This file is indexed.

/usr/share/dynare/matlab/simpsa.m is in dynare-common 4.4.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
function [X,FVAL,EXITFLAG,OUTPUT] = simpsa(FUN,X0,LB,UB,OPTIONS,varargin)

% Finds a minimum of a function of several variables using an algorithm 
% that is based on the combination of the non-linear smplex and the simulated 
% annealing algorithm (the SIMPSA algorithm, Cardoso et al., 1996). 
% In this paper, the algorithm is shown to be adequate for the global optimi-
% zation of an example set of unconstrained and constrained NLP functions.
%
%   SIMPSA attempts to solve problems of the form:
%       min F(X) subject to: LB <= X <= UB
%        X
%
% Algorithm partly is based on paper of Cardoso et al, 1996.
%                                                                             
%   X=SIMPSA(FUN,X0) start at X0 and finds a minimum X to the function FUN. 
%   FUN accepts input X and returns a scalar function value F evaluated at X.
%   X0 may be a scalar, vector, or matrix.
%   
%   X=SIMPSA(FUN,X0,LB,UB) defines a set of lower and upper bounds on the 
%   design variables, X, so that a solution is found in the range 
%   LB <= X <= UB. Use empty matrices for LB and UB if no bounds exist. 
%   Set LB(i) = -Inf if X(i) is unbounded below; set UB(i) = Inf if X(i) is 
%   unbounded above.
%   
%   X=SIMPSA(FUN,X0,LB,UB,OPTIONS) minimizes with the default optimization
%   parameters replaced by values in the structure OPTIONS, an argument 
%   created with the SIMPSASET function. See SIMPSASET for details. 
%   Used options are TEMP_START, TEMP_END, COOL_RATE, INITIAL_ACCEPTANCE_RATIO,
%   MIN_COOLING_FACTOR, MAX_ITER_TEMP_FIRST, MAX_ITER_TEMP_LAST, MAX_ITER_TEMP,
%   MAX_ITER_TOTAL, MAX_TIME, MAX_FUN_EVALS, TOLX, TOLFUN, DISPLAY and OUTPUT_FCN.
%   Use OPTIONS = [] as a place holder if no options are set.
%   
%   X=SIMPSA(FUN,X0,LB,UB,OPTIONS,varargin) is used to supply a variable 
%   number of input arguments to the objective function FUN.
%   
%   [X,FVAL]=SIMPSA(FUN,X0,...) returns the value of the objective 
%   function FUN at the solution X.
%   
%   [X,FVAL,EXITFLAG]=SIMPSA(FUN,X0,...) returns an EXITFLAG that describes the 
%   exit condition of SIMPSA. Possible values of EXITFLAG and the corresponding 
%   exit conditions are:
%   
%     1  Change in the objective function value less than the specified tolerance.
%     2  Change in X less than the specified tolerance.
%     0  Maximum number of function evaluations or iterations reached.
%    -1  Maximum time exceeded.
%   
%   [X,FVAL,EXITFLAG,OUTPUT]=SIMPSA(FUN,X0,...) returns a structure OUTPUT with 
%   the number of iterations taken in OUTPUT.nITERATIONS, the number of function
%   evaluations in OUTPUT.nFUN_EVALS, the temperature profile in OUTPUT.TEMPERATURE,
%   the simplexes that were evaluated in OUTPUT.SIMPLEX and the best one in 
%   OUTPUT.SIMPLEX_BEST, the costs associated with each simplex in OUTPUT.COSTS and 
%   from the best simplex at that iteration in OUTPUT.COST_BEST, the amount of time 
%   needed in OUTPUT.TIME and the options used in OUTPUT.OPTIONS.
% 
%   See also SIMPSASET, SIMPSAGET


% Copyright (C) 2005 Henning Schmidt, FCC, henning@fcc.chalmers.se
% Copyright (C) 2006 Brecht Donckels, BIOMATH, brecht.donckels@ugent.be
% Copyright (C) 2013 Dynare Team.
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

% handle variable input arguments

if nargin < 5,
    OPTIONS = [];
    if nargin < 4,
        UB = 1e5;
        if nargin < 3,
            LB = -1e5;
        end
    end
end

% check input arguments

if ~ischar(FUN),
    error('''FUN'' incorrectly specified in ''SIMPSA''');
end
if ~isfloat(X0),
    error('''X0'' incorrectly specified in ''SIMPSA''');
end
if ~isfloat(LB),
    error('''LB'' incorrectly specified in ''SIMPSA''');
end
if ~isfloat(UB),
    error('''UB'' incorrectly specified in ''SIMPSA''');
end
if length(X0) ~= length(LB),
    error('''LB'' and ''X0'' have incompatible dimensions in ''SIMPSA''');
end
if length(X0) ~= length(UB),
    error('''UB'' and ''X0'' have incompatible dimensions in ''SIMPSA''');
end

% declaration of global variables

global NDIM nFUN_EVALS TEMP YBEST PBEST

% set EXITFLAG to default value

EXITFLAG = -2;

% determine number of variables to be optimized

NDIM = length(X0);

% set default options
DEFAULT_OPTIONS = simpsaset('TEMP_START',[],...  % starting temperature (if none provided, an optimal one will be estimated)
             'TEMP_END',.1,...                    % end temperature
             'COOL_RATE',10,...                  % small values (<1) means slow convergence,large values (>1) means fast convergence
             'INITIAL_ACCEPTANCE_RATIO',0.95,... % when initial temperature is estimated, this will be the initial acceptance ratio in the first round
             'MIN_COOLING_FACTOR',0.9,...        % minimum cooling factor (<1)
             'MAX_ITER_TEMP_FIRST',50,...        % number of iterations in the preliminary temperature loop
             'MAX_ITER_TEMP_LAST',2000,...         % number of iterations in the last temperature loop (pure simplex)
             'MAX_ITER_TEMP',10,...              % number of iterations in the remaining temperature loops
             'MAX_ITER_TOTAL',2500,...           % maximum number of iterations tout court
             'MAX_TIME',2500,...                 % maximum duration of optimization
             'MAX_FUN_EVALS',20000,...            % maximum number of function evaluations
             'TOLX',1e-6,...                     % maximum difference between best and worst function evaluation in simplex
             'TOLFUN',1e-6,...                   % maximum difference between the coordinates of the vertices
             'DISPLAY','iter',...                % 'iter' or 'none' indicating whether user wants feedback
             'OUTPUT_FCN',[]);                   % string with output function name

% update default options with supplied options

OPTIONS = simpsaset(DEFAULT_OPTIONS,OPTIONS);

% store options in OUTPUT

OUTPUT.OPTIONS = OPTIONS;

% initialize simplex
% ------------------

% create empty simplex matrix p (location of vertex i in row i)
P = zeros(NDIM+1,NDIM);
% create empty cost vector (cost of vertex i in row i)
Y = zeros(NDIM+1,1);
% set best vertex of initial simplex equal to initial parameter guess
PBEST = X0(:)';
% calculate cost with best vertex of initial simplex
YBEST = CALCULATE_COST(FUN,PBEST,LB,UB,varargin{:});

% initialize temperature loop
% ---------------------------

% set temperature loop number to one
TEMP_LOOP_NUMBER = 1;

% if no TEMP_START is supplied, the initial temperature is estimated in the first
% loop as described by Cardoso et al., 1996 (recommended)

% therefore, the temperature is set to YBEST*1e5 in the first loop
if isempty(OPTIONS.TEMP_START),
    TEMP = abs(YBEST)*1e5;
else
    TEMP = OPTIONS.TEMP_START;
end

% initialize OUTPUT structure
% ---------------------------

OUTPUT.TEMPERATURE = zeros(OPTIONS.MAX_ITER_TOTAL,1);
OUTPUT.SIMPLEX = zeros(NDIM+1,NDIM,OPTIONS.MAX_ITER_TOTAL);
OUTPUT.SIMPLEX_BEST = zeros(OPTIONS.MAX_ITER_TOTAL,NDIM);
OUTPUT.COSTS = zeros(OPTIONS.MAX_ITER_TOTAL,NDIM+1);
OUTPUT.COST_BEST = zeros(OPTIONS.MAX_ITER_TOTAL,1);

% initialize iteration data
% -------------------------

% start timer
tic
% set number of function evaluations to one
nFUN_EVALS = 1;
% set number of iterations to zero
nITERATIONS = 0;

% temperature loop: run SIMPSA till stopping criterion is met
% -----------------------------------------------------------

while 1,
    
    % detect if termination criterium was met
    % ---------------------------------------
    
    % if a termination criterium was met, the value of EXITFLAG should have changed
    % from its default value of -2 to -1, 0, 1 or 2
    
    if EXITFLAG ~= -2,
        break
    end
    
    % set MAXITERTEMP: maximum number of iterations at current temperature
    % --------------------------------------------------------------------
    
    if TEMP_LOOP_NUMBER == 1,
        MAXITERTEMP = OPTIONS.MAX_ITER_TEMP_FIRST*NDIM;
        % The initial temperature is estimated (is requested) as described in 
        % Cardoso et al. (1996). Therefore, we need to store the number of 
        % successful and unsuccessful moves, as well as the increase in cost 
        % for the unsuccessful moves.
        if isempty(OPTIONS.TEMP_START),
            [SUCCESSFUL_MOVES,UNSUCCESSFUL_MOVES,UNSUCCESSFUL_COSTS] = deal(0);
        end
    elseif TEMP < OPTIONS.TEMP_END,
        TEMP = 0;
        MAXITERTEMP = OPTIONS.MAX_ITER_TEMP_LAST*NDIM;
    else
        MAXITERTEMP = OPTIONS.MAX_ITER_TEMP*NDIM;
    end
    
    % construct initial simplex
    % -------------------------
    
    % 1st vertex of initial simplex
    P(1,:) = PBEST;
    Y(1) = CALCULATE_COST(FUN,P(1,:),LB,UB,varargin{:});
    
    % if output function given then run output function to plot intermediate result
    if ~isempty(OPTIONS.OUTPUT_FCN),
        feval(OPTIONS.OUTPUT_FCN,transpose(P(1,:)),Y(1));
    end
    
    % remaining vertices of simplex
    for k = 1:NDIM,
        % copy first vertex in new vertex
        P(k+1,:) = P(1,:);
        % alter new vertex
        P(k+1,k) = LB(k)+rand*(UB(k)-LB(k));
        % calculate value of objective function at new vertex
        Y(k+1) = CALCULATE_COST(FUN,P(k+1,:),LB,UB,varargin{:});
    end
    
    % store information on what step the algorithm just did
    ALGOSTEP = 'initial simplex';
    
    % add NDIM+1 to number of function evaluations
    nFUN_EVALS = nFUN_EVALS + NDIM;
    
    % note:
    %  dimensions of matrix P: (NDIM+1) x NDIM
    %  dimensions of vector Y: (NDIM+1) x 1
    
    % give user feedback if requested
    if strcmp(OPTIONS.DISPLAY,'iter'),
        if nITERATIONS == 0,
            disp(' Nr Iter  Nr Fun Eval    Min function       Best function        TEMP           Algorithm Step');
        else
            disp(sprintf('%5.0f      %5.0f       %12.6g     %15.6g      %12.6g       %s',nITERATIONS,nFUN_EVALS,Y(1),YBEST,TEMP,'best point'));
        end
    end

    % run full metropolis cycle at current temperature
    % ------------------------------------------------
    
    % initialize vector COSTS, needed to calculate new temperature using cooling
    % schedule as described by Cardoso et al. (1996)
    COSTS = zeros((NDIM+1)*MAXITERTEMP,1);
    
    % initialize ITERTEMP to zero
    
    ITERTEMP = 0;
    
    % start

    for ITERTEMP = 1:MAXITERTEMP,
        
        % add one to number of iterations
        nITERATIONS = nITERATIONS + 1;
        
        % Press and Teukolsky (1991) add a positive logarithmic distributed variable,
        % proportional to the control temperature T to the function value associated with 
        % every vertex of the simplex. Likewise,they subtract a similar random variable 
        % from the function value at every new replacement point.
        % Thus, if the replacement point corresponds to a lower cost, this method always
        % accepts a true down hill step. If, on the other hand, the replacement point 
        % corresponds to a higher cost, an uphill move may be accepted, depending on the
        % relative COSTS of the perturbed values.
        % (taken from Cardoso et al.,1996)
        
        % add random fluctuations to function values of current vertices
        YFLUCT = Y+TEMP*abs(log(rand(NDIM+1,1)));
        
        % reorder YFLUCT, Y and P so that the first row corresponds to the lowest YFLUCT value
        help = sortrows([YFLUCT,Y,P],1);
        YFLUCT = help(:,1);
        Y = help(:,2);
        P = help(:,3:end);
        
        % store temperature at current iteration
        OUTPUT.TEMPERATURE(nITERATIONS) = TEMP;

        % store information about simplex at the current iteration
        OUTPUT.SIMPLEX(:,:,nITERATIONS) = P;
        OUTPUT.SIMPLEX_BEST(nITERATIONS,:) = PBEST;
        
        % store cost function value of best vertex in current iteration
        OUTPUT.COSTS(nITERATIONS,:) = Y;
        OUTPUT.COST_BEST(nITERATIONS) = YBEST;
        
        if strcmp(OPTIONS.DISPLAY,'iter'),
            disp(sprintf('%5.0f      %5.0f       %12.6g     %15.6g      %12.6g       %s',nITERATIONS,nFUN_EVALS,Y(1),YBEST,TEMP,ALGOSTEP));
        end
        
        % if output function given then run output function to plot intermediate result
        if ~isempty(OPTIONS.OUTPUT_FCN),
            feval(OPTIONS.OUTPUT_FCN,transpose(P(1,:)),Y(1));
        end
        
        % end the optimization if one of the stopping criteria is met
        %% 1. difference between best and worst function evaluation in simplex is smaller than TOLFUN 
        %% 2. maximum difference between the coordinates of the vertices in simplex is less than TOLX
        %% 3. no convergence,but maximum number of iterations has been reached
        %% 4. no convergence,but maximum time has been reached
            
        if (abs(max(Y)-min(Y)) < OPTIONS.TOLFUN) && (TEMP_LOOP_NUMBER ~= 1),
            if strcmp(OPTIONS.DISPLAY,'iter'),
                disp('Change in the objective function value less than the specified tolerance (TOLFUN).')
            end
            EXITFLAG = 1;
            break;
        end
        
        if (max(max(abs(P(2:NDIM+1,:)-P(1:NDIM,:)))) < OPTIONS.TOLX) && (TEMP_LOOP_NUMBER ~= 1),
            if strcmp(OPTIONS.DISPLAY,'iter'),
                disp('Change in X less than the specified tolerance (TOLX).')
            end
            EXITFLAG = 2;
            break;
        end
        
        if (nITERATIONS >= OPTIONS.MAX_ITER_TOTAL*NDIM) || (nFUN_EVALS >= OPTIONS.MAX_FUN_EVALS*NDIM*(NDIM+1)),
            if strcmp(OPTIONS.DISPLAY,'iter'),
                disp('Maximum number of function evaluations or iterations reached.');
            end
            EXITFLAG = 0;
            break;
        end
        
        if toc/60 > OPTIONS.MAX_TIME,
            if strcmp(OPTIONS.DISPLAY,'iter'),
                disp('Exceeded maximum time.');
            end
            EXITFLAG = -1;
            break;
        end
        
        % begin a new iteration
        
        %% first extrapolate by a factor -1 through the face of the simplex
        %% across from the high point,i.e.,reflect the simplex from the high point
        [YFTRY,YTRY,PTRY] = AMOTRY(FUN,P,-1,LB,UB,varargin{:});
        
        %% check the result
        if YFTRY <= YFLUCT(1),
            %% gives a result better than the best point,so try an additional
            %% extrapolation by a factor 2
            [YFTRYEXP,YTRYEXP,PTRYEXP] = AMOTRY(FUN,P,-2,LB,UB,varargin{:});
            if YFTRYEXP < YFTRY,
                P(end,:) = PTRYEXP;
                Y(end) = YTRYEXP;
                ALGOSTEP = 'reflection and expansion';
            else
                P(end,:) = PTRY;
                Y(end) = YTRY;
                ALGOSTEP = 'reflection';
            end
        elseif YFTRY >= YFLUCT(NDIM),
            %% the reflected point is worse than the second-highest, so look
            %% for an intermediate lower point, i.e., do a one-dimensional
            %% contraction
            [YFTRYCONTR,YTRYCONTR,PTRYCONTR] = AMOTRY(FUN,P,-0.5,LB,UB,varargin{:});
            if YFTRYCONTR < YFLUCT(end),
                P(end,:) = PTRYCONTR;
                Y(end) = YTRYCONTR;
                ALGOSTEP = 'one dimensional contraction';
            else
                %% can't seem to get rid of that high point, so better contract
                %% around the lowest (best) point
                X = ones(NDIM,NDIM)*diag(P(1,:));
                P(2:end,:) = 0.5*(P(2:end,:)+X);
                for k=2:NDIM,
                    Y(k) = CALCULATE_COST(FUN,P(k,:),LB,UB,varargin{:});
                end
                ALGOSTEP = 'multiple contraction';
            end
        else
            %% if YTRY better than second-highest point, use this point
            P(end,:) = PTRY;
            Y(end) = YTRY;
            ALGOSTEP = 'reflection';
        end
        
        % the initial temperature is estimated in the first loop from 
        % the number of successfull and unsuccesfull moves, and the average 
        % increase in cost associated with the unsuccessful moves
        
        if TEMP_LOOP_NUMBER == 1 && isempty(OPTIONS.TEMP_START),
            if Y(1) > Y(end),
                SUCCESSFUL_MOVES = SUCCESSFUL_MOVES+1;
            elseif Y(1) <= Y(end),
                UNSUCCESSFUL_MOVES = UNSUCCESSFUL_MOVES+1;
                UNSUCCESSFUL_COSTS = UNSUCCESSFUL_COSTS+(Y(end)-Y(1));
            end
        end

    end

    % stop if previous for loop was broken due to some stop criterion
    if ITERTEMP < MAXITERTEMP,
        break;
    end
    
    % store cost function values in COSTS vector
    COSTS((ITERTEMP-1)*NDIM+1:ITERTEMP*NDIM+1) = Y;
    
    % calculated initial temperature or recalculate temperature 
    % using cooling schedule as proposed by Cardoso et al. (1996)
    % -----------------------------------------------------------
    
    if TEMP_LOOP_NUMBER == 1 && isempty(OPTIONS.TEMP_START),
        TEMP = -(UNSUCCESSFUL_COSTS/(SUCCESSFUL_MOVES+UNSUCCESSFUL_MOVES))/log(((SUCCESSFUL_MOVES+UNSUCCESSFUL_MOVES)*OPTIONS.INITIAL_ACCEPTANCE_RATIO-SUCCESSFUL_MOVES)/UNSUCCESSFUL_MOVES);
    elseif TEMP_LOOP_NUMBER ~= 0,
        STDEV_Y = std(COSTS);
        COOLING_FACTOR = 1/(1+TEMP*log(1+OPTIONS.COOL_RATE)/(3*STDEV_Y));
        TEMP = TEMP*min(OPTIONS.MIN_COOLING_FACTOR,COOLING_FACTOR);
    end
    
    % add one to temperature loop number
    TEMP_LOOP_NUMBER = TEMP_LOOP_NUMBER+1;
    
end

% return solution
X = transpose(PBEST);
FVAL = YBEST;

% store number of function evaluations
OUTPUT.nFUN_EVALS = nFUN_EVALS;

% store number of iterations
OUTPUT.nITERATIONS = nITERATIONS;

% trim OUTPUT data structure
OUTPUT.TEMPERATURE(nITERATIONS+1:end) = [];
OUTPUT.SIMPLEX(:,:,nITERATIONS+1:end) = [];
OUTPUT.SIMPLEX_BEST(nITERATIONS+1:end,:) = [];
OUTPUT.COSTS(nITERATIONS+1:end,:) = [];
OUTPUT.COST_BEST(nITERATIONS+1:end) = [];

% store the amount of time needed in OUTPUT data structure
OUTPUT.TIME = toc;

return

% ==============================================================================

% AMOTRY FUNCTION
% ---------------

function [YFTRY,YTRY,PTRY] = AMOTRY(FUN,P,fac,LB,UB,varargin)
% Extrapolates by a factor fac through the face of the simplex across from 
% the high point, tries it, and replaces the high point if the new point is 
% better.

global NDIM TEMP

% calculate coordinates of new vertex
psum = sum(P(1:NDIM,:))/NDIM;
PTRY = psum*(1-fac)+P(end,:)*fac;

% evaluate the function at the trial point.
YTRY = CALCULATE_COST(FUN,PTRY,LB,UB,varargin{:});
% substract random fluctuations to function values of current vertices
YFTRY = YTRY-TEMP*abs(log(rand(1)));

return

% ==============================================================================

% COST FUNCTION EVALUATION
% ------------------------

function [YTRY] = CALCULATE_COST(FUN,PTRY,LB,UB,varargin)

global YBEST PBEST NDIM nFUN_EVALS

for i = 1:NDIM,
    % check lower bounds
    if PTRY(i) < LB(i),
        YTRY = 1e12+(LB(i)-PTRY(i))*1e6;
        return
    end
    % check upper bounds
    if PTRY(i) > UB(i),
        YTRY = 1e12+(PTRY(i)-UB(i))*1e6;
        return
    end
end

% calculate cost associated with PTRY
YTRY = feval(FUN,PTRY(:),varargin{:});

% add one to number of function evaluations
nFUN_EVALS = nFUN_EVALS + 1;

% save the best point ever
if YTRY < YBEST,
    YBEST = YTRY;
    PBEST = PTRY;
end

return