx,gg,hh]=feval(func0,xparam1,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults);
hhg=hh;
H = inv(hh);
end
disp(['Gradient norm ',num2str(norm(gg))])
ee=eig(hh);
disp(['Minimum Hessian eigenvalue ',num2str(min(ee))])
disp(['Maximum Hessian eigenvalue ',num2str(max(ee))])
if max(eig(hh))<0, disp('Negative definite Hessian! Local maximum!'), pause(1), end,
t=toc;
disp(['Elapsed time for iteration ',num2str(t),' s.'])
g(:,icount+1)=gg;
save m1.mat x hh g hhg igg fval0 nig H
end
end
save m1.mat x hh g hhg igg fval0 nig
if ftol>ftol0
skipline()
disp('Numerical noise in the likelihood')
disp('Tolerance had to be relaxed')
skipline()
end
if jit==nit
skipline()
disp('Maximum number of iterations reached')
skipline()
end
if norm(gg)<=gtol
disp(['Estimation ended:'])
disp(['Gradient norm < ', num2str(gtol)])
end
if check==1,
disp(['Estimation successful.'])
end
return
|