/usr/share/dynare/matlab/smm_objective.m is in dynare-common 4.4.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 | function [r,flag] = smm_objective(xparams,sample_moments,weighting_matrix,options,parallel)
% Evaluates the objective of the Simulated Moments Method.
%
% INPUTS:
% xparams [double] p*1 vector of estimated parameters.
% sample_moments [double] n*1 vector of sample moments (n>=p).
% weighting_matrix [double] n*n symetric, positive definite matrix.
% options [ ] Structure defining options for SMM.
% parallel [ ] Structure defining the parallel mode settings (optional).
%
% OUTPUTS:
% r [double] scalar, the value of the objective function.
% junk [ ] empty matrix.
%
% SPECIAL REQUIREMENTS
% The user has to provide a file where the moment conditions are defined.
% Copyright (C) 2010-2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global M_ options_ oo_
persistent mainStream mainState
persistent priorObjectiveValue
flag = 1;
if nargin<5
if isempty(mainStream)
if matlab_ver_less_than('7.12')
mainStream = RandStream.getDefaultStream;
else
mainStream = RandStream.getGlobalStream;
end
mainState = mainStream.State;
else
mainStream.State = mainState;
end
end
if isempty(priorObjectiveValue)
priorObjectiveValue = Inf;
end
penalty = 0;
for i=1:options.estimated_parameters.nb
if ~isnan(options.estimated_parameters.upper_bound(i)) && xparams(i)>options.estimated_parameters.upper_bound(i)
penalty = penalty + (xparams(i)-options.estimated_parameters.upper_bound(i))^2;
end
if ~isnan(options.estimated_parameters.lower_bound(i)) && xparams(i)<options.estimated_parameters.lower_bound(i)
penalty = penalty + (xparams(i)-options.estimated_parameters.lower_bound(i))^2;
end
end
if penalty>0
flag = 0;
r = priorObjectiveValue + penalty;
return;
end
save('estimated_parameters.mat','xparams');
% Check for local determinacy of the deterministic steady state.
noprint = options_.noprint; options_.noprint = 1;
[eigval,local_determinacy_and_stability,info] = check(M_,options_,oo_); options_.noprint = noprint;
if ~local_determinacy_and_stability
r = priorObjectiveValue * (1+info(2));
flag = 0;
return
end
simulated_moments = zeros(size(sample_moments));
% Just to be sure that things don't mess up with persistent variables...
clear perfect_foresight_simulation;
if nargin<5
for s = 1:options.number_of_simulated_sample
time_series = extended_path([],options.simulated_sample_size,1);
data = time_series(options.observed_variables_idx,options.burn_in_periods+1:options.simulated_sample_size);
eval(['tmp = ' options.moments_file_name '(data);'])
simulated_moments = simulated_moments + tmp;
simulated_moments = simulated_moments / options.number_of_simulated_sample;
end
else% parallel mode.
if ~isunix
error('The parallel version of SMM estimation is not implemented for non unix platforms!')
end
job_number = 1;% Remark. First job is for the master.
[Junk,hostname] = unix('hostname --fqdn');
hostname = deblank(hostname);
for i=1:length(parallel)
machine = deblank(parallel(i).machine);
if ~strcmpi(hostname,machine)
% For the slaves on a remote computer.
unix(['scp estimated_parameters.mat ' , parallel(i).login , '@' , machine , ':' parallel(i).folder ' > /dev/null']);
else
if ~strcmpi(pwd,parallel(i).folder)
% For the slaves on this computer but not in the same directory as the master.
unix(['cp estimated_parameters.mat ' , parallel(i).folder]);
end
end
for j=1:parallel(i).number_of_jobs
if (strcmpi(hostname,machine) && j>1) || ~strcmpi(hostname,machine)
job_number = job_number + 1;
unix(['ssh -A ' parallel(i).login '@' machine ' ./call_matlab_session.sh job' int2str(job_number) '.m &']);
end
end
end
% Finally the Master do its job
tStartMasterJob = clock;
eval('job1;')
tElapsedMasterJob = etime(clock, tStartMasterJob);
TimeLimit = tElapsedMasterJob*1.2;
% Master waits for the slaves' output...
tStart = clock;
tElapsed = 0;
while tElapsed<TimeLimit
if ( length(dir('./intermediary_results_from_master_and_slaves/simulated_moments_slave_*.dat'))==job_number )
break
end
tElapsed = etime(clock, tStart);
end
try
tmp = zeros(length(sample_moments),1);
for i=1:job_number
simulated_moments = load(['./intermediary_results_from_master_and_slaves/simulated_moments_slave_' int2str(i) '.dat'],'-ascii');
tmp = tmp + simulated_moments;
end
simulated_moments = tmp / job_number;
catch
r = priorObjectiveValue*1.1;
flag = 0;
return
end
end
r = transpose(simulated_moments-sample_moments)*weighting_matrix*(simulated_moments-sample_moments);
priorObjectiveValue = r;
if (options.optimization_routine>0) && exist('optimization_path.mat')
load('optimization_path.mat');
new_state = [ r; xparams];
estimated_parameters_optimization_path = [ estimated_parameters_optimization_path , new_state ];
save('optimization_path.mat','estimated_parameters_optimization_path');
end
|