This file is indexed.

/usr/share/dynare/matlab/sim1_lbj.m is in dynare-common 4.4.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
function sim1_lbj()
% function sim1_lbj
% performs deterministic simulations with lead or lag on one period
% using the historical LBJ algorithm
%
% INPUTS
%   ...
% OUTPUTS
%   ...
% ALGORITHM
%   Laffargue, Boucekkine, Juillard (LBJ)
%   see Juillard (1996) Dynare: A program for the resolution and
%   simulation of dynamic models with forward variables through the use
%   of a relaxation algorithm. CEPREMAP. Couverture Orange. 9602.
%
% SPECIAL REQUIREMENTS
%   None.

% Copyright (C) 1996-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global M_ options_ oo_

lead_lag_incidence = M_.lead_lag_incidence;

ny = size(oo_.endo_simul,1) ;
nyp = nnz(lead_lag_incidence(1,:)) ;
nyf = nnz(lead_lag_incidence(3,:)) ;
nrs = ny+nyp+nyf+1 ;
nrc = nyf+1 ;
iyf = find(lead_lag_incidence(3,:)>0) ;
iyp = find(lead_lag_incidence(1,:)>0) ;
isp = [1:nyp] ;
is = [nyp+1:ny+nyp] ;
isf = iyf+nyp ;
isf1 = [nyp+ny+1:nyf+nyp+ny+1] ;
stop = 0 ;
iz = [1:ny+nyp+nyf];

disp (['-----------------------------------------------------']) ;
disp (['MODEL SIMULATION :']) ;
fprintf('\n') ;

it_init = M_.maximum_lag+1 ;

h1 = clock ;
for iter = 1:options_.simul.maxit
    h2 = clock ;
    
    if options_.terminal_condition == 0
        c = zeros(ny*options_.periods,nrc) ;
    else
        c = zeros(ny*(options_.periods+1),nrc) ;
    end
    
    it_ = it_init ;
    z = [oo_.endo_simul(iyp,it_-1) ; oo_.endo_simul(:,it_) ; oo_.endo_simul(iyf,it_+1)] ;
    [d1,jacobian] = feval([M_.fname '_dynamic'],z,oo_.exo_simul, M_.params, oo_.steady_state,it_);
    jacobian = [jacobian(:,iz) -d1] ;
    ic = [1:ny] ;
    icp = iyp ;
    c (ic,:) = jacobian(:,is)\jacobian(:,isf1) ;
    for it_ = it_init+(1:options_.periods-1)
        z = [oo_.endo_simul(iyp,it_-1) ; oo_.endo_simul(:,it_) ; oo_.endo_simul(iyf,it_+1)] ;
        [d1,jacobian] = feval([M_.fname '_dynamic'],z,oo_.exo_simul, ...
                              M_.params, oo_.steady_state, it_);
        jacobian = [jacobian(:,iz) -d1] ;
        jacobian(:,[isf nrs]) = jacobian(:,[isf nrs])-jacobian(:,isp)*c(icp,:) ;
        ic = ic + ny ;
        icp = icp + ny ;
        c (ic,:) = jacobian(:,is)\jacobian(:,isf1) ;
    end
    
    if options_.terminal_condition == 1
        s = eye(ny) ;
        s(:,isf) = s(:,isf)+c(ic,1:nyf) ;
        ic = ic + ny ;
        c(ic,nrc) = s\c(ic,nrc) ;
        c = bksup1(c,ny,nrc,iyf,options_.periods) ;
        c = reshape(c,ny,options_.periods+1) ;
        oo_.endo_simul(:,it_init+(0:options_.periods)) = oo_.endo_simul(:,it_init+(0:options_.periods))+options_.slowc*c ;
    else
        c = bksup1(c,ny,nrc,iyf,options_.periods) ;
        c = reshape(c,ny,options_.periods) ;
        oo_.endo_simul(:,it_init+(0:options_.periods-1)) = oo_.endo_simul(:,it_init+(0:options_.periods-1))+options_.slowc*c ;
    end
    
    err = max(max(abs(c./options_.scalv')));
    disp([num2str(iter) ' -     err = ' num2str(err)]) ;
    disp(['     Time of iteration       :' num2str(etime(clock,h2))]) ;
    
    if err < options_.dynatol.f
        stop = 1 ;
        fprintf('\n') ;
        disp([' Total time of simulation        :' num2str(etime(clock,h1))]) ;
        fprintf('\n') ;
        disp([' Convergency obtained.']) ;
        fprintf('\n') ;
        oo_.deterministic_simulation.status = 1;% Convergency obtained.
        oo_.deterministic_simulation.error = err;
        oo_.deterministic_simulation.iterations = iter;
        break
    end
end

if ~stop
    fprintf('\n') ;
    disp(['     Total time of simulation        :' num2str(etime(clock,h1))]) ;
    fprintf('\n') ;
    disp(['WARNING : maximum number of iterations is reached (modify options_.simul.maxit).']) ;
    fprintf('\n') ;
    oo_.deterministic_simulation.status = 0;% more iterations are needed.
    oo_.deterministic_simulation.error = err;
    oo_.deterministic_simulation.errors = c/abs(err);    
    oo_.deterministic_simulation.iterations = options_.simul.maxit;
end
disp (['-----------------------------------------------------']) ;