/usr/share/dynare/matlab/stochastic_solvers.m is in dynare-common 4.4.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 | function [dr,info] = stochastic_solvers(dr,task,M_,options_,oo_)
% function [dr,info,M_,options_,oo_] = stochastic_solvers(dr,task,M_,options_,oo_)
% computes the reduced form solution of a rational expectation model (first or second order
% approximation of the stochastic model around the deterministic steady state).
%
% INPUTS
% dr [matlab structure] Decision rules for stochastic simulations.
% task [integer] if task = 0 then dr1 computes decision rules.
% if task = 1 then dr1 computes eigenvalues.
% M_ [matlab structure] Definition of the model.
% options_ [matlab structure] Global options.
% oo_ [matlab structure] Results
%
% OUTPUTS
% dr [matlab structure] Decision rules for stochastic simulations.
% info [integer] info=1: the model doesn't define current variables uniquely
% info=2: problem in mjdgges.dll info(2) contains error code.
% info=3: BK order condition not satisfied info(2) contains "distance"
% absence of stable trajectory.
% info=4: BK order condition not satisfied info(2) contains "distance"
% indeterminacy.
% info=5: BK rank condition not satisfied.
% info=6: The jacobian matrix evaluated at the steady state is complex.
% info=9: k_order_pert was unable to compute the solution
% ALGORITHM
% ...
%
% SPECIAL REQUIREMENTS
% none.
%
% Copyright (C) 1996-2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
info = 0;
if options_.linear
options_.order = 1;
end
if (options_.aim_solver == 1) && (options_.order > 1)
error('Option "aim_solver" is incompatible with order >= 2')
end
if M_.maximum_endo_lag == 0 && options_.order >= 2
fprintf('\nSTOCHASTIC_SOLVER: Dynare does not solve purely forward models at higher order.\n')
fprintf('STOCHASTIC_SOLVER: To circumvent this restriction, you can add a backward-looking dummy equation of the form:\n')
fprintf('STOCHASTIC_SOLVER: junk=0.9*junk(-1);\n')
error(['2nd and 3rd order approximation not implemented for purely ' ...
'forward models'])
end
if options_.k_order_solver;
if options_.risky_steadystate
[dr,info] = dyn_risky_steadystate_solver(oo_.steady_state,M_,dr, ...
options_,oo_);
else
dr = set_state_space(dr,M_,options_);
[dr,info] = k_order_pert(dr,M_,options_);
end
return;
end
klen = M_.maximum_lag + M_.maximum_lead + 1;
exo_simul = [repmat(oo_.exo_steady_state',klen,1) repmat(oo_.exo_det_steady_state',klen,1)];
iyv = M_.lead_lag_incidence';
iyv = iyv(:);
iyr0 = find(iyv) ;
it_ = M_.maximum_lag + 1 ;
if M_.exo_nbr == 0
oo_.exo_steady_state = [] ;
end
it_ = M_.maximum_lag + 1;
z = repmat(dr.ys,1,klen);
if options_.order == 1
if (options_.bytecode)
[chck, junk, loc_dr] = bytecode('dynamic','evaluate', z,exo_simul, ...
M_.params, dr.ys, 1);
jacobia_ = [loc_dr.g1 loc_dr.g1_x loc_dr.g1_xd];
else
[junk,jacobia_] = feval([M_.fname '_dynamic'],z(iyr0),exo_simul, ...
M_.params, dr.ys, it_);
end;
elseif options_.order == 2
if (options_.bytecode)
[chck, junk, loc_dr] = bytecode('dynamic','evaluate', z,exo_simul, ...
M_.params, dr.ys, 1);
jacobia_ = [loc_dr.g1 loc_dr.g1_x];
else
[junk,jacobia_,hessian1] = feval([M_.fname '_dynamic'],z(iyr0),...
exo_simul, ...
M_.params, dr.ys, it_);
end;
if options_.use_dll
% In USE_DLL mode, the hessian is in the 3-column sparse representation
hessian1 = sparse(hessian1(:,1), hessian1(:,2), hessian1(:,3), ...
size(jacobia_, 1), size(jacobia_, 2)*size(jacobia_, 2));
end
end
[infrow,infcol]=find(isinf(jacobia_));
if options_.debug
if ~isempty(infrow)
for ii=1:length(infrow)
[var_row,var_index]=find(M_.lead_lag_incidence==infcol(ii));
if var_row==2
type_string='';
elseif var_row==1
type_string='lag of';
elseif var_row==3;
type_string='lead of';
end
if var_index<=M_.orig_endo_nbr
fprintf('STOCHASTIC_SOLVER: Derivative of Equation %d with respect to %s Variable %s (initial value of %s: %g) \n',infrow(ii),type_string,deblank(M_.endo_names(var_index,:)),deblank(M_.endo_names(var_index,:)),dr.ys(var_index))
else %auxiliary vars
orig_var_index=M.aux_vars(1,var_index-M_.orig_endo_nbr).orig_index;
fprintf('STOCHASTIC_SOLVER: Derivative of Equation %d with respect to %s Variable %s (initial value of %s: %g) \n',infrow(ii),type_string,deblank(M_.endo_names(orig_var_index,:)),deblank(M_.endo_names(orig_var_index,:)),dr.ys(orig_var_index))
end
end
fprintf('\nSTOCHASTIC_SOLVER: The problem most often occurs, because a variable with\n')
fprintf('STOCHASTIC_SOLVER: exponent smaller than 1 has been initialized to 0. Taking the derivative\n')
fprintf('STOCHASTIC_SOLVER: and evaluating it at the steady state then results in a division by 0.\n')
end
save([M_.fname '_debug.mat'],'jacobia_')
end
if ~isempty(infrow)
info(1)=10;
return
end
if ~isreal(jacobia_)
if max(max(abs(imag(jacobia_)))) < 1e-15
jacobia_ = real(jacobia_);
else
info(1) = 6;
info(2) = sum(sum(imag(jacobia_).^2));
return
end
end
if any(any(isnan(jacobia_)))
info(1) = 8;
NaN_params=find(isnan(M_.params));
info(2:length(NaN_params)+1) = NaN_params;
return
end
kstate = dr.kstate;
nstatic = M_.nstatic;
nfwrd = M_.nfwrd;
nspred = M_.nspred;
nboth = M_.nboth;
nsfwrd = M_.nsfwrd;
order_var = dr.order_var;
nd = size(kstate,1);
nz = nnz(M_.lead_lag_incidence);
sdyn = M_.endo_nbr - nstatic;
[junk,cols_b,cols_j] = find(M_.lead_lag_incidence(M_.maximum_endo_lag+1, ...
order_var));
b = zeros(M_.endo_nbr,M_.endo_nbr);
b(:,cols_b) = jacobia_(:,cols_j);
if M_.maximum_endo_lead == 0
% backward models: simplified code exist only at order == 1
if options_.order == 1
[k1,junk,k2] = find(kstate(:,4));
dr.ghx(:,k1) = -b\jacobia_(:,k2);
if M_.exo_nbr
dr.ghu = -b\jacobia_(:,nz+1:end);
end
dr.eigval = eig(transition_matrix(dr));
dr.full_rank = 1;
if any(abs(dr.eigval) > options_.qz_criterium)
temp = sort(abs(dr.eigval));
nba = nnz(abs(dr.eigval) > options_.qz_criterium);
temp = temp(nd-nba+1:nd)-1-options_.qz_criterium;
info(1) = 3;
info(2) = temp'*temp;
end
else
fprintf('\nSTOCHASTIC_SOLVER: Dynare does not solve purely backward models at higher order.\n')
fprintf('STOCHASTIC_SOLVER: To circumvent this restriction, you can add a forward-looking dummy equation of the form:\n')
fprintf('STOCHASTIC_SOLVER: junk=0.9*junk(+1);\n')
error(['2nd and 3rd order approximation not implemented for purely ' ...
'backward models'])
end
elseif options_.risky_steadystate
[dr,info] = dyn_risky_steadystate_solver(oo_.steady_state,M_,dr, ...
options_,oo_);
else
% If required, use AIM solver if not check only
if (options_.aim_solver == 1) && (task == 0)
[dr,info] = AIM_first_order_solver(jacobia_,M_,dr,options_.qz_criterium);
else % use original Dynare solver
[dr,info] = dyn_first_order_solver(jacobia_,M_,dr,options_,task);
if info(1) || task
return;
end
end
if options_.order > 1
% Second order
dr = dyn_second_order_solver(jacobia_,hessian1,dr,M_,...
options_.threads.kronecker.A_times_B_kronecker_C,...
options_.threads.kronecker.sparse_hessian_times_B_kronecker_C);
end
end
%exogenous deterministic variables
if M_.exo_det_nbr > 0
gx = dr.gx;
f1 = sparse(jacobia_(:,nonzeros(M_.lead_lag_incidence(M_.maximum_endo_lag+2:end,order_var))));
f0 = sparse(jacobia_(:,nonzeros(M_.lead_lag_incidence(M_.maximum_endo_lag+1,order_var))));
fudet = sparse(jacobia_(:,nz+M_.exo_nbr+1:end));
M1 = inv(f0+[zeros(M_.endo_nbr,nstatic) f1*gx zeros(M_.endo_nbr,nsfwrd-nboth)]);
M2 = M1*f1;
dr.ghud = cell(M_.exo_det_length,1);
dr.ghud{1} = -M1*fudet;
for i = 2:M_.exo_det_length
dr.ghud{i} = -M2*dr.ghud{i-1}(end-nsfwrd+1:end,:);
end
if options_.order > 1
lead_lag_incidence = M_.lead_lag_incidence;
k0 = find(lead_lag_incidence(M_.maximum_endo_lag+1,order_var)');
k1 = find(lead_lag_incidence(M_.maximum_endo_lag+2,order_var)');
hu = dr.ghu(nstatic+[1:nspred],:);
hud = dr.ghud{1}(nstatic+1:nstatic+nspred,:);
zx = [eye(nspred);dr.ghx(k0,:);gx*dr.Gy;zeros(M_.exo_nbr+M_.exo_det_nbr, ...
nspred)];
zu = [zeros(nspred,M_.exo_nbr); dr.ghu(k0,:); gx*hu; zeros(M_.exo_nbr+M_.exo_det_nbr, ...
M_.exo_nbr)];
zud=[zeros(nspred,M_.exo_det_nbr);dr.ghud{1};gx(:,1:nspred)*hud;zeros(M_.exo_nbr,M_.exo_det_nbr);eye(M_.exo_det_nbr)];
R1 = hessian1*kron(zx,zud);
dr.ghxud = cell(M_.exo_det_length,1);
kf = [M_.endo_nbr-nfwrd-nboth+1:M_.endo_nbr];
kp = nstatic+[1:nspred];
dr.ghxud{1} = -M1*(R1+f1*dr.ghxx(kf,:)*kron(dr.ghx(kp,:),dr.ghud{1}(kp,:)));
Eud = eye(M_.exo_det_nbr);
for i = 2:M_.exo_det_length
hudi = dr.ghud{i}(kp,:);
zudi=[zeros(nspred,M_.exo_det_nbr);dr.ghud{i};gx(:,1:nspred)*hudi;zeros(M_.exo_nbr+M_.exo_det_nbr,M_.exo_det_nbr)];
R2 = hessian1*kron(zx,zudi);
dr.ghxud{i} = -M2*(dr.ghxud{i-1}(kf,:)*kron(dr.Gy,Eud)+dr.ghxx(kf,:)*kron(dr.ghx(kp,:),dr.ghud{i}(kp,:)))-M1*R2;
end
R1 = hessian1*kron(zu,zud);
dr.ghudud = cell(M_.exo_det_length,1);
dr.ghuud{1} = -M1*(R1+f1*dr.ghxx(kf,:)*kron(dr.ghu(kp,:),dr.ghud{1}(kp,:)));
Eud = eye(M_.exo_det_nbr);
for i = 2:M_.exo_det_length
hudi = dr.ghud{i}(kp,:);
zudi=[zeros(nspred,M_.exo_det_nbr);dr.ghud{i};gx(:,1:nspred)*hudi;zeros(M_.exo_nbr+M_.exo_det_nbr,M_.exo_det_nbr)];
R2 = hessian1*kron(zu,zudi);
dr.ghuud{i} = -M2*dr.ghxud{i-1}(kf,:)*kron(hu,Eud)-M1*R2;
end
R1 = hessian1*kron(zud,zud);
dr.ghudud = cell(M_.exo_det_length,M_.exo_det_length);
dr.ghudud{1,1} = -M1*R1-M2*dr.ghxx(kf,:)*kron(hud,hud);
for i = 2:M_.exo_det_length
hudi = dr.ghud{i}(nstatic+1:nstatic+nspred,:);
zudi=[zeros(nspred,M_.exo_det_nbr);dr.ghud{i};gx(:,1:nspred)*hudi+dr.ghud{i-1}(kf,:);zeros(M_.exo_nbr+M_.exo_det_nbr,M_.exo_det_nbr)];
R2 = hessian1*kron(zudi,zudi);
dr.ghudud{i,i} = -M2*(dr.ghudud{i-1,i-1}(kf,:)+...
2*dr.ghxud{i-1}(kf,:)*kron(hudi,Eud) ...
+dr.ghxx(kf,:)*kron(hudi,hudi))-M1*R2;
R2 = hessian1*kron(zud,zudi);
dr.ghudud{1,i} = -M2*(dr.ghxud{i-1}(kf,:)*kron(hud,Eud)+...
dr.ghxx(kf,:)*kron(hud,hudi))...
-M1*R2;
for j=2:i-1
hudj = dr.ghud{j}(kp,:);
zudj=[zeros(nspred,M_.exo_det_nbr);dr.ghud{j};gx(:,1:nspred)*hudj;zeros(M_.exo_nbr+M_.exo_det_nbr,M_.exo_det_nbr)];
R2 = hessian1*kron(zudj,zudi);
dr.ghudud{j,i} = -M2*(dr.ghudud{j-1,i-1}(kf,:)+dr.ghxud{j-1}(kf,:)* ...
kron(hudi,Eud)+dr.ghxud{i-1}(kf,:)* ...
kron(hudj,Eud)+dr.ghxx(kf,:)*kron(hudj,hudi))-M1*R2;
end
end
end
end
if options_.loglinear == 1
% this needs to be extended for order=2,3
k = find(dr.kstate(:,2) <= M_.maximum_endo_lag+1);
klag = dr.kstate(k,[1 2]);
k1 = dr.order_var;
dr.ghx = repmat(1./dr.ys(k1),1,size(dr.ghx,2)).*dr.ghx.* ...
repmat(dr.ys(k1(klag(:,1)))',size(dr.ghx,1),1);
dr.ghu = repmat(1./dr.ys(k1),1,size(dr.ghu,2)).*dr.ghu;
if options_.order>1
error('Loglinear options currently only works at order 1')
end
end
|