/usr/share/dynare/matlab/set_parameters.m is in dynare-common 4.4.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 | function set_parameters(xparam1)
% function set_parameters(xparam1)
% Sets parameters value (except measurement errors)
% This is called for computations such as IRF and forecast
% when measurement errors aren't taken into account
%
% INPUTS
% xparam1: vector of parameters to be estimated (initial values)
%
% OUTPUTS
% none
%
% SPECIAL REQUIREMENTS
% none
% Copyright (C) 2003-2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global estim_params_ M_
nvx = estim_params_.nvx;
ncx = estim_params_.ncx;
nvn = estim_params_.nvn;
ncn = estim_params_.ncn;
np = estim_params_.np;
Sigma_e = M_.Sigma_e;
Correlation_matrix = M_.Correlation_matrix;
offset = 0;
% setting shocks variance on the diagonal of Covariance matrix; used later
% for updating covariances
if nvx
var_exo = estim_params_.var_exo;
for i=1:nvx
k = var_exo(i,1);
Sigma_e(k,k) = xparam1(i)^2;
end
end
% and update offset
offset = offset + nvx + nvn;
% correlations amonx shocks (ncx)
if ncx
corrx = estim_params_.corrx;
for i=1:ncx
k1 = corrx(i,1);
k2 = corrx(i,2);
Correlation_matrix(k1,k2) = xparam1(i+offset);
Correlation_matrix(k2,k1) = Correlation_matrix(k1,k2);
end
end
%build covariance matrix from correlation matrix and variances already on
%diagonal
Sigma_e = diag(sqrt(diag(Sigma_e)))*Correlation_matrix*diag(sqrt(diag(Sigma_e)));
if isfield(estim_params_,'calibrated_covariances')
Sigma_e(estim_params_.calibrated_covariances.position)=estim_params_.calibrated_covariances.cov_value;
end
% and update offset
offset = offset + ncx + ncn;
% structural parameters
if np
M_.params(estim_params_.param_vals(:,1)) = xparam1(offset+1:end);
end
M_.Sigma_e = Sigma_e;
M_.Correlation_matrix=Correlation_matrix;
|