This file is indexed.

/usr/share/dynare/matlab/parallel/distributeJobs.m is in dynare-common 4.4.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
function [nCPU, totCPU, nBlockPerCPU, totSLAVES] = distributeJobs(Parallel, fBlock, nBlock)
% PARALLEL CONTEXT
% In parallel context this function is used to determine the total number of available CPUs,
% and the number of threads to run on each CPU.
%
% INPUTS
%  o Parallel [struct vector]   copy of options_.parallel
%  o fBlock [int]               index number of the first job (e.g. MC iteration or MH block)
%                               (between 1 and nBlock)
%  o nBlock [int]               index number of the last job.
%
% OUTPUT
%  o nBlockPerCPU [int vector]  for each CPU used, indicates the number of
%                               threads run on that CPU
%  o totCPU [int]               total number of CPU used (can be lower than
%                               the number of CPU declared in "Parallel", if
%                               the number of required threads is lower!)
%  o nCPU                       the number of CPU in user format.
%  o totSLAVES                  the number of cluster's node currently
%                               involved in parallel computing step.
%                               It is a number between 1 and length(Parallel).


% Copyright (C) 2010-2011 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.


% The Parallel vector has already been sorted
% (in accord with the CPUWeight values) in DESCENDING order in 
% InitializeComputationalEnvironment!

totCPU=0;

lP=length(Parallel);
CPUWeight=ones(1,length(Parallel))*(-1);

for j=1:lP,    
    nCPU(j)=length(Parallel(j).CPUnbr);
    totCPU=totCPU+nCPU(j);    
    CPUWeight(j)=str2num(Parallel(j).NodeWeight);
end


% Copy of original nCPU.
nCPUoriginal=nCPU;

nCPU=cumsum(nCPU);


% Number of Nodes in Cluster.
nC=lP;

% Numbers of Jobs.
NumbersOfJobs=nBlock-fBlock+1;

SumOfJobs=0;
JobsForNode=zeros(1,nC);

for j=1:lP,
    CPUWeight(j)=str2num(Parallel(j).NodeWeight)*nCPUoriginal(j);
end
CPUWeight=CPUWeight./sum(CPUWeight);

% Redistributing the jobs among the cluster nodes according to the
% CPUWeight.
for i=1:nC
    
    JobsForNode(i)=CPUWeight(i)*NumbersOfJobs;
    
    % Many choices are possible:
    
    % JobsForNode(i)=round(JobsForNode(i));
    % JobsForNode(i)=floor(JobsForNode(i));
      JobsForNode(i)=ceil(JobsForNode(i));
    
end

% Check if there are more (fewer) jobs.
% This can happen when we use ceil, round, ... functions.
SumOfJobs=sum(JobsForNode);

if SumOfJobs~=NumbersOfJobs
    
    if SumOfJobs>NumbersOfJobs
        
        % Many choices are possible:
        
        % - Remove the excess works at the node that has the greatest
        %   number of jobs.
        % - Remove the excess works at the node slower.
        
        VerySlow=nC;
        
        while SumOfJobs>NumbersOfJobs
            
            if JobsForNode(VerySlow)==0
                VerySlow=VerySlow-1;
                continue
            end
            JobsForNode(VerySlow)=JobsForNode(VerySlow)-1;
            SumOfJobs=SumOfJobs-1;
        end
        
    end
    
    if SumOfJobs<NumbersOfJobs
        
        % Many choices are possible:
        % - ... (see above).
        
        [NonServe VeryFast]= min(CPUWeight);
        
        while SumOfJobs<NumbersOfJobs
            JobsForNode(VeryFast)=JobsForNode(VeryFast)+1;
            SumOfJobs=SumOfJobs+1;
        end
        
    end
end


% Redistributing the jobs among the cpu/core nodes.

JobsForCpu=zeros(1,nCPU(nC));
JobAssignedCpu=0;

RelativePosition=1;

for i=1:nC
    
    % Many choices are possible:
    % - ... (see above).
     
    JobAssignedCpu=max(1,floor(JobsForNode(i)/nCPUoriginal(i)));
    
    ChekOverFlow=0;
    
    for j=RelativePosition:nCPU(i)
        JobsForCpu(j)=JobAssignedCpu;
        ChekOverFlow=ChekOverFlow+JobAssignedCpu;
        
        if ChekOverFlow>=JobsForNode(i)
            break;
        end
        
    end
    
    % Check if there are more (fewer) jobs.
    % This can happen when we use ceil, round, ... functions.
    
    if ChekOverFlow ~=(JobsForNode(i))
        
        if ChekOverFlow >(JobsForNode(i))
            while ChekOverFlow>JobsForNode(i)
                JobsForCpu(nCPU(i))=JobsForCpu(nCPU(i))-1;
                ChekOverFlow=ChekOverFlow-1;
            end
        end
        
        if ChekOverFlow <(JobsForNode(i))
            while ChekOverFlow<JobsForNode(i)
                JobsForCpu(nCPU(i))=JobsForCpu(nCPU(i))+1;
                ChekOverFlow=ChekOverFlow+1;
            end
        end
    end
    
    RelativePosition=nCPU(i)+1;
    
end

% Reshape the variables totCPU,totSLAVES and nBlockPerCPU in accord with
% the syntax rquired by a previous version of parallel package ...

totCPU=0;
totSLAVES=0;
nBlockPerCPU=[];

for i=1:nCPU(nC)
    if JobsForCpu(i)~=0
        totCPU=totCPU+1;
    end
end

for i=1:nC
    if JobsForNode(i)~=0;
        totSLAVES=totSLAVES+1;
    end
end

RelativeCounter=1;
for i=1:nCPU(nC)
    if JobsForCpu(i)~=0
        nBlockPerCPU(RelativeCounter)=JobsForCpu(i);
        RelativeCounter=RelativeCounter+1;
    end
end