This file is indexed.

/usr/share/freemat/toolbox/graph/tubeplot.m is in freemat-data 4.0-5build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
% TUBEPLOT TUBEPLOT Creates a Tubeplot
% 
% Usage
% 
% This tubeplot function is from the tubeplot package
% written by Anders Sandberg. The simplest syntax for the
% tubeplot routine is
% 
%     tubeplot(x,y,z)
% 
% plots the basic tube with radius 1, where x,y,z are
% vectors that describe the tube.  If the radius of the
% tube is to be varied, use the second form
% 
%     tubeplot(x,y,z,r) 
% 
% which plots the basic tube with variable radius r (either 
% a vector or a scalar value).  The third form allows you
% to specify the coloring using a vector of values:
% 
%     tubeplot(x,y,z,r,v)
% 
% where the coloring is now dependent on the values in the 
% vector v.  If you want to create a tube plot with 
% a greater degree of tangential subdivisions (i.e.,
% the tube is more circular, use the form
% 
%     tubeplot(x,y,z,r,v,s)
% 
% where s is the number of tangential subdivisions (default is 6)
% You can also use tubeplot to calculate matrices to feed to mesh
% and surf.
% 
%     [X,Y,Z]=tubeplot(x,y,z)
% 
% returns N x 3 matrices suitable for mesh or surf.
% 
% Note that the tube may pinch at points where the normal and binormal 
% misbehaves. It is suitable for general space curves, not ones that 
% contain straight sections. Normally the tube is calculated using the
% Frenet frame, making the tube minimally twisted except at inflexion points.
% 
% To deal with this problem there is an alternative frame:
% 
%     tubeplot(x,y,z,r,v,s,vec)
% 
% calculates the tube by setting the normal to
% the cross product of the tangent and the vector vec. If it is chosen so 
% that it is always far from the tangent vector the frame will not twist unduly.
function [varargout]=tubeplot(x,y,z,varargin)  
  subdivs = 6;

  N=size(x,1);
  if (N==1)
    x=x';
    y=y';
    z=z';
    N=size(x,1);
  end

  if (nargin == 3)
    r=x*0+1;
  else
    r=varargin{1};
    if (size(r,1)==1 && size(r,2)==1)
      r=r*ones(N,1);
    end
  end
  if (nargin > 5)
    subdivs=varargin{3}+1;
  end
  if (nargin > 6)
    vec=varargin{4};
    [t,n,b]=frame(x,y,z,vec);
  else
    [t,n,b]=frenet(x,y,z);
  end

  X=zeros(N,subdivs);
  Y=zeros(N,subdivs);
  Z=zeros(N,subdivs);

  theta=0:(2*pi/(subdivs-1)):(2*pi);

  for i=1:N
    X(i,:)=x(i) + r(i)*(n(i,1)*cos(theta) + b(i,1)*sin(theta));
    Y(i,:)=y(i) + r(i)*(n(i,2)*cos(theta) + b(i,2)*sin(theta));
    Z(i,:)=z(i) + r(i)*(n(i,3)*cos(theta) + b(i,3)*sin(theta));
  end

  if (nargout==0)
    if (nargin > 4)
      V=varargin{2};
      if (size(V,1)==1)
	V=V';
      end
      V=V*ones(1,subdivs);
      surf(X,Y,Z,V);
    else
      surf(X,Y,Z);
    end
  else
    varargout(1) = {X}; 
    varargout(2) = {Y}; 
    varargout(3) = {Z}; 
  end

function [t,n,b]=frame(x,y,z,vec)

% FRAME Calculate a Frenet-like frame for a polygonal space curve
% [t,n,b]=frame(x,y,z,v) returns the tangent unit vector, a normal
% and a binormal of the space curve x,y,z. The curve may be a row or
% column vector, the frame vectors are each row vectors. 
%
% This function calculates the normal by taking the cross product
% of the tangent with the vector v; if v is chosen so that it is
% always far from t the frame will not twist unduly.
% 
% If two points coincide, the previous tangent and normal will be used.
%
% Written by Anders Sandberg, asa@nada.kth.se, 2005


N=size(x,1);
if (N==1)
  x=x';
  y=y';
  z=z';
  N=size(x,1);
end

t=zeros(N,3);
b=zeros(N,3);
n=zeros(N,3);

p=[x y z];

for i=2:(N-1)
  t(i,:)=(p(i+1,:)-p(i-1,:));
  tl=norm(t(i,:));
  if (tl>0)
    t(i,:)=t(i,:)/tl;
  else
    t(i,:)=t(i-1,:);
  end
end

t(1,:)=p(2,:)-p(1,:);
t(1,:)=t(1,:)/norm(t(1,:));

t(N,:)=p(N,:)-p(N-1,:);
t(N,:)=t(N,:)/norm(t(N,:));

for i=2:(N-1)
  n(i,:)=cross(t(i,:),vec);
  nl=norm(n(i,:));
  if (nl>0)
    n(i,:)=n(i,:)/nl;
  else
    n(i,:)=n(i-1,:);
  end
end

n(1,:)=cross(t(1,:),vec);
n(1,:)=n(1,:)/norm(n(1,:));

n(N,:)=cross(t(N,:),vec);
n(N,:)=n(N,:)/norm(n(N,:));

for i=1:N
  b(i,:)=cross(t(i,:),n(i,:));
  b(i,:)=b(i,:)/norm(b(i,:));
end

function [t,n,b]=frenet(x,y,z)

% FRENET Calculate the Frenet frame for a polygonal space curve
% [t,n,b]=frenet(x,y,z) returns the tangent unit vector, the normal
% and binormal of the space curve x,y,z. The curve may be a row or
% column vector, the frame vectors are each row vectors. 
%
% If two points coincide, the previous tangent and normal will be used.
%
% Written by Anders Sandberg, asa@nada.kth.se, 2005

N=size(x,1);
if (N==1)
  x=x';
  y=y';
  z=z';
  N=size(x,1);
end

t=zeros(N,3);
b=zeros(N,3);
n=zeros(N,3);

p=[x y z];

for i=2:(N-1)
  t(i,:)=(p(i+1,:)-p(i-1,:));
  tl=norm(t(i,:));
  if (tl>0)
    t(i,:)=t(i,:)/tl;
  else
    t(i,:)=t(i-1,:);
  end
end

t(1,:)=p(2,:)-p(1,:);
t(1,:)=t(1,:)/norm(t(1,:));

t(N,:)=p(N,:)-p(N-1,:);
t(N,:)=t(N,:)/norm(t(N,:));

for i=2:(N-1)
  n(i,:)=(t(i+1,:)-t(i-1,:));
  nl=norm(n(i,:));
  if (nl>0)
    n(i,:)=n(i,:)/nl;
  else
    n(i,:)=n(i-1,:);
  end
end

n(1,:)=t(2,:)-t(1,:);
n(1,:)=n(1,:)/norm(n(1,:));

n(N,:)=t(N,:)-t(N-1,:);
n(N,:)=n(N,:)/norm(n(N,:));

for i=1:N
  b(i,:)=cross(t(i,:),n(i,:));
  b(i,:)=b(i,:)/norm(b(i,:));
end