/usr/share/dynare/matlab/qmc_sequence.m is in dynare-common 4.4.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 | %@info:
%! @deftypefn {Mex File} {[@var{a}, @var{s}, @var{info}] =} qmc_sequence (@var{d}, @var{s}, @var{t}, @var{n}, @var{lu})
%! @anchor{qmc_sequence}
%! @sp 1
%! Computes quasi Monte-Carlo sequence (Sobol numbers).
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item d
%! Integer scalar, dimension.
%! @item s
%! Integer scalar (int64), seed.
%! @item t
%! Integer scalar, sequence type:
%! @sp 1
%! @table @ @samp
%! @item @var{t}=0
%! Uniform numbers in a n-dimensional (unit by default) hypercube
%! @item @var{t}=1
%! Gaussian numbers
%! @item @var{t}=2
%! Uniform numbers on a n-dimensional (unit by default) hypersphere
%! @end table
%! @item n
%! Integer scalar, number of elements in the sequence.
%! @item lu
%! Optional argument, the interpretation depends on its size:
%! @sp 1
%! @table @ @samp
%! @item @var{d}x2 array of doubles
%! Lower and upper bounds of the hypercube (default is 0-1 in all dimensions). @var{t} must be equal to zero.
%! @item @var{d}x@var{d} array of doubles
%! Lower cholesky of the covariance matrix of the Gaussian variates (default is the identity matrix). @var{t} must be equal to one.
%! @item scalar double
%! Radius of the hypershere (default is one). @var{t} must be equal to two.
%! @end table
%! @end table
%! @sp 2
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item a
%! @var{n}x@var{d} matrix of doubles, the Sobol sequence.
%! @item s
%! Integer scalar (int64), current value of the seed.
%! @item info
%! Integer scalar, equal to 1 if mex routine fails, 0 otherwise.
%! @end table
%! @sp 2
%! @strong{This function is called by:}
%! @sp 2
%! @strong{This function calls:}
%! @sp 2
%! @end deftypefn
%@eod:
% Copyright (C) 2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
%@test:1
%$ t = ones(3,1);
%$
%$ d = 2;
%$ n = 100;
%$ s = int64(0);
%$
%$ try
%$ [draws, S] = qmc_sequence(d,s,0,n);
%$ catch
%$ t(1) = 0;
%$ end
%$
%$ try
%$ [draws, S] = qmc_sequence(d,s,1,n);
%$ catch
%$ t(2) = 0;
%$ end
%$
%$ try
%$ [draws, S] = qmc_sequence(d,s,2,n);
%$ catch
%$ t(3) = 0;
%$ end
%$
%$ T = all(t);
%@eof:1
%@test:2
%$ t = ones(3,1);
%$
%$ d = 2;
%$ n = 100;
%$ s = int64(0);
%$
%$ [draws1, S] = qmc_sequence(d,s,0,n);
%$ [draws2, Q] = qmc_sequence(d,S,0,n);
%$ [draws3, P] = qmc_sequence(d,s,0,2*n);
%$
%$ t(1) = dyn_assert(s,int64(0));
%$ t(2) = dyn_assert(P,Q);
%$ t(3) = dyn_assert([draws1,draws2],draws3);
%$ T = all(t);
%@eof:2
%@test:3
%$
%$ d = 2;
%$ n = 100;
%$ s = int64(0);
%$
%$ [draws1, S] = qmc_sequence(d,s,0,n,[0 , 2; -1, 2]);
%$ [draws2, Q] = qmc_sequence(d,s,0,n);
%$
%$ draws3 = draws2;
%$ draws3(1,:) = 2*draws2(1,:);
%$ draws3(2,:) = 3*draws2(2,:)-1;
%$ t(1) = dyn_assert(S,Q);
%$ t(2) = dyn_assert(draws1,draws3);
%$ T = all(t);
%@eof:3
%@test:4
%$
%$ d = 2;
%$ n = 100;
%$ s = int64(0);
%$ radius = pi;
%$
%$ [draws, S] = qmc_sequence(d,s,2,n,radius);
%$
%$ t(1) = dyn_assert(sqrt(draws(:,3)'*draws(:,3)),radius,1e-14);
%$ t(2) = dyn_assert(sqrt(draws(:,5)'*draws(:,5)),radius,1e-14);
%$ t(3) = dyn_assert(sqrt(draws(:,7)'*draws(:,7)),radius,1e-14);
%$ t(4) = dyn_assert(sqrt(draws(:,11)'*draws(:,11)),radius,1e-14);
%$ t(5) = dyn_assert(sqrt(draws(:,13)'*draws(:,13)),radius,1e-14);
%$ t(6) = dyn_assert(sqrt(draws(:,17)'*draws(:,17)),radius,1e-14);
%$ t(7) = dyn_assert(sqrt(draws(:,19)'*draws(:,19)),radius,1e-14);
%$ t(8) = dyn_assert(sqrt(draws(:,23)'*draws(:,23)),radius,1e-14);
%$ t(9) = dyn_assert(sqrt(draws(:,29)'*draws(:,29)),radius,1e-14);
%$ T = all(t);
%@eof:4
%@test:5
%$
%$ d = 2;
%$ n = 100000;
%$ b = 100;
%$ s = int64(5);
%$
%$ covariance = [.4 -.1; -.1 .2];
%$ chol_covariance = transpose(chol(covariance));
%$
%$ draws = [];
%$
%$ for i=1:b
%$ [tmp, s] = qmc_sequence(d,s,1,n,chol_covariance);
%$ draws = [draws, tmp];
%$ end
%$
%$ COVARIANCE = draws*draws'/(b*n);
%$
%$ t(1) = dyn_assert(covariance,COVARIANCE,1e-6);
%$ T = all(t);
%@eof:5
|