This file is indexed.

/usr/share/dynare/matlab/plot_identification.m is in dynare-common 4.4.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
function plot_identification(params,idemoments,idehess,idemodel, idelre, advanced, tittxt, name, IdentifDirectoryName)
% function plot_identification(params,idemoments,idehess,idemodel, idelre, advanced, tittxt, name, IdentifDirectoryName)
%
% INPUTS
%    o params             [array] parameter values for identification checks
%    o idemoments         [structure] identification results for the moments
%    o idehess            [structure] identification results for the Hessian
%    o idemodel           [structure] identification results for the reduced form solution
%    o idelre             [structure] identification results for the LRE model
%    o advanced           [integer] flag for advanced identification checks
%    o tittxt             [char] name of the results to plot 
%    o name               [char] list of names
%    o IdentifDirectoryName   [char] directory name
%    
% OUTPUTS
%    None
%    
% SPECIAL REQUIREMENTS
%    None

% Copyright (C) 2008-2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global M_ options_


[SampleSize, nparam]=size(params);
siJnorm = idemoments.siJnorm;
siHnorm = idemodel.siHnorm;
siLREnorm = idelre.siLREnorm;

% if prior_exist,
%     tittxt = 'Prior mean - ';
% else
%     tittxt = '';
% end
tittxt1=regexprep(tittxt, ' ', '_');
tittxt1=strrep(tittxt1, '.', '');
if SampleSize == 1,
    siJ = idemoments.siJ;
    hh = dyn_figure(options_,'Name',[tittxt, ' - Identification using info from observables']);
    subplot(211)
    mmm = (idehess.ide_strength_J);
    [ss, is] = sort(mmm);
    bar(log([idehess.ide_strength_J(:,is)' idehess.ide_strength_J_prior(:,is)']))
    set(gca,'xlim',[0 nparam+1])
    set(gca,'xticklabel','')
    dy = get(gca,'ylim');
    for ip=1:nparam,
        text(ip,dy(1),name{is(ip)},'rotation',90,'HorizontalAlignment','right','interpreter','none')
    end
    legend('relative to param value','relative to prior std','Location','Best')
    if  idehess.flag_score,
        title('Identification strength with asymptotic Information matrix (log-scale)')
    else
        title('Identification strength with moments Information matrix (log-scale)')
    end
    
    subplot(212)
    bar(log([idehess.deltaM(is) idehess.deltaM_prior(is)]))
    set(gca,'xlim',[0 nparam+1])
    set(gca,'xticklabel','')
    dy = get(gca,'ylim');
    for ip=1:nparam,
        text(ip,dy(1),name{is(ip)},'rotation',90,'HorizontalAlignment','right','interpreter','none')
    end
    legend('relative to param value','relative to prior std','Location','Best')
    if  idehess.flag_score,
        title('Sensitivity component with asymptotic Information matrix (log-scale)')
    else
        title('Sensitivity component with moments Information matrix (log-scale)')
    end
    dyn_saveas(hh,[IdentifDirectoryName '/' M_.fname '_ident_strength_' tittxt1],options_);
    
    if advanced,
        if ~options_.nodisplay,
            skipline()
            disp('Press ENTER to plot advanced diagnostics'), pause(5),
        end
        hh = dyn_figure(options_,'Name',[tittxt, ' - Sensitivity plot']);
        subplot(211)
        mmm = (siJnorm)'./max(siJnorm);
        mmm1 = (siHnorm)'./max(siHnorm);
        mmm=[mmm mmm1];
        mmm1 = (siLREnorm)'./max(siLREnorm);
        offset=length(siHnorm)-length(siLREnorm);
        mmm1 = [NaN(offset,1); mmm1];
        mmm=[mmm mmm1];
        
        bar(log(mmm(is,:).*100))
        set(gca,'xlim',[0 nparam+1])
        set(gca,'xticklabel','')
        dy = get(gca,'ylim');
        for ip=1:nparam,
            text(ip,dy(1),name{is(ip)},'rotation',90,'HorizontalAlignment','right','interpreter','none')
        end
        legend('Moments','Model','LRE model','Location','Best')
        title('Sensitivity bars using derivatives (log-scale)')
        dyn_saveas(hh,[IdentifDirectoryName '/' M_.fname '_sensitivity_' tittxt1 ],options_);
        
        % identificaton patterns
        for  j=1:size(idemoments.cosnJ,2),
            pax=NaN(nparam,nparam);
%             fprintf('\n')
%             disp(['Collinearity patterns with ', int2str(j) ,' parameter(s)'])
%             fprintf('%-15s [%-*s] %10s\n','Parameter',(15+1)*j,' Expl. params ','cosn')
            for i=1:nparam,
                namx='';
                for in=1:j,
                    dumpindx = idemoments.pars{i,j}(in);
                    if isnan(dumpindx),
                        namx=[namx ' ' sprintf('%-15s','--')];
                    else
                        namx=[namx ' ' sprintf('%-15s',name{dumpindx})];
                        pax(i,dumpindx)=idemoments.cosnJ(i,j);
                    end
                end
%                 fprintf('%-15s [%s] %10.3f\n',name{i},namx,idemoments.cosnJ(i,j))
            end
            hh = dyn_figure(options_,'Name',[tittxt,' - Collinearity patterns with ', int2str(j) ,' parameter(s)']);
            imagesc(pax,[0 1]);
            set(gca,'xticklabel','')
            set(gca,'yticklabel','')
            for ip=1:nparam,
                text(ip,(0.5),name{ip},'rotation',90,'HorizontalAlignment','left','interpreter','none')
                text(0.5,ip,name{ip},'rotation',0,'HorizontalAlignment','right','interpreter','none')
            end
            colorbar;
            ax=colormap;
            ax(1,:)=[0.9 0.9 0.9];
            colormap(ax);
            if nparam>10,
                set(gca,'xtick',(5:5:nparam))
                set(gca,'ytick',(5:5:nparam))
            end
            set(gca,'xgrid','on')
            set(gca,'ygrid','on')
            xlabel([tittxt,' - Collinearity patterns with ', int2str(j) ,' parameter(s)'],'interpreter','none')
            dyn_saveas(hh,[ IdentifDirectoryName '/' M_.fname '_ident_collinearity_' tittxt1 '_' int2str(j) ],options_);
        end
        skipline()
        [U,S,V]=svd(idehess.AHess,0);
        S=diag(S);
        if idehess.flag_score,
            if nparam<5,
                f1 = dyn_figure(options_,'Name',[tittxt,' - Identification patterns (Information matrix)']);
            else
                f1 = dyn_figure(options_,'Name',[tittxt,' - Identification patterns (Information matrix): SMALLEST SV']);
                f2 = dyn_figure(options_,'Name',[tittxt,' - Identification patterns (Information matrix): HIGHEST SV']);
            end
        else
%             S = idemoments.S;
%             V = idemoments.V;
            if nparam<5,
                f1 = dyn_figure(options_,'Name',[tittxt,' - Identification patterns (moments Information matrix)']);
            else
                f1 = dyn_figure(options_,'Name',[tittxt,' - Identification patterns (moments Information matrix): SMALLEST SV']);
                f2 = dyn_figure(options_,'Name',[tittxt,' - Identification patterns (moments Information matrix): HIGHEST SV']);
            end
        end
        for j=1:min(nparam,8),
            if j<5,
                set(0,'CurrentFigure',f1),
                jj=j;
            else
                set(0,'CurrentFigure',f2),
                jj=j-4;
            end
            subplot(4,1,jj),
            if j<5
                bar(abs(V(:,end-j+1))),
                Stit = S(end-j+1);
            else
                bar(abs(V(:,jj))),
                Stit = S(jj);
            end
            set(gca,'xticklabel','')
            if j==4 || j==nparam || j==8,
                for ip=1:nparam,
                    text(ip,-0.02,name{ip},'rotation',90,'HorizontalAlignment','right','interpreter','none')
                end
            end
            title(['Singular value ',num2str(Stit)])
        end
        dyn_saveas(f1,[  IdentifDirectoryName '/' M_.fname '_ident_pattern_' tittxt1 '_1' ],options_);
        if nparam>4,
            dyn_saveas(f2,[  IdentifDirectoryName '/' M_.fname '_ident_pattern_' tittxt1 '_2' ],options_);
        end
    end
    
else
    hh = dyn_figure(options_,'Name',['MC sensitivities']);
    subplot(211)
    mmm = (idehess.ide_strength_J);
    [ss, is] = sort(mmm);
    mmm = mean(siJnorm)';
    mmm = mmm./max(mmm);
    if advanced,
        mmm1 = mean(siHnorm)';
        mmm=[mmm mmm1./max(mmm1)];
        mmm1 = mean(siLREnorm)';
        offset=size(siHnorm,2)-size(siLREnorm,2);
        mmm1 = [NaN(offset,1); mmm1./max(mmm1)];
        mmm=[mmm mmm1];
    end        
        
    bar(mmm(is,:))
    set(gca,'xlim',[0 nparam+1])
    set(gca,'xticklabel','')
    dy = get(gca,'ylim');
    for ip=1:nparam,
        text(ip,dy(1),name{is(ip)},'rotation',90,'HorizontalAlignment','right','interpreter','none')
    end
    if advanced,
        legend('Moments','Model','LRE model','Location','Best')
    end
    title('MC mean of sensitivity measures')
    dyn_saveas(hh,[ IdentifDirectoryName '/' M_.fname '_MC_sensitivity' ],options_);
    if advanced,
        if ~options_.nodisplay,
            skipline()
            disp('Press ENTER to display advanced diagnostics'), pause(5),
        end
%         options_.nograph=1;
        hh = dyn_figure(options_,'Name','MC Condition Number');
        subplot(221)
        hist(log10(idemodel.cond))
        title('log10 of Condition number in the model')
        subplot(222)
        hist(log10(idemoments.cond))
        title('log10 of Condition number in the moments')
        subplot(223)
        hist(log10(idelre.cond))
        title('log10 of Condition number in the LRE model')
        dyn_saveas(hh,[IdentifDirectoryName '/' M_.fname '_ident_COND' ],options_);
        ncut=floor(SampleSize/10*9);
        [dum,is]=sort(idelre.cond);
        [proba, dproba] = stab_map_1(params, is(1:ncut), is(ncut+1:end), 'MC_HighestCondNumberLRE', 1, [], IdentifDirectoryName, 0.1);
        [dum,is]=sort(idemodel.cond);
        [proba, dproba] = stab_map_1(params, is(1:ncut), is(ncut+1:end), 'MC_HighestCondNumberModel', 1, [], IdentifDirectoryName, 0.1);
        [dum,is]=sort(idemoments.cond);
        [proba, dproba] = stab_map_1(params, is(1:ncut), is(ncut+1:end), 'MC_HighestCondNumberMoments', 1, [], IdentifDirectoryName, 0.1);
%         [proba, dproba] = stab_map_1(idemoments.Mco', is(1:ncut), is(ncut+1:end), 'HighestCondNumberMoments_vs_Mco', 1, [], IdentifDirectoryName);
%         for j=1:nparam,
% %             ibeh=find(idemoments.Mco(j,:)<0.9);
% %             inonbeh=find(idemoments.Mco(j,:)>=0.9);
% %             if ~isempty(ibeh) && ~isempty(inonbeh)
% %                 [proba, dproba] = stab_map_1(params, ibeh, inonbeh, ['HighestMultiCollinearity_',name{j}], 1, [], IdentifDirectoryName);
% %             end
%             [~,is]=sort(idemoments.Mco(:,j));
%             [proba, dproba] = stab_map_1(params, is(1:ncut), is(ncut+1:end), ['MC_HighestMultiCollinearity_',name{j}], 1, [], IdentifDirectoryName, 0.15);
%         end

        if nparam<5,
            f1 = dyn_figure(options_,'Name',[tittxt,' - MC Identification patterns (moments): HIGHEST SV']);
        else
            f1 = dyn_figure(options_,'Name',[tittxt,' - MC Identification patterns (moments): SMALLEST SV']);
            f2 = dyn_figure(options_,'Name',[tittxt,' - MC Identification patterns (moments): HIGHEST SV']);
        end
        nplots=min(nparam,8);
        if nplots>4,
            nsubplo=ceil(nplots/2);
        else
            nsubplo=nplots;
        end
        for j=1:nplots,
            if (nparam>4 && j<=ceil(nplots/2)) || nparam<5,
                set(0,'CurrentFigure',f1),
                jj=j;
                VVV=squeeze(abs(idemoments.V(:,:,end-j+1)));
                SSS = idemoments.S(:,end-j+1);
            else
                set(0,'CurrentFigure',f2),
                jj=j-ceil(nplots/2);
                VVV=squeeze(abs(idemoments.V(:,:,jj)));
                SSS = idemoments.S(:,jj);
            end
            subplot(nsubplo,1,jj),
            for i=1:nparam,
                [post_mean, post_median(:,i), post_var, hpd_interval(i,:), post_deciles] = posterior_moments(VVV(:,i),0,0.9);
            end
            bar(post_median)
            hold on, plot(hpd_interval,'--*r'),
            Stit=mean(SSS);

            set(gca,'xticklabel','')
            if j==4 || j==nparam || j==8,
                for ip=1:nparam,
                    text(ip,-0.02,name{ip},'rotation',90,'HorizontalAlignment','right','interpreter','none')
                end
            end
            title(['MEAN Singular value ',num2str(Stit)])
        end
        dyn_saveas(f1,[IdentifDirectoryName '/' M_.fname '_MC_ident_pattern_1' ],options_);
        if nparam>4,
            dyn_saveas(f2,[  IdentifDirectoryName '/' M_.fname '_MC_ident_pattern_2' ],options_);
        end
    end
end

% disp_identification(params, idemodel, idemoments, name)