This file is indexed.

/usr/share/freemat/toolbox/graph/plot.m is in freemat-data 4.0-5build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
% PLOT PLOT Plot Function
% 
% Usage
% 
% This is the basic plot command for FreeMat.  The general syntax for its
% use is
% 
%   plot(<data 1>,{linespec 1},<data 2>,{linespec 2}...,properties...)
% 
% where the <data> arguments can have various forms, and the
% linespec arguments are optional.  We start with the
% <data> term, which can take on one of multiple forms:
%   -  Vector Matrix Case -- In this case the argument data is a pair
%     of variables.  A set of x coordinates in a numeric vector, and a 
%     set of y coordinates in the columns of the second, numeric matrix.
%     x must have as many elements as y has columns (unless y
%     is a vector, in which case only the number of elements must match).  Each
%     column of y is plotted sequentially against the common vector x.
% 
%   -  Unpaired Matrix Case -- In this case the argument data is a 
%     single numeric matrix y that constitutes the y-values
%     of the plot.  An x vector is synthesized as x = 1:length(y),
%     and each column of y is plotted sequentially against this common x
%     axis.
% 
%   -  Complex Matrix Case -- Here the argument data is a complex
%     matrix, in which case, the real part of each column is plotted against
%     the imaginary part of each column.  All columns receive the same line
%     styles.
% 
% Multiple data arguments in a single plot command are treated as a \emph{sequence}, meaning
% that all of the plots are overlapped on the same set of axes.
% The linespec is a string used to change the characteristics of the line.  In general,
% the linespec is composed of three optional parts, the colorspec, the 
% symbolspec and the linestylespec in any order.  Each of these specifications
% is a single character that determines the corresponding characteristic.  First, the 
% colorspec:
%   -  'b' - Color Blue
% 
%   -  'g' - Color Green
% 
%   -  'r' - Color Red
% 
%   -  'c' - Color Cyan
% 
%   -  'm' - Color Magenta
% 
%   -  'y' - Color Yellow
% 
%   -  'k' - Color Black
% 
% The symbolspec specifies the (optional) symbol to be drawn at each data point:
%   -  '.' - Dot symbol
% 
%   -  'o' - Circle symbol
% 
%   -  'x' - Times symbol
% 
%   -  '+' - Plus symbol
% 
%   -  '*' - Asterisk symbol
% 
%   -  's' - Square symbol
% 
%   -  'd' - Diamond symbol
% 
%   -  'v' - Downward-pointing triangle symbol
% 
%   -  '^' - Upward-pointing triangle symbol
% 
%   -  '<' - Left-pointing triangle symbol
% 
%   -  '>' - Right-pointing triangle symbol
% 
% The linestylespec specifies the (optional) line style to use for each data series:
%   -  '-' - Solid line style
% 
%   -  ':' - Dotted line style
% 
%   -  '-.' - Dot-Dash-Dot-Dash line style
% 
%   -  '--' - Dashed line style
% 
% For sequences of plots, the linespec is recycled with color order determined
% by the properties of the current axes.  You can also use the properties
% argument to specify handle properties that will be inherited by all of the plots
% generated during this event.  Finally, you can also specify the handle for the
% axes that are the target of the plot operation.
% 
%   handle = plot(handle,...)
% 

% Copyright (c) 2002-2007 Samit Basu
% Licensed under the GPL

function ohandle = plot(varargin)
   % Check for an axes handle
   if (nargin>=2)
      if (isnumeric(varargin{1}) && (length(varargin{1})==1) && ...
         ishandle(varargin{1},'axes'))
         handle = varargin{1}(1);
         varargin(1) = [];
         nargin = nargin - 1;
      else   
         handle = newplot;
      end
   else
      handle = newplot;
   end
   saveca = gca;
   axes(handle);
   % search for the propertyname/value pairs
   propstart = 0;
   if (nargin > 2)
      propstart = nargin-1;
      while ((propstart >= 1) && isa(varargin{propstart},'char') && ...
         pvalid('line',varargin{propstart}))
         propstart = propstart - 2;
      end
      propstart = propstart + 2;
   end
   propset = {};
   if ((propstart > 0) && (propstart < nargin))
	propset = varargin(propstart:end);
	varargin(propstart:end) = [];
   end
   h = [];
   while (~isempty(varargin))
      cs = ''; ms = ''; ps = '';
      if (length(varargin) == 1)
         h = [h,plot_single(varargin{1},handle,propset)];
         varargin(1) = [];
      elseif (islinespec(varargin{2},cs,ms,ps))
         h = [h,plot_single(varargin{1},handle,completeprops(cs,ms,ps,propset))];
         varargin(1:2) = [];
      elseif (length(varargin) ==2)
         h = [h,plot_double(varargin{1},varargin{2},handle,propset)];
         varargin(1:2) = [];
      elseif (islinespec(varargin{3},cs,ms,ps))
         h = [h,plot_double(varargin{1},varargin{2},handle,...
         completeprops(cs,ms,ps,propset))];
         varargin(1:3) = [];
      else
         h = [h,plot_double(varargin{1},varargin{2},handle,propset)];
         varargin(1:2) = [];
      end
   end
   axes(saveca);
   if (nargout > 0)
     ohandle = h;
   end
   
function h = plot_single(Y,handle,lineprops)
   h = [];
   if (isvector(Y)) Y = Y(:); end;
   if (isreal(Y))
      n = 1:size(Y,1);
      for i=1:size(Y,2)
         h = [h,tplotvector(handle,n,Y(:,i),lineprops)];
      end
   else
      for i=1:size(Y,2)
         h = [h,tplotvector(handle,real(Y(:,i)),imag(Y(:,i)),lineprops)];
      end      
   end
   
function h = plot_double(X,Y,handle,lineprops)
   h = [];
   [X,Y]=matchmat(X,Y);
   if (isvector(X)) X = X(:); end;
   if (isvector(Y)) Y = Y(:); end;
   for i=1:size(Y,2)
      h = [h,tplotvector(handle,X(:,i),Y(:,i),lineprops)];
   end
   
function [a,b] = matchmat(a,b)
   if (isvector(a) && ~isvector(b))
      if (length(a)==size(b,1))
         a = repmat(a(:),[1,size(b,2)]);
         return
      else
         if (length(a) == size(b,2))
            b=b';
            a = repmat(a(:)',[size(b,2),1])';
            return
         else
            error('plot(X,Y) dimensions do not match');
         end
      end
   end
      
   if (~isvector(a) && isvector(b))
      if (length(b) == size(a,1))
         b = repmat(b(:),[1,size(a,2)]);
      else
         if (length(b) == size(a,2))
            a=a';
            b = repmat(b(:)',[size(a,2),1])';
         else
            error('plot(X,Y) where one argument is a vector requires the other argument to have a matching dimension');
         end
      end
   end
   
   
function k = tplotvector(handle,x,y,lineprops)
   ndx = length(get(handle,'children'))+1;
   % Get the colororder
   colororder = get(handle,'colororder');
   % select the row using a modulo
   ndxmod = round(mod(ndx-1,size(colororder,1))+1);
   if (~any(strcmp(lineprops,'color')))
     lineprops = [lineprops,{'markeredgecolor',colororder(ndxmod,:),'markerfacecolor',colororder(ndxmod,:)}];
   end
   k = hline('xdata',x,'ydata',y,'color',colororder(ndxmod,:),lineprops{:});