/usr/share/dynare/matlab/pm3.m is in dynare-common 4.4.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | function pm3(n1,n2,ifil,B,tit1,tit2,tit3,tit_tex,names1,names2,name3,DirectoryName,var_type)
% PARALLEL CONTEXT
% See also the comment in random_walk_metropolis_hastings.m funtion.
% Copyright (C) 2007-2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global options_ M_ oo_
nn = 3;
MaxNumberOfPlotsPerFigure = nn^2; % must be square
varlist = names2;
if isempty(varlist)
varlist = names1;
SelecVariables = (1:M_.endo_nbr)';
nvar = M_.endo_nbr;
else
nvar = size(varlist,1);
SelecVariables = [];
for i=1:nvar
if ~isempty(strmatch(varlist(i,:),names1,'exact'))
SelecVariables = [SelecVariables;strmatch(varlist(i,:),names1,'exact')];
end
end
end
if options_.TeX
% needs to be fixed
if isempty(tit_tex),
tit_tex=M_.endo_names_tex;
end
varlist_TeX = [];
for i=1:nvar
if i==1
varlist_TeX = tit_tex(SelecVariables(i),:);
else
varlist_TeX = char(varlist_TeX,tit_tex(SelecVariables(i),:));
end
end
end
Mean = zeros(n2,nvar);
Median = zeros(n2,nvar);
Var = zeros(n2,nvar);
Distrib = zeros(9,n2,nvar);
HPD = zeros(2,n2,nvar);
fprintf(['Estimation::mcmc: ' tit1 '\n']);
stock1 = zeros(n1,n2,B);
k = 0;
filter_step_ahead_indicator=0;
for file = 1:ifil
load([DirectoryName '/' M_.fname var_type int2str(file)]);
if size(size(stock),2) == 4
if file==1 %on first run, initialize variable for storing filter_step_ahead
stock1_filter_step_ahead=NaN(n1,n2,B,length(options_.filter_step_ahead));
end
filter_step_ahead_indicator=1;
stock_filter_step_ahead=zeros(n1,n2,size(stock,4),length(options_.filter_step_ahead));
for ii=1:length(options_.filter_step_ahead)
K_step_ahead=options_.filter_step_ahead(ii);
stock_filter_step_ahead(:,:,:,ii)=stock(ii,:,1+K_step_ahead:n2+K_step_ahead,:);
end
stock = squeeze(stock(1,:,1+1:1+n2,:)); %1 step ahead starts at entry 2
end
k = k(end)+(1:size(stock,3));
stock1(:,:,k) = stock;
if filter_step_ahead_indicator
stock1_filter_step_ahead(:,:,k,:) = stock_filter_step_ahead;
end
end
clear stock
if filter_step_ahead_indicator
clear stock_filter_step_ahead
filter_steps=length(options_.filter_step_ahead);
Mean_filter_step_ahead = zeros(filter_steps,nvar,n2);
Median_filter_step_ahead = zeros(filter_steps,nvar,n2);
Var_filter_step_ahead = zeros(filter_steps,nvar,n2);
Distrib_filter_step_ahead = zeros(9,filter_steps,nvar,n2);
HPD_filter_step_ahead = zeros(2,filter_steps,nvar,n2);
end
tmp =zeros(B,1);
for i = 1:nvar
for j = 1:n2
[Mean(j,i),Median(j,i),Var(j,i),HPD(:,j,i),Distrib(:,j,i)] = ...
posterior_moments(squeeze(stock1(SelecVariables(i),j,:)),0,options_.mh_conf_sig);
if filter_step_ahead_indicator
for K_step = 1:length(options_.filter_step_ahead)
[Mean_filter_step_ahead(K_step,i,j),Median_filter_step_ahead(K_step,i,j),Var_filter_step_ahead(K_step,i,j),HPD_filter_step_ahead(:,K_step,i,j),Distrib_filter_step_ahead(:,K_step,i,j)] = ...
posterior_moments(squeeze(stock1_filter_step_ahead(SelecVariables(i),j,:,K_step)),0,options_.mh_conf_sig);
end
end
end
end
clear stock1
if filter_step_ahead_indicator %write matrices corresponding to ML
clear stock1_filter_step_ahead
FilteredVariablesKStepAhead=zeros(length(options_.filter_step_ahead),nvar,n2+max(options_.filter_step_ahead));
FilteredVariablesKStepAheadVariances=zeros(length(options_.filter_step_ahead),nvar,n2+max(options_.filter_step_ahead));
for K_step = 1:length(options_.filter_step_ahead)
FilteredVariablesKStepAhead(K_step,:,1+options_.filter_step_ahead(K_step):n2+options_.filter_step_ahead(K_step))=Mean_filter_step_ahead(K_step,:,:);
FilteredVariablesKStepAheadVariances(K_step,:,1+options_.filter_step_ahead(K_step):n2+options_.filter_step_ahead(K_step))=Mean_filter_step_ahead(K_step,:,:);
end
oo_.FilteredVariablesKStepAhead=FilteredVariablesKStepAhead;
oo_.FilteredVariablesKStepAheadVariances=FilteredVariablesKStepAheadVariances;
end
for i = 1:nvar
name = deblank(names1(SelecVariables(i),:));
eval(['oo_.' name3 '.Mean.' name ' = Mean(:,i);']);
eval(['oo_.' name3 '.Median.' name ' = Median(:,i);']);
eval(['oo_.' name3 '.Var.' name ' = Var(:,i);']);
eval(['oo_.' name3 '.deciles.' name ' = Distrib(:,:,i);']);
eval(['oo_.' name3 '.HPDinf.' name ' = HPD(1,:,i);']);
eval(['oo_.' name3 '.HPDsup.' name ' = HPD(2,:,i);']);
if filter_step_ahead_indicator
for K_step = 1:length(options_.filter_step_ahead)
name4=['Filtered_Variables_',num2str(K_step),'_step_ahead'];
eval(['oo_.' name4 '.Mean.' name ' = squeeze(Mean_filter_step_ahead(K_step,i,:));']);
eval(['oo_.' name4 '.Median.' name ' = squeeze(Median_filter_step_ahead(K_step,i,:));']);
eval(['oo_.' name4 '.Var.' name ' = squeeze(Var_filter_step_ahead(K_step,i,:));']);
eval(['oo_.' name4 '.deciles.' name ' = squeeze(Distrib_filter_step_ahead(:,K_step,i,:));']);
eval(['oo_.' name4 '.HPDinf.' name ' = squeeze(HPD_filter_step_ahead(1,K_step,i,:));']);
eval(['oo_.' name4 '.HPDsup.' name ' = squeeze(HPD_filter_step_ahead(2,K_step,i,:));']);
end
end
end
%%
%% Finally I build the plots.
%%
% Block of code executed in parallel, with the exception of file
% .tex generation always run sequentially. This portion of code is execute in parallel by
% pm3_core1.m function.
% %%%%%%%%% PARALLEL BLOCK % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% %%% The file .TeX! are not saved in parallel.
% Store the variable mandatory for local/remote parallel computing.
localVars=[];
localVars.tit1=tit1;
localVars.nn=nn;
localVars.n2=n2;
localVars.Distrib=Distrib;
localVars.varlist=varlist;
localVars.MaxNumberOfPlotsPerFigure=MaxNumberOfPlotsPerFigure;
localVars.name3=name3;
localVars.tit3=tit3;
localVars.Mean=Mean;
% Like sequential execution!
nvar0=nvar;
if ~isoctave
% Commenting for testing!
if isnumeric(options_.parallel) || ceil(size(varlist,1)/MaxNumberOfPlotsPerFigure)<4,
fout = pm3_core(localVars,1,nvar,0);
% Parallel execution!
else
isRemoteOctave = 0;
for indPC=1:length(options_.parallel),
isRemoteOctave = isRemoteOctave + (findstr(options_.parallel(indPC).MatlabOctavePath, 'octave'));
end
if isRemoteOctave
fout = pm3_core(localVars,1,nvar,0);
else
globalVars = struct('M_',M_, ...
'options_', options_, ...
'oo_', oo_);
[fout, nvar0, totCPU] = masterParallel(options_.parallel, 1, nvar, [],'pm3_core', localVars,globalVars, options_.parallel_info);
end
end
else
% For the time being in Octave enviroment the pm3.m is executed only in
% serial modality, to avoid problem with the plots.
fout = pm3_core(localVars,1,nvar,0);
end
subplotnum = 0;
if options_.TeX,
fidTeX = fopen([M_.dname '/Output/' M_.fname '_' name3 '.TeX'],'w');
fprintf(fidTeX,'%% TeX eps-loader file generated by Dynare.\n');
fprintf(fidTeX,['%% ' datestr(now,0) '\n']);
fprintf(fidTeX,' \n');
nvar0=cumsum(nvar0);
i=0;
for j=1:length(nvar0),
NAMES = [];
TEXNAMES = [];
nvar=nvar0(j);
while i<nvar,
i=i+1;
if max(abs(Mean(:,i))) > 10^(-6)
subplotnum = subplotnum+1;
name = deblank(varlist(i,:));
texname = deblank(varlist_TeX(i,:));
if subplotnum==1
NAMES = name;
TEXNAMES = ['$' texname '$'];
else
NAMES = char(NAMES,name);
TEXNAMES = char(TEXNAMES,['$' texname '$']);
end
end
if subplotnum == MaxNumberOfPlotsPerFigure || i == nvar
fprintf(fidTeX,'\\begin{figure}[H]\n');
for jj = 1:size(TEXNAMES,1)
fprintf(fidTeX,['\\psfrag{%s}[1][][0.5][0]{%s}\n'],deblank(NAMES(jj,:)),deblank(TEXNAMES(jj,:)));
end
fprintf(fidTeX,'\\centering \n');
fprintf(fidTeX,['\\includegraphics[scale=0.5]{%s/Output/%s_' name3 '_%s}\n'],M_.dname,M_.fname,deblank(tit3(i,:)));
fprintf(fidTeX,'\\label{Fig:%s:%s}\n',name3,deblank(tit3(i,:)));
fprintf(fidTeX,'\\end{figure}\n');
fprintf(fidTeX,' \n');
subplotnum = 0;
NAMES = [];
TEXNAMES = [];
end
end
end
fprintf(fidTeX,'%% End of TeX file.\n');
fclose(fidTeX);
end
fprintf(['Estimation::mcmc: ' tit1 ', done!\n']);
|