This file is indexed.

/usr/share/dynare/matlab/simultxdet.m is in dynare-common 4.4.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
function [y_,int_width]=simultxdet(y0,ex,ex_det, iorder,var_list,M_,oo_,options_)
%function [y_,int_width]=simultxdet(y0,ex,ex_det, iorder,var_list,M_,oo_,options_)
%
% Simulates a stochastic model in the presence of deterministic exogenous shocks
%
% INPUTS:
%    y0:        initial values, of length M_.maximum_lag
%    ex:        matrix of stochastic exogenous shocks, starting at period 1
%    ex_det:    matrix of deterministic exogenous shocks, starting at period 1-M_.maximum_lag
%    iorder:    order of approximation
%    var_list:  list of endogenous variables to simulate
%
% The forecast horizon is equal to size(ex, 1).
% The condition size(ex,1)+M_.maximum_lag=size(ex_det,1) must be verified
%  for consistency.

% Copyright (C) 2008-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

dr = oo_.dr;
ykmin = M_.maximum_lag;
endo_nbr = M_.endo_nbr;
exo_det_steady_state = oo_.exo_det_steady_state;
nstatic = M_.nstatic;
nspred = M_.nspred;
nc = size(dr.ghx,2);
iter = size(ex,1);
if size(ex_det, 1) ~= iter+ykmin
    error('Size mismatch: number of forecasting periods for stochastic exogenous and deterministic exogenous don''t match')
end
nx = size(dr.ghu,2);
y_ = zeros(size(y0,1),iter+ykmin);
y_(:,1:ykmin) = y0;
k1 = [ykmin:-1:1];
k2 = dr.kstate(find(dr.kstate(:,2) <= ykmin+1),[1 2]);
k2 = k2(:,1)+(ykmin+1-k2(:,2))*endo_nbr;
k3 = M_.lead_lag_incidence(1:ykmin,:)';
k3 = find(k3(:));
k4 = dr.kstate(find(dr.kstate(:,2) < ykmin+1),[1 2]);
k4 = k4(:,1)+(ykmin+1-k4(:,2))*endo_nbr;

nvar = size(var_list,1);
if nvar == 0
    nvar = endo_nbr;
    ivar = [1:nvar];
else
    ivar=zeros(nvar,1);
    for i=1:nvar
        i_tmp = strmatch(var_list(i,:),M_.endo_names,'exact');
        if isempty(i_tmp)
            disp(var_list(i,:));
            error (['One of the variable specified does not exist']) ;
        else
            ivar(i) = i_tmp;
        end
    end
end

if iorder == 1
    for i = ykmin+1: iter+ykmin
        tempx1 = y_(dr.order_var,k1);
        tempx2 = tempx1-repmat(dr.ys(dr.order_var),1,ykmin);
        tempx = tempx2(k2);
        y_(dr.order_var,i) = dr.ys(dr.order_var)+dr.ghx*tempx+dr.ghu* ...
            ex(i-ykmin,:)';
        for j=1:min(ykmin+M_.exo_det_length+1-i,M_.exo_det_length)
            y_(dr.order_var,i) = y_(dr.order_var,i) + dr.ghud{j}*(ex_det(i+j-1,:)'-exo_det_steady_state);
        end
        
        k1 = k1+1;
    end
elseif iorder == 2
    for i = ykmin+1: iter+ykmin
        tempx1 = y_(dr.order_var,k1);
        tempx2 = tempx1-repmat(dr.ys(dr.order_var),1,ykmin);
        tempx = tempx2(k2);
        tempu = ex(i-ykmin,:)';
        tempuu = kron(tempu,tempu);
        tempxx = kron(tempx,tempx);
        tempxu = kron(tempx,tempu);
        y_(dr.order_var,i) = dr.ys(dr.order_var)+dr.ghs2/2+dr.ghx*tempx+ ...
            dr.ghu*tempu+0.5*(dr.ghxx*tempxx+dr.ghuu*tempuu)+dr.ghxu* ...
            tempxu;
        for j=1:min(ykmin+M_.exo_det_length+1-i,M_.exo_det_length)
            tempud = ex_det(i+j-1,:)'-exo_det_steady_state;
            tempudud = kron(tempud,tempud);
            tempxud = kron(tempx,tempud);
            tempuud = kron(tempu,tempud);
            y_(dr.order_var,i) = y_(dr.order_var,i) + dr.ghud{j}*tempud + ...
                dr.ghxud{j}*tempxud + dr.ghuud{j}*tempuud + ...
                0.5*dr.ghudud{j,j}*tempudud;
            for k=1:j-1
                tempudk = ex_det(i+k-1,:)'-exo_det_steady_state;
                tempududk = kron(tempudk,tempud);
                y_(dr.order_var,i) = y_(dr.order_var,i) + ...
                    dr.ghudud{k,j}*tempududk;
            end
        end
        k1 = k1+1;
    end
end

[A,B] = kalman_transition_matrix(dr,nstatic+(1:nspred),1:nc,M_.exo_nbr);

inv_order_var = dr.inv_order_var;
ghx1 = dr.ghx(inv_order_var(ivar),:);
ghu1 = dr.ghu(inv_order_var(ivar),:);

sigma_u = B*M_.Sigma_e*B';
sigma_u1 = ghu1*M_.Sigma_e*ghu1';
sigma_y = 0;

for i=1:iter
    sigma_y1 = ghx1*sigma_y*ghx1'+sigma_u1;
    var_yf(i,:) = diag(sigma_y1)';
    if i == iter
        break
    end
    sigma_u = A*sigma_u*A';
    sigma_y = sigma_y+sigma_u;
end

fact = norminv((1-options_.conf_sig)/2,0,1);

int_width = zeros(iter,endo_nbr);
for i=1:nvar
    int_width(:,i) = fact*sqrt(var_yf(:,i));
end