/usr/share/gap/doc/ref/chap39.html is in gap-doc 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 | <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (ref) - Chapter 39: Groups</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap39" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chap41.html">41</a> <a href="chap42.html">42</a> <a href="chap43.html">43</a> <a href="chap44.html">44</a> <a href="chap45.html">45</a> <a href="chap46.html">46</a> <a href="chap47.html">47</a> <a href="chap48.html">48</a> <a href="chap49.html">49</a> <a href="chap50.html">50</a> <a href="chap51.html">51</a> <a href="chap52.html">52</a> <a href="chap53.html">53</a> <a href="chap54.html">54</a> <a href="chap55.html">55</a> <a href="chap56.html">56</a> <a href="chap57.html">57</a> <a href="chap58.html">58</a> <a href="chap59.html">59</a> <a href="chap60.html">60</a> <a href="chap61.html">61</a> <a href="chap62.html">62</a> <a href="chap63.html">63</a> <a href="chap64.html">64</a> <a href="chap65.html">65</a> <a href="chap66.html">66</a> <a href="chap67.html">67</a> <a href="chap68.html">68</a> <a href="chap69.html">69</a> <a href="chap70.html">70</a> <a href="chap71.html">71</a> <a href="chap72.html">72</a> <a href="chap73.html">73</a> <a href="chap74.html">74</a> <a href="chap75.html">75</a> <a href="chap76.html">76</a> <a href="chap77.html">77</a> <a href="chap78.html">78</a> <a href="chap79.html">79</a> <a href="chap80.html">80</a> <a href="chap81.html">81</a> <a href="chap82.html">82</a> <a href="chap83.html">83</a> <a href="chap84.html">84</a> <a href="chap85.html">85</a> <a href="chap86.html">86</a> <a href="chap87.html">87</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap38.html">[Previous Chapter]</a> <a href="chap40.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap39_mj.html">[MathJax on]</a></p>
<p><a id="X8716635F7951801B" name="X8716635F7951801B"></a></p>
<div class="ChapSects"><a href="chap39.html#X8716635F7951801B">39 <span class="Heading">Groups</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X822370B47DEA37B1">39.1 <span class="Heading">Group Elements</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X86A022F9800121F8">39.2 <span class="Heading">Creating Groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7D8E473384DE9CD4">39.2-1 Group</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7F81960287F3E32A">39.2-2 GroupByGenerators</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X8589EF9C7B658B94">39.2-3 GroupWithGenerators</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X79C44528864044C5">39.2-4 GeneratorsOfGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7A0747F17B50D967">39.2-5 AsGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7E4143A08040BB47">39.2-6 ConjugateGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7939B3177BBD61E4">39.2-7 IsGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X845874BA82E1A11F">39.2-8 InfoGroup</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X7BA181CA81D785BB">39.3 <span class="Heading">Subgroups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7C82AA387A42DCA0">39.3-1 Subgroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X86DC933779B1CABD">39.3-2 <span class="Heading">Index (<strong class="pkg">GAP</strong> operation)</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X8014135884DCC53E">39.3-3 IndexInWholeGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7904AC9D7E9A3BB7">39.3-4 AsSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7839D8927E778334">39.3-5 IsSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X838186F9836F678C">39.3-6 IsNormal</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X8390B5117A10CC52">39.3-7 IsCharacteristicSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X84F5464983655590">39.3-8 ConjugateSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7D9990EB837075A4">39.3-9 ConjugateSubgroups</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X82ABF80780CC27AF">39.3-10 IsSubnormal</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X829766158665FB54">39.3-11 SubgroupByProperty</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7E95101F80583E77">39.3-12 SubgroupShell</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X7B855B0485C3C6C5">39.4 <span class="Heading">Closures of (Sub)groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7D13FC1F8576FFD8">39.4-1 ClosureGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X81A20A397C308483">39.4-2 ClosureGroupAddElm</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X82F59F6680D1B0D5">39.4-3 ClosureGroupDefault</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7A7AF14A8052F055">39.4-4 ClosureSubgroup</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X7E19F92284F6684E">39.5 <span class="Heading">Expressing Group Elements as Words in Generators</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7FE8A3B08458A1BF">39.5-1 EpimorphismFromFreeGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X8357294D7B164106">39.5-2 Factorization</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X87BF1B887C91CA2E">39.6 <span class="Heading">Structure Descriptions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X8199B74B84446971">39.6-1 StructureDescription</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X81002AA87DDBC02F">39.7 <span class="Heading">Cosets</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X8412ABD57986B9FC">39.7-1 RightCoset</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X835F48248571364F">39.7-2 RightCosets</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X85884F177B5D98AE">39.7-3 CanonicalRightCosetElement</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7D7625A1861D9DAB">39.7-4 IsRightCoset</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X82F6ABE378B928D1">39.7-5 CosetDecomposition</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X83C723878230D616">39.8 <span class="Heading">Transversals</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X85C65D06822E716F">39.8-1 RightTransversal</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X78B98B257E981046">39.9 <span class="Heading">Double Cosets</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7E51ED757D17254B">39.9-1 DoubleCoset</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7F53DABD79BA4F72">39.9-2 RepresentativesContainedRightCosets</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7A5EFABB86E6D4D5">39.9-3 DoubleCosets</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X85ED464F878EF24C">39.9-4 IsDoubleCoset</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7A25B1C886CF8C6A">39.9-5 DoubleCosetRepsAndSizes</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X84AE7EE77E5FB30E">39.9-6 InfoCoset</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X7D474F8F87E4E5D9">39.10 <span class="Heading">Conjugacy Classes</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7B2F207F7F85F5B8">39.10-1 ConjugacyClass</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X871B570284BBA685">39.10-2 ConjugacyClasses</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7D6ED84C86C2979B">39.10-3 ConjugacyClassesByRandomSearch</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X852B3634789D770E">39.10-4 ConjugacyClassesByOrbits</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X8733F87B7E4C9903">39.10-5 NrConjugacyClasses</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7BD2A4427B7FE248">39.10-6 RationalClass</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X81E9EF0A811072E8">39.10-7 RationalClasses</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X877691247DE23386">39.10-8 GaloisGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X83DD148D7DA2ABA9">39.10-9 <span class="Heading">IsConjugate</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X81A92F828400FC8A">39.10-10 NthRootsInGroup</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X804F0F037F06E25E">39.11 <span class="Heading">Normal Structure</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X87B5370C7DFD401D">39.11-1 <span class="Heading">Normalizer</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7C4E00297E37AA44">39.11-2 Core</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7CF497C77B1E8938">39.11-3 PCore</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7BDEA0A98720D1BB">39.11-4 NormalClosure</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7D25E7DC7834A703">39.11-5 NormalIntersection</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X811B8A4683DDE1F9">39.11-6 ComplementClassesRepresentatives</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X8581F4E77B11C610">39.11-7 InfoComplement</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X7C39EE3E836D6BC6">39.12 <span class="Heading">Specific and Parametrized Subgroups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X829759F67D4247CA">39.12-1 TrivialSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7A9A3D5578CE33A0">39.12-2 CommutatorSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7CC17CF179ED7EF2">39.12-3 DerivedSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7B10B58F83DDE56E">39.12-4 CommutatorLength</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X780552B57C30DD8F">39.12-5 FittingSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X788C856C82243274">39.12-6 FrattiniSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X81D86CCE84193E4F">39.12-7 PrefrattiniSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X83D5C8B8865C85F1">39.12-8 PerfectResiduum</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X787F5F14844FAACE">39.12-9 RadicalGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X81F647FA83D8854F">39.12-10 Socle</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X8440C61080CDAA14">39.12-11 SupersolvableResiduum</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X796DA805853FAC90">39.12-12 PRump</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X7FF0BBDD80E8F6BF">39.13 <span class="Heading">Sylow Subgroups and Hall Subgroups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7AA351308787544C">39.13-1 SylowSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X8605F3FE7A3B8E12">39.13-2 SylowComplement</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7EDBA19E828CD584">39.13-3 HallSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X832E8E6B8347B13F">39.13-4 SylowSystem</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X87A245E180D27147">39.13-5 ComplementSystem</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X82FE5DFD84F8A3C6">39.13-6 HallSystem</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X87AF37E980382499">39.14 <span class="Heading">Subgroups characterized by prime powers</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7F069ACC83DB3374">39.14-1 Omega</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X83DB33747F069ACC">39.14-2 Agemo</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X7B75879B8085120A">39.15 <span class="Heading">Group Properties</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7DA27D338374FD28">39.15-1 IsCyclic</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X813C952F80E775D4">39.15-2 IsElementaryAbelian</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X87D062608719F2CD">39.15-3 IsNilpotentGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7E3056237C6A5D43">39.15-4 NilpotencyClassOfGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X8755147280C84DBB">39.15-5 IsPerfectGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X809C78D5877D31DF">39.15-6 IsSolvableGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7D7456077D3D1B86">39.15-7 IsPolycyclicGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7AADF2E88501B9FF">39.15-8 IsSupersolvableGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X83977EB97A8E2290">39.15-9 IsMonomialGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7A6685D7819AEC32">39.15-10 IsSimpleGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X78CC9764803601E7">39.15-11 IsAlmostSimpleGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7C6AA6897C4409AC">39.15-12 <span class="Heading">IsomorphismTypeInfoFiniteSimpleGroup</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X8492B05B822AC58C">39.15-13 SimpleGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X839CDD8C7AE39FD6">39.15-14 SimpleGroupsIterator</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X872E93F586F54FCE">39.15-15 SmallSimpleGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7EB47BF27D8CBF72">39.15-16 AllSmallNonabelianSimpleGroups</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X81E22D07871DF37E">39.15-17 IsFinitelyGeneratedGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X8648EDA287829755">39.15-18 IsSubsetLocallyFiniteGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X8089F18C810B7E3E">39.15-19 IsPGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X87356BAA7E9E2142">39.15-20 PrimePGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X863434AD7DDE514B">39.15-21 PClassPGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X840A4F937ABF15E1">39.15-22 RankPGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X81130F9A7CFCF6BF">39.15-23 IsPSolvable</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X87415A8485FCF510">39.15-24 IsPNilpotent</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X7F8264FA796B2B7D">39.16 <span class="Heading">Numerical Group Attributes</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X812827937F403300">39.16-1 AbelianInvariants</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7D44470C7DA59C1C">39.16-2 Exponent</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X843E0CCA8351FDF4">39.16-3 EulerianFunction</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X7AEDEDF67CFED672">39.17 <span class="Heading">Subgroup Series</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7BDD116F7833800F">39.17-1 ChiefSeries</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7AC93E977AC9ED58">39.17-2 ChiefSeriesThrough</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X8724E15F81B51173">39.17-3 ChiefSeriesUnderAction</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7A0E7A8B8495B79D">39.17-4 SubnormalSeries</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X81CDCBD67BC98A5A">39.17-5 CompositionSeries</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X82C0D0217ACB2042">39.17-6 DisplayCompositionSeries</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7A879948834BD889">39.17-7 DerivedSeriesOfGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7A9AA1577CEC891F">39.17-8 DerivedLength</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X83F057E5791944D6">39.17-9 <span class="Heading">ElementaryAbelianSeries</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X782BD7A47D6B6503">39.17-10 InvariantElementaryAbelianSeries</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X879D55A67DB42676">39.17-11 LowerCentralSeriesOfGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X8428592E8773CD7B">39.17-12 UpperCentralSeriesOfGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7809B7ED792669F3">39.17-13 PCentralSeries</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X82A34BD681F24A94">39.17-14 JenningsSeries</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7C08A8B77EC09CFF">39.17-15 DimensionsLoewyFactors</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X84112774812180DD">39.17-16 AscendingChain</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7C5029EE86D7FC96">39.17-17 IntermediateGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X781661FB78DC83B5">39.17-18 IntermediateSubgroups</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X84091B0A7E401E2B">39.18 <span class="Heading">Factor Groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X80FC390C7F38A13F">39.18-1 NaturalHomomorphismByNormalSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7E6EED0185B27C48">39.18-2 FactorGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7816FA867BF1B8ED">39.18-3 CommutatorFactorGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7BB93B9778C5A0B2">39.18-4 MaximalAbelianQuotient</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7FC83E4C783572E7">39.18-5 HasAbelianFactorGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7FAC018680B766B7">39.18-6 HasElementaryAbelianFactorGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X822A3AB27919BC1E">39.18-7 CentralizerModulo</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X7D8EFB2F85AA24EE">39.19 <span class="Heading">Sets of Subgroups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7DDE67C67E871336">39.19-1 ConjugacyClassSubgroups</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7C5BBF487977B8CD">39.19-2 IsConjugacyClassSubgroupsRep</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7E986BF48393113A">39.19-3 ConjugacyClassesSubgroups</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X8486C25380853F9B">39.19-4 ConjugacyClassesMaximalSubgroups</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X80399CD4870FFC4B">39.19-5 AllSubgroups</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X798BF55C837DB188">39.19-6 MaximalSubgroupClassReps</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X861CD8DA790D81C2">39.19-7 MaximalSubgroups</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X80237A847E24E6CF">39.19-8 NormalSubgroups</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X82ECAA427C987318">39.19-9 MaximalNormalSubgroups</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X86FDD9BA819F5644">39.19-10 MinimalNormalSubgroups</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X7FA267497CFC0550">39.20 <span class="Heading">Subgroup Lattice</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7B104E2C86166188">39.20-1 LatticeSubgroups</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X78928A3582882BFD">39.20-2 ClassElementLattice</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7E5DF287825EE7BA">39.20-3 DotFileLatticeSubgroups</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X815CDA447C5DB285">39.20-4 MaximalSubgroupsLattice</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X8138997C871EDF96">39.20-5 MinimalSupergroupsLattice</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7BA3484E7AE0A0E1">39.20-6 RepresentativesPerfectSubgroups</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7B2233D180DF77A1">39.20-7 ConjugacyClassesPerfectSubgroups</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7BFE573187B4BEF8">39.20-8 Zuppos</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X82C12E2C81963B23">39.20-9 InfoLattice</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X85E613D57F28AEFF">39.21 <span class="Heading">Specific Methods for Subgroup Lattice Computations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X86462A567DDBA6BC">39.21-1 LatticeByCyclicExtension</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X78918D83835A0EDF">39.21-2 InvariantSubgroupsElementaryAbelianGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7AD7804A803910AC">39.21-3 SubgroupsSolvableGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7F60BBB8874DFE40">39.21-4 SizeConsiderFunction</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X833C51BD7E7812C4">39.21-5 ExactSizeConsiderFunction</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7A2C774B7CFF3E07">39.21-6 InfoPcSubgroup</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X79F894537D526B61">39.22 <span class="Heading">Special Generating Sets</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X82FD78AF7F80A0E2">39.22-1 GeneratorsSmallest</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7A258CCF79552198">39.22-2 LargestElementGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X81D15723804771E2">39.22-3 MinimalGeneratingSet</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X814DBABC878D5232">39.22-4 SmallGeneratingSet</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7D1574457B152333">39.22-5 IndependentGeneratorsOfAbelianGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X86F835DA8264A0CE">39.22-6 IndependentGeneratorExponents</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X7CA0B6A27E0BE6B8">39.23 <span class="Heading">1-Cohomology</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X847BEC137A49BAF4">39.23-1 <span class="Heading">OneCocycles</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7E6438D5834ACCDA">39.23-2 OneCoboundaries</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X80400ABD7F40FAA0">39.23-3 OCOneCocycles</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X811E1CF07DABE924">39.23-4 ComplementClassesRepresentativesEA</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X8199B1D27D487897">39.23-5 InfoCoh</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X80A4B0F282977074">39.24 <span class="Heading">Schur Covers and Multipliers</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7F619DDA7DD6C43B">39.24-1 EpimorphismSchurCover</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7DD1E37987612042">39.24-2 SchurCover</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X792BC39D7CEB1D27">39.24-3 AbelianInvariantsMultiplier</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X819E8AEC835F8CD1">39.24-4 Epicentre</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X8739CD4686301A0E">39.24-5 NonabelianExteriorSquare</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7E1C8CD77CDB9F71">39.24-6 EpimorphismNonabelianExteriorSquare</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7BF8DB3D8300BB3F">39.24-7 IsCentralFactor</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7F4240CD782B6032">39.24-8 <span class="Heading">Covering groups of symmetric groups</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7DDA6BC1824F78FD">39.24-9 BasicSpinRepresentationOfSymmetricGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X844CFFDE80F6AD15">39.24-10 SchurCoverOfSymmetricGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7E0F4896795E34FC">39.24-11 DoubleCoverOfAlternatingGroup</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap39.html#X865722987E0E19B6">39.25 <span class="Heading">Tests for the Availability of Methods</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X798F13EA810FB215">39.25-1 CanEasilyTestMembership</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7C2A89607BDFD920">39.25-2 CanEasilyComputeWithIndependentGensAbelianGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X83245C82835D496C">39.25-3 CanComputeSize</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X8268965487364912">39.25-4 CanComputeSizeAnySubgroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X82DDE00D82A32083">39.25-5 CanComputeIndex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X7BE7C36B84C23511">39.25-6 CanComputeIsSubset</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap39.html#X87D62C2C7C375E2D">39.25-7 KnowsHowToDecompose</a></span>
</div></div>
</div>
<h3>39 <span class="Heading">Groups</span></h3>
<p>This chapter explains how to create groups and defines operations for groups, that is operations whose definition does not depend on the representation used. However methods for these operations in most cases will make use of the representation.</p>
<p>If not otherwise specified, in all examples in this chapter the group <code class="code">g</code> will be the symmetric group <span class="SimpleMath">S_4</span> acting on the letters <span class="SimpleMath">{ 1, ..., 4 }</span>.</p>
<p><a id="X822370B47DEA37B1" name="X822370B47DEA37B1"></a></p>
<h4>39.1 <span class="Heading">Group Elements</span></h4>
<p>Groups in <strong class="pkg">GAP</strong> are written multiplicatively. The elements from which a group can be generated must permit multiplication and multiplicative inversion (see <a href="chap31.html#X7B97A0307EA161E5"><span class="RefLink">31.14</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">a:=(1,2,3);;b:=(2,3,4);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">One(a);</span>
()
<span class="GAPprompt">gap></span> <span class="GAPinput">Inverse(b);</span>
(2,4,3)
<span class="GAPprompt">gap></span> <span class="GAPinput">a*b;</span>
(1,3)(2,4)
<span class="GAPprompt">gap></span> <span class="GAPinput">Order(a*b);</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">Order( [ [ 1, 1 ], [ 0, 1 ] ] );</span>
infinity
</pre></div>
<p>The next example may run into an infinite loop because the given matrix in fact has infinite order.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Order( [ [ 1, 1 ], [ 0, 1 ] ] * Indeterminate( Rationals ) );</span>
#I Order: warning, order of <mat> might be infinite
</pre></div>
<p>Since groups are domains, the recommended command to compute the order of a group is <code class="func">Size</code> (<a href="chap30.html#X858ADA3B7A684421"><span class="RefLink">30.4-6</span></a>). For convenience, group orders can also be computed with <code class="func">Order</code> (<a href="chap31.html#X84F59A2687C62763"><span class="RefLink">31.10-10</span></a>).</p>
<p>The operation <code class="func">Comm</code> (<a href="chap31.html#X80761843831B468E"><span class="RefLink">31.12-3</span></a>) can be used to compute the commutator of two elements, the operation <code class="func">LeftQuotient</code> (<a href="chap31.html#X7A37082878DB3930"><span class="RefLink">31.12-2</span></a>) computes the product <span class="SimpleMath">x^{-1} y</span>.</p>
<p><a id="X86A022F9800121F8" name="X86A022F9800121F8"></a></p>
<h4>39.2 <span class="Heading">Creating Groups</span></h4>
<p>When groups are created from generators, this means that the generators must be elements that can be multiplied and inverted (see also <a href="chap31.html#X82039A218274826F"><span class="RefLink">31.3</span></a>). For creating a free group on a set of symbols, see <code class="func">FreeGroup</code> (<a href="chap37.html#X8215999E835290F0"><span class="RefLink">37.2-1</span></a>).</p>
<p><a id="X7D8E473384DE9CD4" name="X7D8E473384DE9CD4"></a></p>
<h5>39.2-1 Group</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Group</code>( <var class="Arg">gen</var>, <var class="Arg">...</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Group</code>( <var class="Arg">gens</var>[, <var class="Arg">id</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">Group( <var class="Arg">gen</var>, ... )</code> is the group generated by the arguments <var class="Arg">gen</var>, ...</p>
<p>If the only argument <var class="Arg">gens</var> is a list that is not a matrix then <code class="code">Group( <var class="Arg">gens</var> )</code> is the group generated by the elements of that list.</p>
<p>If there are two arguments, a list <var class="Arg">gens</var> and an element <var class="Arg">id</var>, then <code class="code">Group( <var class="Arg">gens</var>, <var class="Arg">id</var> )</code> is the group generated by the elements of <var class="Arg">gens</var>, with identity <var class="Arg">id</var>.</p>
<p>Note that the value of the attribute <code class="func">GeneratorsOfGroup</code> (<a href="chap39.html#X79C44528864044C5"><span class="RefLink">39.2-4</span></a>) need not be equal to the list <var class="Arg">gens</var> of generators entered as argument. Use <code class="func">GroupWithGenerators</code> (<a href="chap39.html#X8589EF9C7B658B94"><span class="RefLink">39.2-3</span></a>) if you want to be sure that the argument <var class="Arg">gens</var> is stored as value of <code class="func">GeneratorsOfGroup</code> (<a href="chap39.html#X79C44528864044C5"><span class="RefLink">39.2-4</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=Group((1,2,3,4),(1,2));</span>
Group([ (1,2,3,4), (1,2) ])
</pre></div>
<p><a id="X7F81960287F3E32A" name="X7F81960287F3E32A"></a></p>
<h5>39.2-2 GroupByGenerators</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GroupByGenerators</code>( <var class="Arg">gens</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GroupByGenerators</code>( <var class="Arg">gens</var>, <var class="Arg">id</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">GroupByGenerators</code> returns the group <span class="SimpleMath">G</span> generated by the list <var class="Arg">gens</var>. If a second argument <var class="Arg">id</var> is present then this is stored as the identity element of the group.</p>
<p>The value of the attribute <code class="func">GeneratorsOfGroup</code> (<a href="chap39.html#X79C44528864044C5"><span class="RefLink">39.2-4</span></a>) of <span class="SimpleMath">G</span> need not be equal to <var class="Arg">gens</var>. <code class="func">GroupByGenerators</code> is the underlying operation called by <code class="func">Group</code> (<a href="chap39.html#X7D8E473384DE9CD4"><span class="RefLink">39.2-1</span></a>).</p>
<p><a id="X8589EF9C7B658B94" name="X8589EF9C7B658B94"></a></p>
<h5>39.2-3 GroupWithGenerators</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GroupWithGenerators</code>( <var class="Arg">gens</var>[, <var class="Arg">id</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">GroupWithGenerators</code> returns the group <span class="SimpleMath">G</span> generated by the list <var class="Arg">gens</var>. If a second argument <var class="Arg">id</var> is present then this is stored as the identity element of the group. The value of the attribute <code class="func">GeneratorsOfGroup</code> (<a href="chap39.html#X79C44528864044C5"><span class="RefLink">39.2-4</span></a>) of <span class="SimpleMath">G</span> is equal to <var class="Arg">gens</var>.</p>
<p><a id="X79C44528864044C5" name="X79C44528864044C5"></a></p>
<h5>39.2-4 GeneratorsOfGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GeneratorsOfGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a list of generators of the group <var class="Arg">G</var>. If <var class="Arg">G</var> has been created by the command <code class="func">GroupWithGenerators</code> (<a href="chap39.html#X8589EF9C7B658B94"><span class="RefLink">39.2-3</span></a>) with argument <var class="Arg">gens</var>, then the list returned by <code class="func">GeneratorsOfGroup</code> will be equal to <var class="Arg">gens</var>. For such a group, each generator can also be accessed using the <code class="code">.</code> operator (see <code class="func">GeneratorsOfDomain</code> (<a href="chap31.html#X7E353DD1838AB223"><span class="RefLink">31.9-2</span></a>)): for a positive integer <span class="SimpleMath">i</span>, <code class="code"><var class="Arg">G</var>.i</code> returns the <span class="SimpleMath">i</span>-th element of the list returned by <code class="func">GeneratorsOfGroup</code>. Moreover, if <var class="Arg">G</var> is a free group, and <code class="code">name</code> is the name of a generator of <var class="Arg">G</var> then <code class="code"><var class="Arg">G</var>.name</code> also returns this generator.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=GroupWithGenerators([(1,2,3,4),(1,2)]);</span>
Group([ (1,2,3,4), (1,2) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">GeneratorsOfGroup(g);</span>
[ (1,2,3,4), (1,2) ]
</pre></div>
<p>While in this example <strong class="pkg">GAP</strong> displays the group via the generating set stored in the attribute <code class="func">GeneratorsOfGroup</code>, the methods installed for <code class="func">View</code> (<a href="chap6.html#X851902C583B84CDC"><span class="RefLink">6.3-3</span></a>) will in general display only some information about the group which may even be just the fact that it is a group.</p>
<p><a id="X7A0747F17B50D967" name="X7A0747F17B50D967"></a></p>
<h5>39.2-5 AsGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AsGroup</code>( <var class="Arg">D</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>if the elements of the collection <var class="Arg">D</var> form a group the command returns this group, otherwise it returns <code class="keyw">fail</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">AsGroup([(1,2)]);</span>
fail
<span class="GAPprompt">gap></span> <span class="GAPinput">AsGroup([(),(1,2)]);</span>
Group([ (1,2) ])
</pre></div>
<p><a id="X7E4143A08040BB47" name="X7E4143A08040BB47"></a></p>
<h5>39.2-6 ConjugateGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ConjugateGroup</code>( <var class="Arg">G</var>, <var class="Arg">obj</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the conjugate group of <var class="Arg">G</var>, obtained by applying the conjugating element <var class="Arg">obj</var>.</p>
<p>To form a conjugate (group) by any object acting via <code class="code">^</code>, one can also use the infix operator <code class="code">^</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ConjugateGroup(g,(1,5));</span>
Group([ (2,3,4,5), (2,5) ])
</pre></div>
<p><a id="X7939B3177BBD61E4" name="X7939B3177BBD61E4"></a></p>
<h5>39.2-7 IsGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsGroup</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>A group is a magma-with-inverses (see <code class="func">IsMagmaWithInverses</code> (<a href="chap35.html#X82CBFF648574B830"><span class="RefLink">35.1-4</span></a>)) and associative (see <code class="func">IsAssociative</code> (<a href="chap35.html#X7C83B5A47FD18FB7"><span class="RefLink">35.4-7</span></a>)) multiplication.</p>
<p><code class="code">IsGroup</code> tests whether the object <var class="Arg">obj</var> fulfills these conditions, it does <em>not</em> test whether <var class="Arg">obj</var> is a set of elements that forms a group under multiplication; use <code class="func">AsGroup</code> (<a href="chap39.html#X7A0747F17B50D967"><span class="RefLink">39.2-5</span></a>) if you want to perform such a test. (See <a href="chap13.html#X7CC6903E78F24167"><span class="RefLink">13.3</span></a> for details about categories.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsGroup(g);</span>
true
</pre></div>
<p><a id="X845874BA82E1A11F" name="X845874BA82E1A11F"></a></p>
<h5>39.2-8 InfoGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ InfoGroup</code></td><td class="tdright">( info class )</td></tr></table></div>
<p>is the info class for the generic group theoretic functions (see <a href="chap7.html#X7A9C902479CB6F7C"><span class="RefLink">7.4</span></a>).</p>
<p><a id="X7BA181CA81D785BB" name="X7BA181CA81D785BB"></a></p>
<h4>39.3 <span class="Heading">Subgroups</span></h4>
<p>For the general concept of parents and subdomains, see <a href="chap31.html#X7CBDD36E7B7BE286"><span class="RefLink">31.7</span></a> and <a href="chap31.html#X7B58FDEF80338DD6"><span class="RefLink">31.8</span></a>. More functions that construct certain subgroups can be found in the sections <a href="chap39.html#X804F0F037F06E25E"><span class="RefLink">39.11</span></a>, <a href="chap39.html#X7C39EE3E836D6BC6"><span class="RefLink">39.12</span></a>, <a href="chap39.html#X7FF0BBDD80E8F6BF"><span class="RefLink">39.13</span></a>, and <a href="chap39.html#X87AF37E980382499"><span class="RefLink">39.14</span></a>.</p>
<p>If a group <span class="SimpleMath">U</span> is created as a subgroup of another group <span class="SimpleMath">G</span>, <span class="SimpleMath">G</span> becomes the parent of <span class="SimpleMath">U</span>. There is no "universal" parent group, parent-child chains can be arbitrary long. <strong class="pkg">GAP</strong> stores the result of some operations (such as <code class="func">Normalizer</code> (<a href="chap39.html#X87B5370C7DFD401D"><span class="RefLink">39.11-1</span></a>)) with the parent as an attribute.</p>
<p><a id="X7C82AA387A42DCA0" name="X7C82AA387A42DCA0"></a></p>
<h5>39.3-1 Subgroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Subgroup</code>( <var class="Arg">G</var>, <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SubgroupNC</code>( <var class="Arg">G</var>, <var class="Arg">gens</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Subgroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>creates the subgroup <var class="Arg">U</var> of <var class="Arg">G</var> generated by <var class="Arg">gens</var>. The <code class="func">Parent</code> (<a href="chap31.html#X7BC856CC7F116BB0"><span class="RefLink">31.7-1</span></a>) value of <var class="Arg">U</var> will be <var class="Arg">G</var>. The <code class="code">NC</code> version does not check, whether the elements in <var class="Arg">gens</var> actually lie in <var class="Arg">G</var>.</p>
<p>The unary version of <code class="func">Subgroup</code> creates a (shell) subgroup that does not even know generators but can be used to collect information about a particular subgroup over time.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:=Subgroup(g,[(1,2,3),(1,2)]);</span>
Group([ (1,2,3), (1,2) ])
</pre></div>
<p><a id="X86DC933779B1CABD" name="X86DC933779B1CABD"></a></p>
<h5>39.3-2 <span class="Heading">Index (<strong class="pkg">GAP</strong> operation)</span></h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Index</code>( <var class="Arg">G</var>, <var class="Arg">U</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IndexNC</code>( <var class="Arg">G</var>, <var class="Arg">U</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>For a subgroup <var class="Arg">U</var> of the group <var class="Arg">G</var>, <code class="func">Index</code> returns the index <span class="SimpleMath">[<var class="Arg">G</var>:<var class="Arg">U</var>] = |<var class="Arg">G</var>| / |<var class="Arg">U</var>|</span> of <var class="Arg">U</var> in <var class="Arg">G</var>. The <code class="code">NC</code> version does not test whether <var class="Arg">U</var> is contained in <var class="Arg">G</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Index(g,u);</span>
4
</pre></div>
<p><a id="X8014135884DCC53E" name="X8014135884DCC53E"></a></p>
<h5>39.3-3 IndexInWholeGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IndexInWholeGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>If the family of elements of <var class="Arg">G</var> itself forms a group <var class="Arg">P</var>, this attribute returns the index of <var class="Arg">G</var> in <var class="Arg">P</var>. It is used primarily for free groups or finitely presented groups.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">freegp:=FreeGroup(1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">freesub:=Subgroup(freegp,[freegp.1^5]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IndexInWholeGroup(freesub);</span>
5
</pre></div>
<p><a id="X7904AC9D7E9A3BB7" name="X7904AC9D7E9A3BB7"></a></p>
<h5>39.3-4 AsSubgroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AsSubgroup</code>( <var class="Arg">G</var>, <var class="Arg">U</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>creates a subgroup of <var class="Arg">G</var> which contains the same elements as <var class="Arg">U</var></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">v:=AsSubgroup(g,Group((1,2,3),(1,4)));</span>
Group([ (1,2,3), (1,4) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">Parent(v);</span>
Group([ (1,2,3,4), (1,2) ])
</pre></div>
<p><a id="X7839D8927E778334" name="X7839D8927E778334"></a></p>
<h5>39.3-5 IsSubgroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsSubgroup</code>( <var class="Arg">G</var>, <var class="Arg">U</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p><code class="code">IsSubgroup</code> returns <code class="keyw">true</code> if <var class="Arg">U</var> is a group that is a subset of the domain <var class="Arg">G</var>. This is actually checked by calling <code class="code">IsGroup( <var class="Arg">U</var> )</code> and <code class="code">IsSubset( <var class="Arg">G</var>, <var class="Arg">U</var> )</code>; note that special methods for <code class="func">IsSubset</code> (<a href="chap30.html#X79CA175481F8105F"><span class="RefLink">30.5-1</span></a>) are available that test only generators of <var class="Arg">U</var> if <var class="Arg">G</var> is closed under the group operations. So in most cases, for example whenever one knows already that <var class="Arg">U</var> is a group, it is better to call only <code class="func">IsSubset</code> (<a href="chap30.html#X79CA175481F8105F"><span class="RefLink">30.5-1</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsSubgroup(g,u);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">v:=Group((1,2,3),(1,2));</span>
Group([ (1,2,3), (1,2) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">u=v;</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">IsSubgroup(g,v);</span>
true
</pre></div>
<p><a id="X838186F9836F678C" name="X838186F9836F678C"></a></p>
<h5>39.3-6 IsNormal</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsNormal</code>( <var class="Arg">G</var>, <var class="Arg">U</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns <code class="keyw">true</code> if the group <var class="Arg">G</var> normalizes the group <var class="Arg">U</var> and <code class="keyw">false</code> otherwise.</p>
<p>A group <var class="Arg">G</var> <em>normalizes</em> a group <var class="Arg">U</var> if and only if for every <span class="SimpleMath">g ∈ <var class="Arg">G</var></span> and <span class="SimpleMath">u ∈ <var class="Arg">U</var></span> the element <span class="SimpleMath">u^g</span> is a member of <var class="Arg">U</var>. Note that <var class="Arg">U</var> need not be a subgroup of <var class="Arg">G</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsNormal(g,u);</span>
false
</pre></div>
<p><a id="X8390B5117A10CC52" name="X8390B5117A10CC52"></a></p>
<h5>39.3-7 IsCharacteristicSubgroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsCharacteristicSubgroup</code>( <var class="Arg">G</var>, <var class="Arg">N</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>tests whether <var class="Arg">N</var> is invariant under all automorphisms of <var class="Arg">G</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsCharacteristicSubgroup(g,u);</span>
false
</pre></div>
<p><a id="X84F5464983655590" name="X84F5464983655590"></a></p>
<h5>39.3-8 ConjugateSubgroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ConjugateSubgroup</code>( <var class="Arg">G</var>, <var class="Arg">g</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>For a group <var class="Arg">G</var> which has a parent group <code class="code">P</code> (see <code class="func">Parent</code> (<a href="chap31.html#X7BC856CC7F116BB0"><span class="RefLink">31.7-1</span></a>)), returns the subgroup of <code class="code">P</code>, obtained by conjugating <var class="Arg">G</var> using the conjugating element <var class="Arg">g</var>.</p>
<p>If <var class="Arg">G</var> has no parent group, it just delegates to the call to <code class="func">ConjugateGroup</code> (<a href="chap39.html#X7E4143A08040BB47"><span class="RefLink">39.2-6</span></a>) with the same arguments.</p>
<p>To form a conjugate (subgroup) by any object acting via <code class="code">^</code>, one can also use the infix operator <code class="code">^</code>.</p>
<p><a id="X7D9990EB837075A4" name="X7D9990EB837075A4"></a></p>
<h5>39.3-9 ConjugateSubgroups</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ConjugateSubgroups</code>( <var class="Arg">G</var>, <var class="Arg">U</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns a list of all images of the group <var class="Arg">U</var> under conjugation action by <var class="Arg">G</var>.</p>
<p><a id="X82ABF80780CC27AF" name="X82ABF80780CC27AF"></a></p>
<h5>39.3-10 IsSubnormal</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsSubnormal</code>( <var class="Arg">G</var>, <var class="Arg">U</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>A subgroup <var class="Arg">U</var> of the group <var class="Arg">G</var> is subnormal if it is contained in a subnormal series of <var class="Arg">G</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsSubnormal(g,Group((1,2,3)));</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">IsSubnormal(g,Group((1,2)(3,4)));</span>
true
</pre></div>
<p><a id="X829766158665FB54" name="X829766158665FB54"></a></p>
<h5>39.3-11 SubgroupByProperty</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SubgroupByProperty</code>( <var class="Arg">G</var>, <var class="Arg">prop</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>creates a subgroup of <var class="Arg">G</var> consisting of those elements fulfilling <var class="Arg">prop</var> (which is a tester function). No test is done whether the property actually defines a subgroup.</p>
<p>Note that currently very little functionality beyond an element test exists for groups created this way.</p>
<p><a id="X7E95101F80583E77" name="X7E95101F80583E77"></a></p>
<h5>39.3-12 SubgroupShell</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SubgroupShell</code>( <var class="Arg">G</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>creates a subgroup of <var class="Arg">G</var> which at this point is not yet specified further (but will be later, for example by assigning a generating set).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:=SubgroupByProperty(g,i->3^i=3);</span>
<subgrp of Group([ (1,2,3,4), (1,2) ]) by property>
<span class="GAPprompt">gap></span> <span class="GAPinput">(1,3) in u; (1,4) in u; (1,5) in u;</span>
false
true
false
<span class="GAPprompt">gap></span> <span class="GAPinput">GeneratorsOfGroup(u);</span>
[ (1,2), (1,4,2) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">u:=SubgroupShell(g);</span>
<group>
</pre></div>
<p><a id="X7B855B0485C3C6C5" name="X7B855B0485C3C6C5"></a></p>
<h4>39.4 <span class="Heading">Closures of (Sub)groups</span></h4>
<p><a id="X7D13FC1F8576FFD8" name="X7D13FC1F8576FFD8"></a></p>
<h5>39.4-1 ClosureGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ClosureGroup</code>( <var class="Arg">G</var>, <var class="Arg">obj</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>creates the group generated by the elements of <var class="Arg">G</var> and <var class="Arg">obj</var>. <var class="Arg">obj</var> can be either an element or a collection of elements, in particular another group.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=SmallGroup(24,12);;u:=Subgroup(g,[g.3,g.4]);</span>
Group([ f3, f4 ])
<span class="GAPprompt">gap></span> <span class="GAPinput">ClosureGroup(u,g.2);</span>
Group([ f2, f3, f4 ])
<span class="GAPprompt">gap></span> <span class="GAPinput">ClosureGroup(u,[g.1,g.2]);</span>
Group([ f1, f2, f3, f4 ])
<span class="GAPprompt">gap></span> <span class="GAPinput">ClosureGroup(u,Group(g.2*g.1));</span>
Group([ f1*f2^2, f3, f4 ])
</pre></div>
<p><a id="X81A20A397C308483" name="X81A20A397C308483"></a></p>
<h5>39.4-2 ClosureGroupAddElm</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ClosureGroupAddElm</code>( <var class="Arg">G</var>, <var class="Arg">elm</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ClosureGroupCompare</code>( <var class="Arg">G</var>, <var class="Arg">elm</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ClosureGroupIntest</code>( <var class="Arg">G</var>, <var class="Arg">elm</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>These three functions together with <code class="func">ClosureGroupDefault</code> (<a href="chap39.html#X82F59F6680D1B0D5"><span class="RefLink">39.4-3</span></a>) implement the main methods for <code class="func">ClosureGroup</code> (<a href="chap39.html#X7D13FC1F8576FFD8"><span class="RefLink">39.4-1</span></a>). In the ordering given, they just add <var class="Arg">elm</var> to the generators, remove duplicates and identity elements, and test whether <var class="Arg">elm</var> is already contained in <var class="Arg">G</var>.</p>
<p><a id="X82F59F6680D1B0D5" name="X82F59F6680D1B0D5"></a></p>
<h5>39.4-3 ClosureGroupDefault</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ClosureGroupDefault</code>( <var class="Arg">G</var>, <var class="Arg">elm</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This functions returns the closure of the group <var class="Arg">G</var> with the element <var class="Arg">elm</var>. If <var class="Arg">G</var> has the attribute <code class="func">AsSSortedList</code> (<a href="chap30.html#X856D927378C33548"><span class="RefLink">30.3-10</span></a>) then also the result has this attribute. This is used to implement the default method for <code class="func">Enumerator</code> (<a href="chap30.html#X7EF8910F82B45EC7"><span class="RefLink">30.3-2</span></a>) and <code class="func">EnumeratorSorted</code> (<a href="chap30.html#X80CD7DDC7D0C60D5"><span class="RefLink">30.3-3</span></a>).</p>
<p><a id="X7A7AF14A8052F055" name="X7A7AF14A8052F055"></a></p>
<h5>39.4-4 ClosureSubgroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ClosureSubgroup</code>( <var class="Arg">G</var>, <var class="Arg">obj</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ClosureSubgroupNC</code>( <var class="Arg">G</var>, <var class="Arg">obj</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>For a group <var class="Arg">G</var> that stores a parent group (see <a href="chap31.html#X7CBDD36E7B7BE286"><span class="RefLink">31.7</span></a>), <code class="func">ClosureSubgroup</code> calls <code class="func">ClosureGroup</code> (<a href="chap39.html#X7D13FC1F8576FFD8"><span class="RefLink">39.4-1</span></a>) with the same arguments; if the result is a subgroup of the parent of <var class="Arg">G</var> then the parent of <var class="Arg">G</var> is set as parent of the result, otherwise an error is raised. The check whether the result is contained in the parent of <var class="Arg">G</var> is omitted by the <code class="code">NC</code> version. As a wrong parent might imply wrong properties this version should be used with care.</p>
<p><a id="X7E19F92284F6684E" name="X7E19F92284F6684E"></a></p>
<h4>39.5 <span class="Heading">Expressing Group Elements as Words in Generators</span></h4>
<p>Using homomorphisms (see chapter <a href="chap40.html#X83702FC27B3C3098"><span class="RefLink">40</span></a>) is is possible to express group elements as words in given generators: Create a free group (see <code class="func">FreeGroup</code> (<a href="chap37.html#X8215999E835290F0"><span class="RefLink">37.2-1</span></a>)) on the correct number of generators and create a homomorphism from this free group onto the group <var class="Arg">G</var> in whose generators you want to factorize. Then the preimage of an element of <var class="Arg">G</var> is a word in the free generators, that will map on this element again.</p>
<p><a id="X7FE8A3B08458A1BF" name="X7FE8A3B08458A1BF"></a></p>
<h5>39.5-1 EpimorphismFromFreeGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ EpimorphismFromFreeGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>For a group <var class="Arg">G</var> with a known generating set, this attribute returns a homomorphism from a free group that maps the free generators to the groups generators.</p>
<p>The option <code class="code">names</code> can be used to prescribe a (print) name for the free generators.</p>
<p>The following example shows how to decompose elements of <span class="SimpleMath">S_4</span> in the generators <code class="code">(1,2,3,4)</code> and <code class="code">(1,2)</code>:</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=Group((1,2,3,4),(1,2));</span>
Group([ (1,2,3,4), (1,2) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">hom:=EpimorphismFromFreeGroup(g:names:=["x","y"]);</span>
[ x, y ] -> [ (1,2,3,4), (1,2) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PreImagesRepresentative(hom,(1,4));</span>
y^-1*x^-1*(x^-1*y^-1)^2*x
</pre></div>
<p>The following example stems from a real request to the <strong class="pkg">GAP</strong> Forum. In September 2000 a <strong class="pkg">GAP</strong> user working with puzzles wanted to express the permutation <code class="code">(1,2)</code> as a word as short as possible in particular generators of the symmetric group <span class="SimpleMath">S_16</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">perms := [ (1,2,3,7,11,10,9,5), (2,3,4,8,12,11,10,6),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> (5,6,7,11,15,14,13,9), (6,7,8,12,16,15,14,10) ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">puzzle := Group( perms );;Size( puzzle );</span>
20922789888000
<span class="GAPprompt">gap></span> <span class="GAPinput">hom:=EpimorphismFromFreeGroup(puzzle:names:=["a", "b", "c", "d"]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">word := PreImagesRepresentative( hom, (1,2) );</span>
a^-1*c*b*c^-1*a*b^-1*a^-2*c^-1*a*b^-1*c*b
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( word );</span>
13
</pre></div>
<p><a id="X8357294D7B164106" name="X8357294D7B164106"></a></p>
<h5>39.5-2 Factorization</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Factorization</code>( <var class="Arg">G</var>, <var class="Arg">elm</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns a factorization of <var class="Arg">elm</var> as word in the generators of the group <var class="Arg">G</var> given in the attribute <code class="func">GeneratorsOfGroup</code> (<a href="chap39.html#X79C44528864044C5"><span class="RefLink">39.2-4</span></a>). The attribute <code class="func">EpimorphismFromFreeGroup</code> (<a href="chap39.html#X7FE8A3B08458A1BF"><span class="RefLink">39.5-1</span></a>) of <var class="Arg">G</var> will contain a map from the group <var class="Arg">G</var> to the free group in which the word is expressed. The attribute <code class="func">MappingGeneratorsImages</code> (<a href="chap40.html#X863805187A24B5E3"><span class="RefLink">40.10-2</span></a>) of this map gives a list of generators and corresponding letters.</p>
<p>The algorithm used computes all elements of the group to ensure a short word is found. Therefore this function should <em>not</em> be used when the group <var class="Arg">G</var> has more than a few thousand elements. Because of this, one should not call this function within algorithms, but use homomorphisms instead.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SymmetricGroup( 6 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">r:=(3,4);; s:=(1,2,3,4,5,6);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput"># create subgroup to force the system to use the generators r and s:</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">H:= Subgroup(G, [ r, s ] );</span>
Group([ (3,4), (1,2,3,4,5,6) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">Factorization( H, (1,2,3) );</span>
(x2*x1)^2*x2^-2
<span class="GAPprompt">gap></span> <span class="GAPinput">s*r*s*r*s^-2;</span>
(1,2,3)
<span class="GAPprompt">gap></span> <span class="GAPinput">MappingGeneratorsImages(EpimorphismFromFreeGroup(H));</span>
[ [ x1, x2 ], [ (3,4), (1,2,3,4,5,6) ] ]
</pre></div>
<p><a id="X87BF1B887C91CA2E" name="X87BF1B887C91CA2E"></a></p>
<h4>39.6 <span class="Heading">Structure Descriptions</span></h4>
<p><a id="X8199B74B84446971" name="X8199B74B84446971"></a></p>
<h5>39.6-1 StructureDescription</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ StructureDescription</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>The method for <code class="func">StructureDescription</code> exhibits a structure of the given group <var class="Arg">G</var> to some extent, using the strategy outlined below. The idea is to return a possibly short string which gives some insight in the structure of the considered group. It is intended primarily for small groups (order less than 100) or groups with few normal subgroups, in other cases, in particular large <span class="SimpleMath">p</span>-groups, it can be very costly. Furthermore, the string returned is -- as the action on chief factors is not described -- often not the most useful way to describe a group.</p>
<p>The string returned by <code class="func">StructureDescription</code> is <strong class="button">not</strong> an isomorphism invariant: non-isomorphic groups can have the same string value, and two isomorphic groups in different representations can produce different strings. The value returned by <code class="func">StructureDescription</code> is a string of the following form:</p>
<div class="example"><pre>
StructureDescription(<G>) ::=
1 ; trivial group
| C<size> ; cyclic group
| A<degree> ; alternating group
| S<degree> ; symmetric group
| D<size> ; dihedral group
| Q<size> ; quaternion group
| QD<size> ; quasidihedral group
| PSL(<n>,<q>) ; projective special linear group
| SL(<n>,<q>) ; special linear group
| GL(<n>,<q>) ; general linear group
| PSU(<n>,<q>) ; proj. special unitary group
| O(2<n>+1,<q>) ; orthogonal group, type B
| O+(2<n>,<q>) ; orthogonal group, type D
| O-(2<n>,<q>) ; orthogonal group, type 2D
| PSp(2<n>,<q>) ; proj. special symplectic group
| Sz(<q>) ; Suzuki group
| Ree(<q>) ; Ree group (type 2F or 2G)
| E(6,<q>) | E(7,<q>) | E(8,<q>) ; Lie group of exceptional type
| 2E(6,<q>) | F(4,<q>) | G(2,<q>)
| 3D(4,<q>) ; Steinberg triality group
| M11 | M12 | M22 | M23 | M24
| J1 | J2 | J3 | J4 | Co1 | Co2
| Co3 | Fi22 | Fi23 | Fi24' | Suz
| HS | McL | He | HN | Th | B
| M | ON | Ly | Ru ; sporadic simple group
| 2F(4,2)' ; Tits group
| PerfectGroup(<size>,<id>) ; the indicated group from the
; library of perfect groups
| A x B ; direct product
| N : H ; semidirect product
| C(G) . G/C(G) = G' . G/G' ; non-split extension
; (equal alternatives and
; trivial extensions omitted)
| Phi(G) . G/Phi(G) ; non-split extension:
; Frattini subgroup and
; Frattini factor group
</pre></div>
<p>Note that the <code class="func">StructureDescription</code> is only <em>one</em> possible way of building up the given group from smaller pieces.</p>
<p>The option "short" is recognized - if this option is set, an abbreviated output format is used (e.g. <code class="code">"6x3"</code> instead of <code class="code">"C6 x C3"</code>).</p>
<p>If the <code class="func">Name</code> (<a href="chap12.html#X7F14EF9D81432113"><span class="RefLink">12.8-2</span></a>) attribute is not bound, but <code class="func">StructureDescription</code> is, <code class="func">View</code> (<a href="chap6.html#X851902C583B84CDC"><span class="RefLink">6.3-3</span></a>) prints the value of the attribute <code class="func">StructureDescription</code>. The <code class="func">Print</code> (<a href="chap6.html#X7AFA64D97A1F39A3"><span class="RefLink">6.3-4</span></a>)ed representation of a group is not affected by computing a <code class="func">StructureDescription</code>.</p>
<p>The strategy used to compute a <code class="func">StructureDescription</code> is as follows:</p>
<dl>
<dt><strong class="Mark">1.</strong></dt>
<dd><p>Lookup in a precomputed list, if the order of <var class="Arg">G</var> is not larger than 100 and not equal to 64.</p>
</dd>
<dt><strong class="Mark">2.</strong></dt>
<dd><p>If <var class="Arg">G</var> is abelian, then decompose it into cyclic factors in "elementary divisors style". For example, <code class="code">"C2 x C3 x C3"</code> is <code class="code">"C6 x C3"</code>.</p>
</dd>
<dt><strong class="Mark">3.</strong></dt>
<dd><p>Recognize alternating groups, symmetric groups, dihedral groups, quasidihedral groups, quaternion groups, PSL's, SL's, GL's and simple groups not listed so far as basic building blocks.</p>
</dd>
<dt><strong class="Mark">4.</strong></dt>
<dd><p>Decompose <var class="Arg">G</var> into a direct product of irreducible factors.</p>
</dd>
<dt><strong class="Mark">5.</strong></dt>
<dd><p>Recognize semidirect products <var class="Arg">G</var>=<span class="SimpleMath">N</span>:<span class="SimpleMath">H</span>, where <span class="SimpleMath">N</span> is normal. Select a pair <span class="SimpleMath">N</span>, <span class="SimpleMath">H</span> with the following preferences:</p>
<dl>
<dt><strong class="Mark">1.</strong></dt>
<dd><p><span class="SimpleMath">H</span> is abelian</p>
</dd>
<dt><strong class="Mark">2.</strong></dt>
<dd><p><span class="SimpleMath">N</span> is abelian</p>
</dd>
<dt><strong class="Mark">2a.</strong></dt>
<dd><p><span class="SimpleMath">N</span> has many abelian invariants</p>
</dd>
<dt><strong class="Mark">3.</strong></dt>
<dd><p><span class="SimpleMath">N</span> is a direct product</p>
</dd>
<dt><strong class="Mark">3a.</strong></dt>
<dd><p><span class="SimpleMath">N</span> has many direct factors</p>
</dd>
<dt><strong class="Mark">4.</strong></dt>
<dd><p><span class="SimpleMath">ϕ: H →</span> Aut(<span class="SimpleMath">N</span>), <span class="SimpleMath">h ↦ (n ↦ n^h)</span> is injective.</p>
</dd>
</dl>
</dd>
<dt><strong class="Mark">6.</strong></dt>
<dd><p>Fall back to non-splitting extensions: If the centre or the commutator factor group is non-trivial, write <var class="Arg">G</var> as Z(<var class="Arg">G</var>).<var class="Arg">G</var>/Z(<var class="Arg">G</var>) or <var class="Arg">G</var>'.<var class="Arg">G</var>/<var class="Arg">G</var>', respectively. Otherwise if the Frattini subgroup is non-trivial, write <var class="Arg">G</var> as <span class="SimpleMath">Φ</span>(<var class="Arg">G</var>).<var class="Arg">G</var>/<span class="SimpleMath">Φ</span>(<var class="Arg">G</var>).</p>
</dd>
<dt><strong class="Mark">7.</strong></dt>
<dd><p>If no decomposition is found (maybe this is not the case for any finite group), try to identify <var class="Arg">G</var> in the perfect groups library. If this fails also, then return a string describing this situation.</p>
</dd>
</dl>
<p>Note that <code class="func">StructureDescription</code> is <em>not</em> intended to be a research tool, but rather an educational tool. The reasons for this are as follows:</p>
<dl>
<dt><strong class="Mark">1.</strong></dt>
<dd><p>"Most" groups do not have "nice" decompositions. This is in some contrast to what is often taught in elementary courses on group theory, where it is sometimes suggested that basically every group can be written as iterated direct or semidirect product of cyclic groups and nonabelian simple groups.</p>
</dd>
<dt><strong class="Mark">2.</strong></dt>
<dd><p>In particular many <span class="SimpleMath">p</span>-groups have very "similar" structure, and <code class="func">StructureDescription</code> can only exhibit a little of it. Changing this would likely make the output not essentially easier to read than a pc presentation.</p>
</dd>
</dl>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">l := AllSmallGroups(12);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(l,StructureDescription);; l;</span>
[ C3 : C4, C12, A4, D12, C6 x C2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List(AllSmallGroups(40),G->StructureDescription(G:short));</span>
[ "5:8", "40", "5:8", "5:Q8", "4xD10", "D40", "2x(5:4)", "(10x2):2",
"20x2", "5xD8", "5xQ8", "2x(5:4)", "2^2xD10", "10x2^2" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List(AllTransitiveGroups(DegreeAction,6),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> G->StructureDescription(G:short));</span>
[ "6", "S3", "D12", "A4", "3xS3", "2xA4", "S4", "S4", "S3xS3",
"(3^2):4", "2xS4", "A5", "(S3xS3):2", "S5", "A6", "S6" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">StructureDescription(PSL(4,2));</span>
"A8"
</pre></div>
<p><a id="X81002AA87DDBC02F" name="X81002AA87DDBC02F"></a></p>
<h4>39.7 <span class="Heading">Cosets</span></h4>
<p><a id="X8412ABD57986B9FC" name="X8412ABD57986B9FC"></a></p>
<h5>39.7-1 RightCoset</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RightCoset</code>( <var class="Arg">U</var>, <var class="Arg">g</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the right coset of <var class="Arg">U</var> with representative <var class="Arg">g</var>, which is the set of all elements of the form <span class="SimpleMath">ug</span> for all <span class="SimpleMath">u ∈ <var class="Arg">U</var></span>. <var class="Arg">g</var> must be an element of a larger group <var class="Arg">G</var> which contains <var class="Arg">U</var>. For element operations such as <code class="keyw">in</code> a right coset behaves like a set of group elements.</p>
<p>Right cosets are external orbits for the action of <var class="Arg">U</var> which acts via <code class="func">OnLeftInverse</code> (<a href="chap41.html#X832DF5327ECA0E44"><span class="RefLink">41.2-3</span></a>). Of course the action of a larger group <var class="Arg">G</var> on right cosets is via <code class="func">OnRight</code> (<a href="chap41.html#X7960924D84B5B18F"><span class="RefLink">41.2-2</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:=Group((1,2,3), (1,2));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">c:=RightCoset(u,(2,3,4));</span>
RightCoset(Group( [ (1,2,3), (1,2) ] ),(2,3,4))
<span class="GAPprompt">gap></span> <span class="GAPinput">ActingDomain(c);</span>
Group([ (1,2,3), (1,2) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">Representative(c);</span>
(2,3,4)
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(c);</span>
6
<span class="GAPprompt">gap></span> <span class="GAPinput">AsList(c);</span>
[ (2,3,4), (1,4,2), (1,3,4,2), (1,3)(2,4), (2,4), (1,4,2,3) ]
</pre></div>
<p><a id="X835F48248571364F" name="X835F48248571364F"></a></p>
<h5>39.7-2 RightCosets</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RightCosets</code>( <var class="Arg">G</var>, <var class="Arg">U</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RightCosetsNC</code>( <var class="Arg">G</var>, <var class="Arg">U</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>computes a duplicate free list of right cosets <var class="Arg">U</var> <span class="SimpleMath">g</span> for <span class="SimpleMath">g ∈</span> <var class="Arg">G</var>. A set of representatives for the elements in this list forms a right transversal of <var class="Arg">U</var> in <var class="Arg">G</var>. (By inverting the representatives one obtains a list of representatives of the left cosets of <var class="Arg">U</var>.) The <code class="code">NC</code> version does not check whether <var class="Arg">U</var> is a subgroup of <var class="Arg">G</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">RightCosets(g,u);</span>
[ RightCoset(Group( [ (1,2,3), (1,2) ] ),()),
RightCoset(Group( [ (1,2,3), (1,2) ] ),(1,3)(2,4)),
RightCoset(Group( [ (1,2,3), (1,2) ] ),(1,4)(2,3)),
RightCoset(Group( [ (1,2,3), (1,2) ] ),(1,2)(3,4)) ]
</pre></div>
<p><a id="X85884F177B5D98AE" name="X85884F177B5D98AE"></a></p>
<h5>39.7-3 CanonicalRightCosetElement</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CanonicalRightCosetElement</code>( <var class="Arg">U</var>, <var class="Arg">g</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns a "canonical" representative of the right coset <var class="Arg">U</var> <var class="Arg">g</var> which is independent of the given representative <var class="Arg">g</var>. This can be used to compare cosets by comparing their canonical representatives.</p>
<p>The representative chosen to be the "canonical" one is representation dependent and only guaranteed to remain the same within one <strong class="pkg">GAP</strong> session.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CanonicalRightCosetElement(u,(2,4,3));</span>
(3,4)
</pre></div>
<p><a id="X7D7625A1861D9DAB" name="X7D7625A1861D9DAB"></a></p>
<h5>39.7-4 IsRightCoset</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsRightCoset</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>The category of right cosets.</p>
<p><strong class="pkg">GAP</strong> does not provide left cosets as a separate data type, but as the left coset <span class="SimpleMath">gU</span> consists of exactly the inverses of the elements of the right coset <span class="SimpleMath">Ug^{-1}</span> calculations with left cosets can be emulated using right cosets by inverting the representatives.</p>
<p><a id="X82F6ABE378B928D1" name="X82F6ABE378B928D1"></a></p>
<h5>39.7-5 CosetDecomposition</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CosetDecomposition</code>( <var class="Arg">G</var>, <var class="Arg">S</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>For a finite group <var class="Arg">G</var> and a subgroup <span class="SimpleMath"><var class="Arg">S</var>le<var class="Arg">G</var></span> this function returns a partition of the elements of <var class="Arg">G</var> according to the (right) cosets of <var class="Arg">S</var>. The result is a list of lists, each sublist corresponding to one coset. The first sublist is the elements list of the subgroup, the other lists are arranged accordingly.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CosetDecomposition(SymmetricGroup(4),SymmetricGroup(3)); </span>
[ [ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ],
[ (1,4), (1,4)(2,3), (1,2,4), (1,2,3,4), (1,3,2,4), (1,3,4) ],
[ (1,4,2), (1,4,2,3), (2,4), (2,3,4), (1,3)(2,4), (1,3,4,2) ],
[ (1,4,3), (1,4,3,2), (1,2,4,3), (1,2)(3,4), (2,4,3), (3,4) ] ]
</pre></div>
<p><a id="X83C723878230D616" name="X83C723878230D616"></a></p>
<h4>39.8 <span class="Heading">Transversals</span></h4>
<p><a id="X85C65D06822E716F" name="X85C65D06822E716F"></a></p>
<h5>39.8-1 RightTransversal</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RightTransversal</code>( <var class="Arg">G</var>, <var class="Arg">U</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>A right transversal <span class="SimpleMath">t</span> is a list of representatives for the set <span class="SimpleMath"><var class="Arg">U</var> ∖ <var class="Arg">G</var></span> of right cosets (consisting of cosets <span class="SimpleMath">Ug</span>) of <span class="SimpleMath">U</span> in <span class="SimpleMath">G</span>.</p>
<p>The object returned by <code class="func">RightTransversal</code> is not a plain list, but an object that behaves like an immutable list of length <span class="SimpleMath">[<var class="Arg">G</var>:<var class="Arg">U</var>]</span>, except if <var class="Arg">U</var> is the trivial subgroup of <var class="Arg">G</var> in which case <code class="func">RightTransversal</code> may return the sorted plain list of coset representatives.</p>
<p>The operation <code class="func">PositionCanonical</code> (<a href="chap21.html#X7B4B10AE81602D4E"><span class="RefLink">21.16-3</span></a>), called for a transversal <span class="SimpleMath">t</span> and an element <span class="SimpleMath">g</span> of <var class="Arg">G</var>, will return the position of the representative in <span class="SimpleMath">t</span> that lies in the same coset of <var class="Arg">U</var> as the element <span class="SimpleMath">g</span> does. (In comparison, <code class="func">Position</code> (<a href="chap21.html#X79975EC6783B4293"><span class="RefLink">21.16-1</span></a>) will return <code class="keyw">fail</code> if the element is not equal to the representative.) Functions that implement group actions such as <code class="func">Action</code> (<a href="chap41.html#X85A8E93D786C3C9C"><span class="RefLink">41.7-2</span></a>) or <code class="func">Permutation</code> (<a href="chap41.html#X7807A33381DCAB26"><span class="RefLink">41.9-1</span></a>) (see Chapter <a href="chap41.html#X87115591851FB7F4"><span class="RefLink">41</span></a>) use <code class="func">PositionCanonical</code> (<a href="chap21.html#X7B4B10AE81602D4E"><span class="RefLink">21.16-3</span></a>), therefore it is possible to "act" on a right transversal to implement the action on the cosets. This is often much more efficient than acting on cosets.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=Group((1,2,3,4),(1,2));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:=Subgroup(g,[(1,2,3),(1,2)]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">rt:=RightTransversal(g,u);</span>
RightTransversal(Group([ (1,2,3,4), (1,2) ]),Group([ (1,2,3), (1,2) ]))
<span class="GAPprompt">gap></span> <span class="GAPinput">Length(rt);</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">Position(rt,(1,2,3));</span>
fail
</pre></div>
<p>Note that the elements of a right transversal are not necessarily "canonical" in the sense of <code class="func">CanonicalRightCosetElement</code> (<a href="chap39.html#X85884F177B5D98AE"><span class="RefLink">39.7-3</span></a>), but we may compute a list of canonical coset representatives by calling that function. (See also <code class="func">PositionCanonical</code> (<a href="chap21.html#X7B4B10AE81602D4E"><span class="RefLink">21.16-3</span></a>).)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(RightTransversal(g,u),i->CanonicalRightCosetElement(u,i));</span>
[ (), (2,3,4), (1,2,3,4), (3,4) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PositionCanonical(rt,(1,2,3));</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">rt[1];</span>
()
</pre></div>
<p><a id="X78B98B257E981046" name="X78B98B257E981046"></a></p>
<h4>39.9 <span class="Heading">Double Cosets</span></h4>
<p><a id="X7E51ED757D17254B" name="X7E51ED757D17254B"></a></p>
<h5>39.9-1 DoubleCoset</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DoubleCoset</code>( <var class="Arg">U</var>, <var class="Arg">g</var>, <var class="Arg">V</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>The groups <var class="Arg">U</var> and <var class="Arg">V</var> must be subgroups of a common supergroup <var class="Arg">G</var> of which <var class="Arg">g</var> is an element. This command constructs the double coset <var class="Arg">U</var> <var class="Arg">g</var> <var class="Arg">V</var> which is the set of all elements of the form <span class="SimpleMath">ugv</span> for any <span class="SimpleMath">u ∈ <var class="Arg">U</var></span>, <span class="SimpleMath">v ∈ <var class="Arg">V</var></span>. For element operations such as <code class="keyw">in</code>, a double coset behaves like a set of group elements. The double coset stores <var class="Arg">U</var> in the attribute <code class="code">LeftActingGroup</code>, <var class="Arg">g</var> as <code class="func">Representative</code> (<a href="chap30.html#X865507568182424E"><span class="RefLink">30.4-7</span></a>), and <var class="Arg">V</var> as <code class="code">RightActingGroup</code>.</p>
<p><a id="X7F53DABD79BA4F72" name="X7F53DABD79BA4F72"></a></p>
<h5>39.9-2 RepresentativesContainedRightCosets</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RepresentativesContainedRightCosets</code>( <var class="Arg">D</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>A double coset <span class="SimpleMath"><var class="Arg">D</var> = U g V</span> can be considered as a union of right cosets <span class="SimpleMath">U h_i</span>. (It is the union of the orbit of <span class="SimpleMath">U g</span> under right multiplication by <span class="SimpleMath">V</span>.) For a double coset <var class="Arg">D</var> this function returns a set of representatives <span class="SimpleMath">h_i</span> such that <var class="Arg">D</var> <span class="SimpleMath">= ⋃_{h_i} U h_i</span>. The representatives returned are canonical for <span class="SimpleMath">U</span> (see <code class="func">CanonicalRightCosetElement</code> (<a href="chap39.html#X85884F177B5D98AE"><span class="RefLink">39.7-3</span></a>)) and form a set.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:=Subgroup(g,[(1,2,3),(1,2)]);;v:=Subgroup(g,[(3,4)]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">c:=DoubleCoset(u,(2,4),v);</span>
DoubleCoset(Group( [ (1,2,3), (1,2) ] ),(2,4),Group( [ (3,4) ] ))
<span class="GAPprompt">gap></span> <span class="GAPinput">(1,2,3) in c;</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">(2,3,4) in c;</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">LeftActingGroup(c);</span>
Group([ (1,2,3), (1,2) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">RightActingGroup(c);</span>
Group([ (3,4) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">RepresentativesContainedRightCosets(c);</span>
[ (2,3,4) ]
</pre></div>
<p><a id="X7A5EFABB86E6D4D5" name="X7A5EFABB86E6D4D5"></a></p>
<h5>39.9-3 DoubleCosets</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DoubleCosets</code>( <var class="Arg">G</var>, <var class="Arg">U</var>, <var class="Arg">V</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DoubleCosetsNC</code>( <var class="Arg">G</var>, <var class="Arg">U</var>, <var class="Arg">V</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>computes a duplicate free list of all double cosets <var class="Arg">U</var> <span class="SimpleMath">g</span> <var class="Arg">V</var> for <span class="SimpleMath">g ∈ <var class="Arg">G</var></span>. The groups <var class="Arg">U</var> and <var class="Arg">V</var> must be subgroups of the group <var class="Arg">G</var>. The <code class="code">NC</code> version does not check whether <var class="Arg">U</var> and <var class="Arg">V</var> are subgroups of <var class="Arg">G</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">dc:=DoubleCosets(g,u,v);</span>
[ DoubleCoset(Group( [ (1,2,3), (1,2) ] ),(),Group( [ (3,4) ] )),
DoubleCoset(Group( [ (1,2,3), (1,2) ] ),(1,3)(2,4),Group(
[ (3,4) ] )), DoubleCoset(Group( [ (1,2,3), (1,2) ] ),(1,4)
(2,3),Group( [ (3,4) ] )) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List(dc,Representative);</span>
[ (), (1,3)(2,4), (1,4)(2,3) ]
</pre></div>
<p><a id="X85ED464F878EF24C" name="X85ED464F878EF24C"></a></p>
<h5>39.9-4 IsDoubleCoset</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsDoubleCoset</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>The category of double cosets.</p>
<p><a id="X7A25B1C886CF8C6A" name="X7A25B1C886CF8C6A"></a></p>
<h5>39.9-5 DoubleCosetRepsAndSizes</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DoubleCosetRepsAndSizes</code>( <var class="Arg">G</var>, <var class="Arg">U</var>, <var class="Arg">V</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns a list of double coset representatives and their sizes, the entries are lists of the form <span class="SimpleMath">[ r, n ]</span> where <span class="SimpleMath">r</span> and <span class="SimpleMath">n</span> are an element of the double coset and the size of the coset, respectively. This operation is faster than <code class="func">DoubleCosetsNC</code> (<a href="chap39.html#X7A5EFABB86E6D4D5"><span class="RefLink">39.9-3</span></a>) because no double coset objects have to be created.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">dc:=DoubleCosetRepsAndSizes(g,u,v);</span>
[ [ (), 12 ], [ (1,3)(2,4), 6 ], [ (1,4)(2,3), 6 ] ]
</pre></div>
<p><a id="X84AE7EE77E5FB30E" name="X84AE7EE77E5FB30E"></a></p>
<h5>39.9-6 InfoCoset</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ InfoCoset</code></td><td class="tdright">( info class )</td></tr></table></div>
<p>The information function for coset and double coset operations is <code class="func">InfoCoset</code>.</p>
<p><a id="X7D474F8F87E4E5D9" name="X7D474F8F87E4E5D9"></a></p>
<h4>39.10 <span class="Heading">Conjugacy Classes</span></h4>
<p><a id="X7B2F207F7F85F5B8" name="X7B2F207F7F85F5B8"></a></p>
<h5>39.10-1 ConjugacyClass</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ConjugacyClass</code>( <var class="Arg">G</var>, <var class="Arg">g</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>creates the conjugacy class in <var class="Arg">G</var> with representative <var class="Arg">g</var>. This class is an external set, so functions such as <code class="func">Representative</code> (<a href="chap30.html#X865507568182424E"><span class="RefLink">30.4-7</span></a>) (which returns <var class="Arg">g</var>), <code class="func">ActingDomain</code> (<a href="chap41.html#X7B9DB15D80CE28B4"><span class="RefLink">41.12-3</span></a>) (which returns <var class="Arg">G</var>), <code class="func">StabilizerOfExternalSet</code> (<a href="chap41.html#X7BAFF02B7D6DF9F2"><span class="RefLink">41.12-10</span></a>) (which returns the centralizer of <var class="Arg">g</var>) and <code class="func">AsList</code> (<a href="chap30.html#X8289FCCC8274C89D"><span class="RefLink">30.3-8</span></a>) work for it.</p>
<p>A conjugacy class is an external orbit (see <code class="func">ExternalOrbit</code> (<a href="chap41.html#X7FB656AE7A066C35"><span class="RefLink">41.12-9</span></a>)) of group elements with the group acting by conjugation on it. Thus element tests or operation representatives can be computed. The attribute <code class="func">Centralizer</code> (<a href="chap35.html#X7DE33AFC823C7873"><span class="RefLink">35.4-4</span></a>) gives the centralizer of the representative (which is the same result as <code class="func">StabilizerOfExternalSet</code> (<a href="chap41.html#X7BAFF02B7D6DF9F2"><span class="RefLink">41.12-10</span></a>)). (This is a slight abuse of notation: This is <em>not</em> the centralizer of the class as a <em>set</em> which would be the standard behaviour of <code class="func">Centralizer</code> (<a href="chap35.html#X7DE33AFC823C7873"><span class="RefLink">35.4-4</span></a>).)</p>
<p><a id="X871B570284BBA685" name="X871B570284BBA685"></a></p>
<h5>39.10-2 ConjugacyClasses</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ConjugacyClasses</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the conjugacy classes of elements of <var class="Arg">G</var> as a list of class objects of <var class="Arg">G</var> (see <code class="func">ConjugacyClass</code> (<a href="chap39.html#X7B2F207F7F85F5B8"><span class="RefLink">39.10-1</span></a>) for details). It is guaranteed that the class of the identity is in the first position, the further arrangement depends on the method chosen (and might be different for equal but not identical groups).</p>
<p>For very small groups (of size up to 500) the classes will be computed by the conjugation action of <var class="Arg">G</var> on itself (see <code class="func">ConjugacyClassesByOrbits</code> (<a href="chap39.html#X852B3634789D770E"><span class="RefLink">39.10-4</span></a>)). This can be deliberately switched off using the "<code class="code">noaction</code>" option shown below.</p>
<p>For solvable groups, the default method to compute the classes is by homomorphic lift (see section <a href="chap45.html#X79DCCF6D80351859"><span class="RefLink">45.17</span></a>).</p>
<p>For other groups the method of <a href="chapBib.html#biBHulpkeClasses">[Hul00]</a> is employed.</p>
<p><code class="func">ConjugacyClasses</code> supports the following options that can be used to modify this strategy:</p>
<dl>
<dt><strong class="Mark"><code class="code">random</code></strong></dt>
<dd><p>The classes are computed by random search. See <code class="func">ConjugacyClassesByRandomSearch</code> (<a href="chap39.html#X7D6ED84C86C2979B"><span class="RefLink">39.10-3</span></a>) below.</p>
</dd>
<dt><strong class="Mark"><code class="code">action</code></strong></dt>
<dd><p>The classes are computed by action of <var class="Arg">G</var> on itself. See <code class="func">ConjugacyClassesByOrbits</code> (<a href="chap39.html#X852B3634789D770E"><span class="RefLink">39.10-4</span></a>) below.</p>
</dd>
<dt><strong class="Mark"><code class="code">noaction</code></strong></dt>
<dd><p>Even for small groups <code class="func">ConjugacyClassesByOrbits</code> (<a href="chap39.html#X852B3634789D770E"><span class="RefLink">39.10-4</span></a>) is not used as a default. This can be useful if the elements of the group use a lot of memory.</p>
</dd>
</dl>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=SymmetricGroup(4);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cl:=ConjugacyClasses(g);</span>
[ ()^G, (1,2)^G, (1,2)(3,4)^G, (1,2,3)^G, (1,2,3,4)^G ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Representative(cl[3]);Centralizer(cl[3]);</span>
(1,2)(3,4)
Group([ (1,2), (1,3)(2,4), (3,4) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(Centralizer(cl[5]));</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(cl[2]);</span>
6
</pre></div>
<p>In general, you will not need to have to influence the method, but simply call <code class="func">ConjugacyClasses</code> –<strong class="pkg">GAP</strong> will try to select a suitable method on its own. The method specifications are provided here mainly for expert use.</p>
<p><a id="X7D6ED84C86C2979B" name="X7D6ED84C86C2979B"></a></p>
<h5>39.10-3 ConjugacyClassesByRandomSearch</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ConjugacyClassesByRandomSearch</code>( <var class="Arg">G</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>computes the classes of the group <var class="Arg">G</var> by random search. This works very efficiently for almost simple groups.</p>
<p>This function is also accessible via the option <code class="code">random</code> to the function <code class="func">ConjugacyClass</code> (<a href="chap39.html#X7B2F207F7F85F5B8"><span class="RefLink">39.10-1</span></a>).</p>
<p><a id="X852B3634789D770E" name="X852B3634789D770E"></a></p>
<h5>39.10-4 ConjugacyClassesByOrbits</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ConjugacyClassesByOrbits</code>( <var class="Arg">G</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>computes the classes of the group <var class="Arg">G</var> as orbits of <var class="Arg">G</var> on its elements. This can be quick but unsurprisingly may also take a lot of memory if <var class="Arg">G</var> becomes larger. All the classes will store their element list and thus a membership test will be quick as well.</p>
<p>This function is also accessible via the option <code class="code">action</code> to the function <code class="func">ConjugacyClass</code> (<a href="chap39.html#X7B2F207F7F85F5B8"><span class="RefLink">39.10-1</span></a>).</p>
<p>Typically, for small groups (roughly of order up to <span class="SimpleMath">10^3</span>) the computation of classes as orbits under the action is fastest; memory restrictions (and the increasing cost of eliminating duplicates) make this less efficient for larger groups.</p>
<p>Calculation by random search has the smallest memory requirement, but in generally performs worse, the more classes are there.</p>
<p>The following example shows the effect of this for a small group with many classes:</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">h:=Group((4,5)(6,7,8),(1,2,3)(5,6,9));;ConjugacyClasses(h:noaction);;time;</span>
110
<span class="GAPprompt">gap></span> <span class="GAPinput">h:=Group((4,5)(6,7,8),(1,2,3)(5,6,9));;ConjugacyClasses(h:random);;time;</span>
300
<span class="GAPprompt">gap></span> <span class="GAPinput">h:=Group((4,5)(6,7,8),(1,2,3)(5,6,9));;ConjugacyClasses(h:action);;time;</span>
30
</pre></div>
<p><a id="X8733F87B7E4C9903" name="X8733F87B7E4C9903"></a></p>
<h5>39.10-5 NrConjugacyClasses</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ NrConjugacyClasses</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the number of conjugacy classes of <var class="Arg">G</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=Group((1,2,3,4),(1,2));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">NrConjugacyClasses(g);</span>
5
</pre></div>
<p><a id="X7BD2A4427B7FE248" name="X7BD2A4427B7FE248"></a></p>
<h5>39.10-6 RationalClass</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RationalClass</code>( <var class="Arg">G</var>, <var class="Arg">g</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>creates the rational class in <var class="Arg">G</var> with representative <var class="Arg">g</var>. A rational class consists of all elements that are conjugate to <var class="Arg">g</var> or to an <span class="SimpleMath">i</span>-th power of <var class="Arg">g</var> where <span class="SimpleMath">i</span> is coprime to the order of <span class="SimpleMath">g</span>. Thus a rational class can be interpreted as a conjugacy class of cyclic subgroups. A rational class is an external set (<code class="func">IsExternalSet</code> (<a href="chap41.html#X8264C3C479FF0A8B"><span class="RefLink">41.12-1</span></a>)) of group elements with the group acting by conjugation on it, but not an external orbit.</p>
<p><a id="X81E9EF0A811072E8" name="X81E9EF0A811072E8"></a></p>
<h5>39.10-7 RationalClasses</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RationalClasses</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a list of the rational classes of the group <var class="Arg">G</var>. (See <code class="func">RationalClass</code> (<a href="chap39.html#X7BD2A4427B7FE248"><span class="RefLink">39.10-6</span></a>).)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">RationalClasses(DerivedSubgroup(g));</span>
[ RationalClass( AlternatingGroup( [ 1 .. 4 ] ), () ),
RationalClass( AlternatingGroup( [ 1 .. 4 ] ), (1,2)(3,4) ),
RationalClass( AlternatingGroup( [ 1 .. 4 ] ), (1,2,3) ) ]
</pre></div>
<p><a id="X877691247DE23386" name="X877691247DE23386"></a></p>
<h5>39.10-8 GaloisGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GaloisGroup</code>( <var class="Arg">ratcl</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>Suppose that <var class="Arg">ratcl</var> is a rational class of a group <span class="SimpleMath">G</span> with representative <span class="SimpleMath">g</span>. The exponents <span class="SimpleMath">i</span> for which <span class="SimpleMath">g^i</span> lies already in the ordinary conjugacy class of <span class="SimpleMath">g</span>, form a subgroup of the <em>prime residue class group</em> <span class="SimpleMath">P_n</span> (see <code class="func">PrimitiveRootMod</code> (<a href="chap15.html#X82440BB9812FF148"><span class="RefLink">15.3-3</span></a>)), the so-called <em>Galois group</em> of the rational class. The prime residue class group <span class="SimpleMath">P_n</span> is obtained in <strong class="pkg">GAP</strong> as <code class="code">Units( Integers mod <var class="Arg">n</var> )</code>, the unit group of a residue class ring. The Galois group of a rational class <var class="Arg">ratcl</var> is stored in the attribute <code class="func">GaloisGroup</code> as a subgroup of this group.</p>
<p><a id="X83DD148D7DA2ABA9" name="X83DD148D7DA2ABA9"></a></p>
<h5>39.10-9 <span class="Heading">IsConjugate</span></h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsConjugate</code>( <var class="Arg">G</var>, <var class="Arg">x</var>, <var class="Arg">y</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsConjugate</code>( <var class="Arg">G</var>, <var class="Arg">U</var>, <var class="Arg">V</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>tests whether the elements <var class="Arg">x</var> and <var class="Arg">y</var> or the subgroups <var class="Arg">U</var> and <var class="Arg">V</var> are conjugate under the action of <var class="Arg">G</var>. (They do not need to be <em>contained in</em> <var class="Arg">G</var>.) This command is only a shortcut to <code class="func">RepresentativeAction</code> (<a href="chap41.html#X857DC7B085EB0539"><span class="RefLink">41.6-1</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsConjugate(g,Group((1,2,3,4),(1,3)),Group((1,3,2,4),(1,2)));</span>
true
</pre></div>
<p><code class="func">RepresentativeAction</code> (<a href="chap41.html#X857DC7B085EB0539"><span class="RefLink">41.6-1</span></a>) can be used to obtain conjugating elements.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">RepresentativeAction(g,(1,2),(3,4));</span>
(1,3)(2,4)
</pre></div>
<p><a id="X81A92F828400FC8A" name="X81A92F828400FC8A"></a></p>
<h5>39.10-10 NthRootsInGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ NthRootsInGroup</code>( <var class="Arg">G</var>, <var class="Arg">e</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Let <var class="Arg">e</var> be an element in the group <var class="Arg">G</var>. This function returns a list of all those elements in <var class="Arg">G</var> whose <var class="Arg">n</var>-th power is <var class="Arg">e</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">NthRootsInGroup(g,(1,2)(3,4),2);</span>
[ (1,3,2,4), (1,4,2,3) ]
</pre></div>
<p><a id="X804F0F037F06E25E" name="X804F0F037F06E25E"></a></p>
<h4>39.11 <span class="Heading">Normal Structure</span></h4>
<p>For the operations <code class="func">Centralizer</code> (<a href="chap35.html#X7DE33AFC823C7873"><span class="RefLink">35.4-4</span></a>) and <code class="func">Centre</code> (<a href="chap35.html#X847ABE6F781C7FE8"><span class="RefLink">35.4-5</span></a>), see Chapter <a href="chap35.html#X873E502F7D21C39C"><span class="RefLink">35</span></a>.</p>
<p><a id="X87B5370C7DFD401D" name="X87B5370C7DFD401D"></a></p>
<h5>39.11-1 <span class="Heading">Normalizer</span></h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Normalizer</code>( <var class="Arg">G</var>, <var class="Arg">U</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Normalizer</code>( <var class="Arg">G</var>, <var class="Arg">g</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>For two groups <var class="Arg">G</var>, <var class="Arg">U</var>, <code class="func">Normalizer</code> computes the normalizer <span class="SimpleMath">N_<var class="Arg">G</var>(<var class="Arg">U</var>)</span>, that is, the stabilizer of <var class="Arg">U</var> under the conjugation action of <var class="Arg">G</var>.</p>
<p>For a group <var class="Arg">G</var> and a group element <var class="Arg">g</var>, <code class="func">Normalizer</code> computes <span class="SimpleMath">N_<var class="Arg">G</var>(⟨ <var class="Arg">g</var> ⟩)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Normalizer(g,Subgroup(g,[(1,2,3)]));</span>
Group([ (1,2,3), (2,3) ])
</pre></div>
<p><a id="X7C4E00297E37AA44" name="X7C4E00297E37AA44"></a></p>
<h5>39.11-2 Core</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Core</code>( <var class="Arg">S</var>, <var class="Arg">U</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>If <var class="Arg">S</var> and <var class="Arg">U</var> are groups of elements in the same family, this operation returns the core of <var class="Arg">U</var> in <var class="Arg">S</var>, that is the intersection of all <var class="Arg">S</var>-conjugates of <var class="Arg">U</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=Group((1,2,3,4),(1,2));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Core(g,Subgroup(g,[(1,2,3,4)]));</span>
Group(())
</pre></div>
<p><a id="X7CF497C77B1E8938" name="X7CF497C77B1E8938"></a></p>
<h5>39.11-3 PCore</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PCore</code>( <var class="Arg">G</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The <em><var class="Arg">p</var>-core</em> of <var class="Arg">G</var> is the largest normal <var class="Arg">p</var>-subgroup of <var class="Arg">G</var>. It is the core of a Sylow <var class="Arg">p</var> subgroup of <var class="Arg">G</var>, see <code class="func">Core</code> (<a href="chap39.html#X7C4E00297E37AA44"><span class="RefLink">39.11-2</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PCore(g,2);</span>
Group([ (1,4)(2,3), (1,2)(3,4) ])
</pre></div>
<p><a id="X7BDEA0A98720D1BB" name="X7BDEA0A98720D1BB"></a></p>
<h5>39.11-4 NormalClosure</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ NormalClosure</code>( <var class="Arg">G</var>, <var class="Arg">U</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>The normal closure of <var class="Arg">U</var> in <var class="Arg">G</var> is the smallest normal subgroup of the closure of <var class="Arg">G</var> and <var class="Arg">U</var> which contains <var class="Arg">U</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">NormalClosure(g,Subgroup(g,[(1,2,3)]));</span>
Group([ (1,2,3), (1,3,4) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">NormalClosure(g,Group((3,4,5)));</span>
Group([ (3,4,5), (1,5,4), (1,2,5) ])
</pre></div>
<p><a id="X7D25E7DC7834A703" name="X7D25E7DC7834A703"></a></p>
<h5>39.11-5 NormalIntersection</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ NormalIntersection</code>( <var class="Arg">G</var>, <var class="Arg">U</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>computes the intersection of <var class="Arg">G</var> and <var class="Arg">U</var>, assuming that <var class="Arg">G</var> is normalized by <var class="Arg">U</var>. This works faster than <code class="code">Intersection</code>, but will not produce the intersection if <var class="Arg">G</var> is not normalized by <var class="Arg">U</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">NormalIntersection(Group((1,2)(3,4),(1,3)(2,4)),Group((1,2,3,4)));</span>
Group([ (1,3)(2,4) ])
</pre></div>
<p><a id="X811B8A4683DDE1F9" name="X811B8A4683DDE1F9"></a></p>
<h5>39.11-6 ComplementClassesRepresentatives</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ComplementClassesRepresentatives</code>( <var class="Arg">G</var>, <var class="Arg">N</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Let <var class="Arg">N</var> be a normal subgroup of <var class="Arg">G</var>. This command returns a set of representatives for the conjugacy classes of complements of <var class="Arg">N</var> in <var class="Arg">G</var>. Complements are subgroups of <var class="Arg">G</var> which intersect trivially with <var class="Arg">N</var> and together with <var class="Arg">N</var> generate <var class="Arg">G</var>.</p>
<p>At the moment only methods for a solvable <var class="Arg">N</var> are available.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ComplementClassesRepresentatives(g,Group((1,2)(3,4),(1,3)(2,4)));</span>
[ Group([ (3,4), (2,4,3) ]) ]
</pre></div>
<p><a id="X8581F4E77B11C610" name="X8581F4E77B11C610"></a></p>
<h5>39.11-7 InfoComplement</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ InfoComplement</code></td><td class="tdright">( info class )</td></tr></table></div>
<p>Info class for the complement routines.</p>
<p><a id="X7C39EE3E836D6BC6" name="X7C39EE3E836D6BC6"></a></p>
<h4>39.12 <span class="Heading">Specific and Parametrized Subgroups</span></h4>
<p>The centre of a group (the subgroup of those elements that commute with all other elements of the group) can be computed by the operation <code class="func">Centre</code> (<a href="chap35.html#X847ABE6F781C7FE8"><span class="RefLink">35.4-5</span></a>).</p>
<p><a id="X829759F67D4247CA" name="X829759F67D4247CA"></a></p>
<h5>39.12-1 TrivialSubgroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ TrivialSubgroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">TrivialSubgroup(g);</span>
Group(())
</pre></div>
<p><a id="X7A9A3D5578CE33A0" name="X7A9A3D5578CE33A0"></a></p>
<h5>39.12-2 CommutatorSubgroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CommutatorSubgroup</code>( <var class="Arg">G</var>, <var class="Arg">H</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>If <var class="Arg">G</var> and <var class="Arg">H</var> are two groups of elements in the same family, this operation returns the group generated by all commutators <span class="SimpleMath">[ g, h ] = g^{-1} h^{-1} g h</span> (see <code class="func">Comm</code> (<a href="chap31.html#X80761843831B468E"><span class="RefLink">31.12-3</span></a>)) of elements <span class="SimpleMath">g ∈ <var class="Arg">G</var></span> and <span class="SimpleMath">h ∈ <var class="Arg">H</var></span>, that is the group <span class="SimpleMath">⟨ [ g, h ] ∣ g ∈ <var class="Arg">G</var>, h ∈ <var class="Arg">H</var> ⟩</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CommutatorSubgroup(Group((1,2,3),(1,2)),Group((2,3,4),(3,4)));</span>
Group([ (1,4)(2,3), (1,3,4) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(last);</span>
12
</pre></div>
<p><a id="X7CC17CF179ED7EF2" name="X7CC17CF179ED7EF2"></a></p>
<h5>39.12-3 DerivedSubgroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DerivedSubgroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>The derived subgroup <span class="SimpleMath"><var class="Arg">G</var>'</span> of <var class="Arg">G</var> is the subgroup generated by all commutators of pairs of elements of <var class="Arg">G</var>. It is normal in <var class="Arg">G</var> and the factor group <span class="SimpleMath"><var class="Arg">G</var>/<var class="Arg">G</var>'</span> is the largest abelian factor group of <var class="Arg">G</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=Group((1,2,3,4),(1,2));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">DerivedSubgroup(g);</span>
Group([ (1,3,2), (1,4,3) ])
</pre></div>
<p><a id="X7B10B58F83DDE56E" name="X7B10B58F83DDE56E"></a></p>
<h5>39.12-4 CommutatorLength</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CommutatorLength</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the minimal number <span class="SimpleMath">n</span> such that each element in the derived subgroup (see <code class="func">DerivedSubgroup</code> (<a href="chap39.html#X7CC17CF179ED7EF2"><span class="RefLink">39.12-3</span></a>)) of the group <var class="Arg">G</var> can be written as a product of (at most) <span class="SimpleMath">n</span> commutators of elements in <var class="Arg">G</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CommutatorLength( g );</span>
1
</pre></div>
<p><a id="X780552B57C30DD8F" name="X780552B57C30DD8F"></a></p>
<h5>39.12-5 FittingSubgroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FittingSubgroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>The Fitting subgroup of a group <var class="Arg">G</var> is its largest nilpotent normal subgroup.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">FittingSubgroup(g);</span>
Group([ (1,2)(3,4), (1,4)(2,3) ])
</pre></div>
<p><a id="X788C856C82243274" name="X788C856C82243274"></a></p>
<h5>39.12-6 FrattiniSubgroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FrattiniSubgroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>The Frattini subgroup of a group <var class="Arg">G</var> is the intersection of all maximal subgroups of <var class="Arg">G</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">FrattiniSubgroup(g);</span>
Group(())
</pre></div>
<p><a id="X81D86CCE84193E4F" name="X81D86CCE84193E4F"></a></p>
<h5>39.12-7 PrefrattiniSubgroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PrefrattiniSubgroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a Prefrattini subgroup of the finite solvable group <var class="Arg">G</var>.</p>
<p>A factor <span class="SimpleMath">M/N</span> of <var class="Arg">G</var> is called a Frattini factor if <span class="SimpleMath">M/N</span> is contained in the Frattini subgroup of <span class="SimpleMath"><var class="Arg">G</var>/N</span>. A subgroup <span class="SimpleMath">P</span> is a Prefrattini subgroup of <var class="Arg">G</var> if <span class="SimpleMath">P</span> covers each Frattini chief factor of <var class="Arg">G</var>, and if for each maximal subgroup of <var class="Arg">G</var> there exists a conjugate maximal subgroup, which contains <span class="SimpleMath">P</span>. In a finite solvable group <var class="Arg">G</var> the Prefrattini subgroups form a characteristic conjugacy class of subgroups and the intersection of all these subgroups is the Frattini subgroup of <var class="Arg">G</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G := SmallGroup( 60, 7 );</span>
<pc group of size 60 with 4 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">P := PrefrattiniSubgroup(G);</span>
Group([ f2 ])
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(P);</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">IsNilpotent(P);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">Core(G,P);</span>
Group([ ])
<span class="GAPprompt">gap></span> <span class="GAPinput">FrattiniSubgroup(G);</span>
Group([ ])
</pre></div>
<p><a id="X83D5C8B8865C85F1" name="X83D5C8B8865C85F1"></a></p>
<h5>39.12-8 PerfectResiduum</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PerfectResiduum</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>is the smallest normal subgroup of <var class="Arg">G</var> that has a solvable factor group.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PerfectResiduum(Group((1,2,3,4,5),(1,2)));</span>
Group([ (1,3,2), (2,4,3), (1,3)(4,5) ])
</pre></div>
<p><a id="X787F5F14844FAACE" name="X787F5F14844FAACE"></a></p>
<h5>39.12-9 RadicalGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RadicalGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>is the radical of <var class="Arg">G</var>, i.e., the largest solvable normal subgroup of <var class="Arg">G</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">RadicalGroup(SL(2,5));</span>
<group of 2x2 matrices of size 2 over GF(5)>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(last);</span>
2
</pre></div>
<p><a id="X81F647FA83D8854F" name="X81F647FA83D8854F"></a></p>
<h5>39.12-10 Socle</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Socle</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>The socle of the group <var class="Arg">G</var> is the subgroup generated by all minimal normal subgroups.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Socle(g);</span>
Group([ (1,4)(2,3), (1,2)(3,4) ])
</pre></div>
<p><a id="X8440C61080CDAA14" name="X8440C61080CDAA14"></a></p>
<h5>39.12-11 SupersolvableResiduum</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SupersolvableResiduum</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>is the supersolvable residuum of the group <var class="Arg">G</var>, that is, its smallest normal subgroup <span class="SimpleMath">N</span> such that the factor group <span class="SimpleMath"><var class="Arg">G</var> / N</span> is supersolvable.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SupersolvableResiduum(g);</span>
Group([ (1,3)(2,4), (1,4)(2,3) ])
</pre></div>
<p><a id="X796DA805853FAC90" name="X796DA805853FAC90"></a></p>
<h5>39.12-12 PRump</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PRump</code>( <var class="Arg">G</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>For a prime <span class="SimpleMath">p</span>, the <em><var class="Arg">p</var>-rump</em> of a group <var class="Arg">G</var> is the subgroup <span class="SimpleMath"><var class="Arg">G</var>' <var class="Arg">G</var>^<var class="Arg">p</var></span>.</p>
<p><em>@example missing!@</em></p>
<p><a id="X7FF0BBDD80E8F6BF" name="X7FF0BBDD80E8F6BF"></a></p>
<h4>39.13 <span class="Heading">Sylow Subgroups and Hall Subgroups</span></h4>
<p>With respect to the following <strong class="pkg">GAP</strong> functions, please note that by theorems of P. Hall, a group <span class="SimpleMath">G</span> is solvable if and only if one of the following conditions holds.</p>
<ol>
<li><p>For each prime <span class="SimpleMath">p</span> dividing the order of <span class="SimpleMath">G</span>, there exists a <span class="SimpleMath">p</span>-complement (see <code class="func">SylowComplement</code> (<a href="chap39.html#X8605F3FE7A3B8E12"><span class="RefLink">39.13-2</span></a>)).</p>
</li>
<li><p>For each set <span class="SimpleMath">P</span> of primes dividing the order of <span class="SimpleMath">G</span>, there exists a <span class="SimpleMath">P</span>-Hall subgroup (see <code class="func">HallSubgroup</code> (<a href="chap39.html#X7EDBA19E828CD584"><span class="RefLink">39.13-3</span></a>)).</p>
</li>
<li><p><span class="SimpleMath">G</span> has a Sylow system (see <code class="func">SylowSystem</code> (<a href="chap39.html#X832E8E6B8347B13F"><span class="RefLink">39.13-4</span></a>)).</p>
</li>
<li><p><span class="SimpleMath">G</span> has a complement system (see <code class="func">ComplementSystem</code> (<a href="chap39.html#X87A245E180D27147"><span class="RefLink">39.13-5</span></a>)).</p>
</li>
</ol>
<p><a id="X7AA351308787544C" name="X7AA351308787544C"></a></p>
<h5>39.13-1 SylowSubgroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SylowSubgroup</code>( <var class="Arg">G</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a Sylow <var class="Arg">p</var> subgroup of the finite group <var class="Arg">G</var>. This is a <var class="Arg">p</var>-subgroup of <var class="Arg">G</var> whose index in <var class="Arg">G</var> is coprime to <var class="Arg">p</var>. <code class="func">SylowSubgroup</code> computes Sylow subgroups via the operation <code class="code">SylowSubgroupOp</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=SymmetricGroup(4);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SylowSubgroup(g,2);</span>
Group([ (1,2), (3,4), (1,3)(2,4) ])
</pre></div>
<p><a id="X8605F3FE7A3B8E12" name="X8605F3FE7A3B8E12"></a></p>
<h5>39.13-2 SylowComplement</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SylowComplement</code>( <var class="Arg">G</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a Sylow <var class="Arg">p</var>-complement of the finite group <var class="Arg">G</var>. This is a subgroup <span class="SimpleMath">U</span> of order coprime to <var class="Arg">p</var> such that the index <span class="SimpleMath">[<var class="Arg">G</var>:U]</span> is a <var class="Arg">p</var>-power.</p>
<p>At the moment methods exist only if <var class="Arg">G</var> is solvable and <strong class="pkg">GAP</strong> will issue an error if <var class="Arg">G</var> is not solvable.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SylowComplement(g,3);</span>
Group([ (1,2), (3,4), (1,3)(2,4) ])
</pre></div>
<p><a id="X7EDBA19E828CD584" name="X7EDBA19E828CD584"></a></p>
<h5>39.13-3 HallSubgroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ HallSubgroup</code>( <var class="Arg">G</var>, <var class="Arg">P</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>computes a <var class="Arg">P</var>-Hall subgroup for a set <var class="Arg">P</var> of primes. This is a subgroup the order of which is only divisible by primes in <var class="Arg">P</var> and whose index is coprime to all primes in <var class="Arg">P</var>. Such a subgroup is unique up to conjugacy if <var class="Arg">G</var> is solvable. The function computes Hall subgroups via the operation <code class="code">HallSubgroupOp</code>.</p>
<p>If <var class="Arg">G</var> is solvable this function always returns a subgroup. If <var class="Arg">G</var> is not solvable this function might return a subgroup (if it is unique up to conjugacy), a list of subgroups (which are representatives of the conjugacy classes in case there are several such classes) or <code class="keyw">fail</code> if no such subgroup exists.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">h:=SmallGroup(60,10);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">u:=HallSubgroup(h,[2,3]);</span>
Group([ f1, f2, f3 ])
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(u);</span>
12
<span class="GAPprompt">gap></span> <span class="GAPinput">h:=PSL(3,5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">HallSubgroup(h,[2,3]); </span>
[ <permutation group of size 96 with 6 generators>,
<permutation group of size 96 with 6 generators> ]
<span class="GAPprompt">gap></span> <span class="GAPinput">HallSubgroup(h,[3,31]);</span>
Group(
[ (2,18,11)(3,20,7)(4,19,9)(5,21,8)(6,17,10)(12,29,22)(13,27,26)(14,
31,23)(15,30,24)(16,28,25), (1,6,18,3,16,10,9,28,8,21,2,30,26,20,
5,7,12,23,22,11,25,13,14,31,15,17,4,24,29,27,19) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">HallSubgroup(h,[5,31]);</span>
fail
</pre></div>
<p><a id="X832E8E6B8347B13F" name="X832E8E6B8347B13F"></a></p>
<h5>39.13-4 SylowSystem</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SylowSystem</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>A Sylow system of a group <var class="Arg">G</var> is a set of Sylow subgroups of <var class="Arg">G</var> such that every pair of subgroups from this set commutes as subgroups. Sylow systems exist only for solvable groups. The operation returns <code class="keyw">fail</code> if the group <var class="Arg">G</var> is not solvable.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">h:=SmallGroup(60,10);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SylowSystem(h);</span>
[ Group([ f1, f2 ]), Group([ f3 ]), Group([ f4 ]) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List(last,Size);</span>
[ 4, 3, 5 ]
</pre></div>
<p><a id="X87A245E180D27147" name="X87A245E180D27147"></a></p>
<h5>39.13-5 ComplementSystem</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ComplementSystem</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>A complement system of a group <var class="Arg">G</var> is a set of Hall <span class="SimpleMath">p'</span>-subgroups of <var class="Arg">G</var>, where <span class="SimpleMath">p'</span> runs through the subsets of prime factors of <span class="SimpleMath">|<var class="Arg">G</var>|</span> that omit exactly one prime. Every pair of subgroups from this set commutes as subgroups. Complement systems exist only for solvable groups, therefore <code class="func">ComplementSystem</code> returns <code class="keyw">fail</code> if the group <var class="Arg">G</var> is not solvable.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ComplementSystem(h);</span>
[ Group([ f3, f4 ]), Group([ f1, f2, f4 ]), Group([ f1, f2, f3 ]) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List(last,Size);</span>
[ 15, 20, 12 ]
</pre></div>
<p><a id="X82FE5DFD84F8A3C6" name="X82FE5DFD84F8A3C6"></a></p>
<h5>39.13-6 HallSystem</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ HallSystem</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a list containing one Hall <span class="SimpleMath">P</span>-subgroup for each set <span class="SimpleMath">P</span> of prime divisors of the order of <var class="Arg">G</var>. Hall systems exist only for solvable groups. The operation returns <code class="keyw">fail</code> if the group <var class="Arg">G</var> is not solvable.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">HallSystem(h);</span>
[ Group([ ]), Group([ f1, f2 ]), Group([ f1, f2, f3 ]),
Group([ f1, f2, f3, f4 ]), Group([ f1, f2, f4 ]), Group([ f3 ]),
Group([ f3, f4 ]), Group([ f4 ]) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List(last,Size);</span>
[ 1, 4, 12, 60, 20, 3, 15, 5 ]
</pre></div>
<p><a id="X87AF37E980382499" name="X87AF37E980382499"></a></p>
<h4>39.14 <span class="Heading">Subgroups characterized by prime powers</span></h4>
<p><a id="X7F069ACC83DB3374" name="X7F069ACC83DB3374"></a></p>
<h5>39.14-1 Omega</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Omega</code>( <var class="Arg">G</var>, <var class="Arg">p</var>[, <var class="Arg">n</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>For a <var class="Arg">p</var>-group <var class="Arg">G</var>, one defines <span class="SimpleMath">Ω_<var class="Arg">n</var>(<var class="Arg">G</var>) = { g ∈ <var class="Arg">G</var> ∣ g^{<var class="Arg">p</var>^<var class="Arg">n</var>} = 1 }</span>. The default value for <var class="Arg">n</var> is <code class="code">1</code>.</p>
<p><em>@At the moment methods exist only for abelian <var class="Arg">G</var> and <var class="Arg">n</var>=1.@</em></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">h:=SmallGroup(16,10);</span>
<pc group of size 16 with 4 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">Omega(h,2);</span>
Group([ f2, f3, f4 ])
</pre></div>
<p><a id="X83DB33747F069ACC" name="X83DB33747F069ACC"></a></p>
<h5>39.14-2 Agemo</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Agemo</code>( <var class="Arg">G</var>, <var class="Arg">p</var>[, <var class="Arg">n</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>For a <var class="Arg">p</var>-group <var class="Arg">G</var>, one defines <span class="SimpleMath">℧_<var class="Arg">n</var>(G) = ⟨ g^{<var class="Arg">p</var>^<var class="Arg">n</var>} ∣ g ∈ <var class="Arg">G</var> ⟩</span>. The default value for <var class="Arg">n</var> is <code class="code">1</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Agemo(h,2);Agemo(h,2,2);</span>
Group([ f4 ])
Group([ ])
</pre></div>
<p><a id="X7B75879B8085120A" name="X7B75879B8085120A"></a></p>
<h4>39.15 <span class="Heading">Group Properties</span></h4>
<p>Some properties of groups can be defined not only for groups but also for other structures. For example, nilpotency and solvability make sense also for algebras. Note that these names refer to different definitions for groups and algebras, contrary to the situation with finiteness or commutativity. In such cases, the name of the function for groups got a suffix <code class="code">Group</code> to distinguish different meanings for different structures.</p>
<p>Some functions, such as <code class="func">IsPSolvable</code> (<a href="chap39.html#X81130F9A7CFCF6BF"><span class="RefLink">39.15-23</span></a>) and <code class="func">IsPNilpotent</code> (<a href="chap39.html#X87415A8485FCF510"><span class="RefLink">39.15-24</span></a>), although they are mathematical properties, are not properties in the sense of <strong class="pkg">GAP</strong> (see <a href="chap13.html#X7C701DBF7BAE649A"><span class="RefLink">13.5</span></a> and <a href="chap13.html#X871597447BB998A1"><span class="RefLink">13.7</span></a>), as they depend on a parameter.</p>
<p><a id="X7DA27D338374FD28" name="X7DA27D338374FD28"></a></p>
<h5>39.15-1 IsCyclic</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsCyclic</code>( <var class="Arg">G</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A group is <em>cyclic</em> if it can be generated by one element. For a cyclic group, one can compute a generating set consisting of only one element using <code class="func">MinimalGeneratingSet</code> (<a href="chap39.html#X81D15723804771E2"><span class="RefLink">39.22-3</span></a>).</p>
<p><a id="X813C952F80E775D4" name="X813C952F80E775D4"></a></p>
<h5>39.15-2 IsElementaryAbelian</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsElementaryAbelian</code>( <var class="Arg">G</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A group <var class="Arg">G</var> is elementary abelian if it is commutative and if there is a prime <span class="SimpleMath">p</span> such that the order of each element in <var class="Arg">G</var> divides <span class="SimpleMath">p</span>.</p>
<p><a id="X87D062608719F2CD" name="X87D062608719F2CD"></a></p>
<h5>39.15-3 IsNilpotentGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsNilpotentGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A group is <em>nilpotent</em> if the lower central series (see <code class="func">LowerCentralSeriesOfGroup</code> (<a href="chap39.html#X879D55A67DB42676"><span class="RefLink">39.17-11</span></a>) for a definition) reaches the trivial subgroup in a finite number of steps.</p>
<p><a id="X7E3056237C6A5D43" name="X7E3056237C6A5D43"></a></p>
<h5>39.15-4 NilpotencyClassOfGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ NilpotencyClassOfGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>The nilpotency class of a nilpotent group <var class="Arg">G</var> is the number of steps in the lower central series of <var class="Arg">G</var> (see <code class="func">LowerCentralSeriesOfGroup</code> (<a href="chap39.html#X879D55A67DB42676"><span class="RefLink">39.17-11</span></a>));</p>
<p>If <var class="Arg">G</var> is not nilpotent an error is issued.</p>
<p><a id="X8755147280C84DBB" name="X8755147280C84DBB"></a></p>
<h5>39.15-5 IsPerfectGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsPerfectGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A group is <em>perfect</em> if it equals its derived subgroup (see <code class="func">DerivedSubgroup</code> (<a href="chap39.html#X7CC17CF179ED7EF2"><span class="RefLink">39.12-3</span></a>)).</p>
<p><a id="X809C78D5877D31DF" name="X809C78D5877D31DF"></a></p>
<h5>39.15-6 IsSolvableGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsSolvableGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A group is <em>solvable</em> if the derived series (see <code class="func">DerivedSeriesOfGroup</code> (<a href="chap39.html#X7A879948834BD889"><span class="RefLink">39.17-7</span></a>) for a definition) reaches the trivial subgroup in a finite number of steps.</p>
<p>For finite groups this is the same as being polycyclic (see <code class="func">IsPolycyclicGroup</code> (<a href="chap39.html#X7D7456077D3D1B86"><span class="RefLink">39.15-7</span></a>)), and each polycyclic group is solvable, but there are infinite solvable groups that are not polycyclic.</p>
<p><a id="X7D7456077D3D1B86" name="X7D7456077D3D1B86"></a></p>
<h5>39.15-7 IsPolycyclicGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsPolycyclicGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A group is polycyclic if it has a subnormal series with cyclic factors. For finite groups this is the same as if the group is solvable (see <code class="func">IsSolvableGroup</code> (<a href="chap39.html#X809C78D5877D31DF"><span class="RefLink">39.15-6</span></a>)).</p>
<p><a id="X7AADF2E88501B9FF" name="X7AADF2E88501B9FF"></a></p>
<h5>39.15-8 IsSupersolvableGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsSupersolvableGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A finite group is <em>supersolvable</em> if it has a normal series with cyclic factors.</p>
<p><a id="X83977EB97A8E2290" name="X83977EB97A8E2290"></a></p>
<h5>39.15-9 IsMonomialGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsMonomialGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A finite group is <em>monomial</em> if every irreducible complex character is induced from a linear character of a subgroup.</p>
<p><a id="X7A6685D7819AEC32" name="X7A6685D7819AEC32"></a></p>
<h5>39.15-10 IsSimpleGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsSimpleGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A group is <em>simple</em> if it is nontrivial and has no nontrivial normal subgroups.</p>
<p><a id="X78CC9764803601E7" name="X78CC9764803601E7"></a></p>
<h5>39.15-11 IsAlmostSimpleGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsAlmostSimpleGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A group <var class="Arg">G</var> is <em>almost simple</em> if a nonabelian simple group <span class="SimpleMath">S</span> exists such that <var class="Arg">G</var> is isomorphic to a subgroup of the automorphism group of <span class="SimpleMath">S</span> that contains all inner automorphisms of <span class="SimpleMath">S</span>.</p>
<p>Equivalently, <var class="Arg">G</var> is almost simple if and only if it has a unique minimal normal subgroup <span class="SimpleMath">N</span> and if <span class="SimpleMath">N</span> is a nonabelian simple group.</p>
<p>Note that an almost simple group is <em>not</em> defined as an extension of a simple group by outer automorphisms, since we want to exclude extensions of groups of prime order. In particular, a <em>simple</em> group is <em>almost simple</em> if and only if it is nonabelian.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsAlmostSimpleGroup( AlternatingGroup( 5 ) );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">IsAlmostSimpleGroup( SymmetricGroup( 5 ) );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">IsAlmostSimpleGroup( SymmetricGroup( 3 ) );</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">IsAlmostSimpleGroup( SL( 2, 5 ) ); </span>
false
</pre></div>
<p><a id="X7C6AA6897C4409AC" name="X7C6AA6897C4409AC"></a></p>
<h5>39.15-12 <span class="Heading">IsomorphismTypeInfoFiniteSimpleGroup</span></h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsomorphismTypeInfoFiniteSimpleGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsomorphismTypeInfoFiniteSimpleGroup</code>( <var class="Arg">n</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>For a finite simple group <var class="Arg">G</var>, <code class="func">IsomorphismTypeInfoFiniteSimpleGroup</code> returns a record with the components <code class="code">series</code>, <code class="code">name</code> and possibly <code class="code">parameter</code>, describing the isomorphism type of <var class="Arg">G</var>. The component <code class="code">name</code> is a string that gives name(s) for <var class="Arg">G</var>, and <code class="code">series</code> is a string that describes the following series.</p>
<p>(If different characterizations of <var class="Arg">G</var> are possible only one is given by <code class="code">series</code> and <code class="code">parameter</code>, while <code class="code">name</code> may give several names.)</p>
<dl>
<dt><strong class="Mark"><code class="code">"A"</code></strong></dt>
<dd><p>Alternating groups, <code class="code">parameter</code> gives the natural degree.</p>
</dd>
<dt><strong class="Mark"><code class="code">"L"</code></strong></dt>
<dd><p>Linear groups (Chevalley type <span class="SimpleMath">A</span>), <code class="code">parameter</code> is a list <span class="SimpleMath">[ n, q ]</span> that indicates <span class="SimpleMath">L(n,q)</span>.</p>
</dd>
<dt><strong class="Mark"><code class="code">"2A"</code></strong></dt>
<dd><p>Twisted Chevalley type <span class="SimpleMath">^2A</span>, <code class="code">parameter</code> is a list <span class="SimpleMath">[ n, q ]</span> that indicates <span class="SimpleMath">^2A(n,q)</span>.</p>
</dd>
<dt><strong class="Mark"><code class="code">"B"</code></strong></dt>
<dd><p>Chevalley type <span class="SimpleMath">B</span>, <code class="code">parameter</code> is a list <span class="SimpleMath">[n, q ]</span> that indicates <span class="SimpleMath">B(n,q)</span>.</p>
</dd>
<dt><strong class="Mark"><code class="code">"2B"</code></strong></dt>
<dd><p>Twisted Chevalley type <span class="SimpleMath">^2B</span>, <code class="code">parameter</code> is a value <span class="SimpleMath">q</span> that indicates <span class="SimpleMath">^2B(2,q)</span>.</p>
</dd>
<dt><strong class="Mark"><code class="code">"C"</code></strong></dt>
<dd><p>Chevalley type <span class="SimpleMath">C</span>, <code class="code">parameter</code> is a list <span class="SimpleMath">[ n, q ]</span> that indicates <span class="SimpleMath">C(n,q)</span>.</p>
</dd>
<dt><strong class="Mark"><code class="code">"D"</code></strong></dt>
<dd><p>Chevalley type <span class="SimpleMath">D</span>, <code class="code">parameter</code> is a list <span class="SimpleMath">[ n, q ]</span> that indicates <span class="SimpleMath">D(n,q)</span>.</p>
</dd>
<dt><strong class="Mark"><code class="code">"2D"</code></strong></dt>
<dd><p>Twisted Chevalley type <span class="SimpleMath">^2D</span>, <code class="code">parameter</code> is a list <span class="SimpleMath">[ n, q ]</span> that indicates <span class="SimpleMath">^2D(n,q)</span>.</p>
</dd>
<dt><strong class="Mark"><code class="code">"3D"</code></strong></dt>
<dd><p>Twisted Chevalley type <span class="SimpleMath">^3D</span>, <code class="code">parameter</code> is a value <span class="SimpleMath">q</span> that indicates <span class="SimpleMath">^3D(4,q)</span>.</p>
</dd>
<dt><strong class="Mark"><code class="code">"E"</code></strong></dt>
<dd><p>Exceptional Chevalley type <span class="SimpleMath">E</span>, <code class="code">parameter</code> is a list <span class="SimpleMath">[ n, q ]</span> that indicates <span class="SimpleMath">E_n(q)</span>. The value of <var class="Arg">n</var> is 6, 7, or 8.</p>
</dd>
<dt><strong class="Mark"><code class="code">"2E"</code></strong></dt>
<dd><p>Twisted exceptional Chevalley type <span class="SimpleMath">E_6</span>, <code class="code">parameter</code> is a value <span class="SimpleMath">q</span> that indicates <span class="SimpleMath">^2E_6(q)</span>.</p>
</dd>
<dt><strong class="Mark"><code class="code">"F"</code></strong></dt>
<dd><p>Exceptional Chevalley type <span class="SimpleMath">F</span>, <code class="code">parameter</code> is a value <span class="SimpleMath">q</span> that indicates <span class="SimpleMath">F(4,q)</span>.</p>
</dd>
<dt><strong class="Mark"><code class="code">"2F"</code></strong></dt>
<dd><p>Twisted exceptional Chevalley type <span class="SimpleMath">^2F</span> (Ree groups), <code class="code">parameter</code> is a value <span class="SimpleMath">q</span> that indicates <span class="SimpleMath">^2F(4,q)</span>.</p>
</dd>
<dt><strong class="Mark"><code class="code">"G"</code></strong></dt>
<dd><p>Exceptional Chevalley type <span class="SimpleMath">G</span>, <code class="code">parameter</code> is a value <span class="SimpleMath">q</span> that indicates <span class="SimpleMath">G(2,q)</span>.</p>
</dd>
<dt><strong class="Mark"><code class="code">"2G"</code></strong></dt>
<dd><p>Twisted exceptional Chevalley type <span class="SimpleMath">^2G</span> (Ree groups), <code class="code">parameter</code> is a value <span class="SimpleMath">q</span> that indicates <span class="SimpleMath">^2G(2,q)</span>.</p>
</dd>
<dt><strong class="Mark"><code class="code">"Spor"</code></strong></dt>
<dd><p>Sporadic simple groups, <code class="code">name</code> gives the name.</p>
</dd>
<dt><strong class="Mark"><code class="code">"Z"</code></strong></dt>
<dd><p>Cyclic groups of prime size, <code class="code">parameter</code> gives the size.</p>
</dd>
</dl>
<p>An equal sign in the name denotes different naming schemes for the same group, a tilde sign abstract isomorphisms between groups constructed in a different way.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsomorphismTypeInfoFiniteSimpleGroup(</span>
<span class="GAPprompt">></span> <span class="GAPinput"> Group((4,5)(6,7),(1,2,4)(3,5,6)));</span>
rec(
name := "A(1,7) = L(2,7) ~ B(1,7) = O(3,7) ~ C(1,7) = S(2,7) ~ 2A(1,\
7) = U(2,7) ~ A(2,2) = L(3,2)", parameter := [ 2, 7 ], series := "L" )
</pre></div>
<p>For a positive integer <var class="Arg">n</var>, <code class="func">IsomorphismTypeInfoFiniteSimpleGroup</code> returns <code class="keyw">fail</code> if <var class="Arg">n</var> is not the order of a finite simple group, and a record as described for the case of a group <var class="Arg">G</var> otherwise. If more than one simple group of order <var class="Arg">n</var> exists then the result record contains only the <code class="code">name</code> component, a string that lists the two possible isomorphism types of simple groups of this order.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsomorphismTypeInfoFiniteSimpleGroup( 5 ); </span>
rec( name := "Z(5)", parameter := 5, series := "Z" )
<span class="GAPprompt">gap></span> <span class="GAPinput">IsomorphismTypeInfoFiniteSimpleGroup( 6 );</span>
fail
<span class="GAPprompt">gap></span> <span class="GAPinput">IsomorphismTypeInfoFiniteSimpleGroup(Size(SymplecticGroup(6,3))/2);</span>
rec(
name := "cannot decide from size alone between B(3,3) = O(7,3) and C\
(3,3) = S(6,3)", parameter := [ 3, 3 ] )
</pre></div>
<p><a id="X8492B05B822AC58C" name="X8492B05B822AC58C"></a></p>
<h5>39.15-13 SimpleGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SimpleGroup</code>( <var class="Arg">id</var>[, <var class="Arg">param</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function will construct <strong class="button">an</strong> instance of the specified simple group. Groups are specified via their name in ATLAS style notation, with parameters added if necessary. The intelligence applied to parsing the name is limited, and at the moment no proper extensions can be constructed. For groups who do not have a permutation representation of small degree the ATLASREP package might need to be installed to construct theses groups.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=SimpleGroup("M(23)");</span>
M23
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(g);</span>
10200960
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=SimpleGroup("PSL",3,5);</span>
PSL(3,5)
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(g);</span>
372000
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=SimpleGroup("PSp6",2); </span>
PSp(6,2)
</pre></div>
<p><a id="X839CDD8C7AE39FD6" name="X839CDD8C7AE39FD6"></a></p>
<h5>39.15-14 SimpleGroupsIterator</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SimpleGroupsIterator</code>( [<var class="Arg">start</var>[, <var class="Arg">end</var>]] )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function returns an iterator that will run over all simple groups, starting at order <var class="Arg">start</var> if specified, up to order <span class="SimpleMath">10^18</span> (or -- if specified -- order <var class="Arg">end</var>). If the option <var class="Arg">NOPSL2</var> is given, groups of type <span class="SimpleMath">PSL_2(q)</span> are omitted.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">it:=SimpleGroupsIterator(20000);</span>
<iterator>
<span class="GAPprompt">gap></span> <span class="GAPinput">List([1..8],x->NextIterator(it)); </span>
[ A8, PSL(3,4), PSL(2,37), PSp(4,3), Sz(8), PSL(2,32), PSL(2,41),
PSL(2,43) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">it:=SimpleGroupsIterator(1,2000);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">l:=[];;for i in it do Add(l,i);od;l;</span>
[ A5, PSL(2,7), A6, PSL(2,8), PSL(2,11), PSL(2,13) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">it:=SimpleGroupsIterator(20000,100000:NOPSL2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">l:=[];;for i in it do Add(l,i);od;l;</span>
[ A8, PSL(3,4), PSp(4,3), Sz(8), PSU(3,4), M12 ]
</pre></div>
<p><a id="X872E93F586F54FCE" name="X872E93F586F54FCE"></a></p>
<h5>39.15-15 SmallSimpleGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SmallSimpleGroup</code>( <var class="Arg">order</var>[, <var class="Arg">i</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns: The <var class="Arg">i</var>th simple group of order <var class="Arg">order</var> in the stored list, given in a small-degree permutation representation, or <code class="func">fail</code> (<a href="chap20.html#X8294AAC9860E87E5"><span class="RefLink">20.2-1</span></a>) if no such simple group exists.</p>
<p>If <var class="Arg">i</var> is not given, it defaults to 1. Currently, all simple groups of order less than <span class="SimpleMath">10^6</span> are available via this function.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SmallSimpleGroup(60);</span>
A5
<span class="GAPprompt">gap></span> <span class="GAPinput">SmallSimpleGroup(20160,1);</span>
A8
<span class="GAPprompt">gap></span> <span class="GAPinput">SmallSimpleGroup(20160,2);</span>
PSL(3,4)
</pre></div>
<p><a id="X7EB47BF27D8CBF72" name="X7EB47BF27D8CBF72"></a></p>
<h5>39.15-16 AllSmallNonabelianSimpleGroups</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AllSmallNonabelianSimpleGroups</code>( <var class="Arg">orders</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Returns: A list of all nonabelian simple groups whose order lies in the range <var class="Arg">orders</var>.</p>
<p>The groups are given in small-degree permutation representations. The returned list is sorted by ascending group order. Currently, all simple groups of order less than <span class="SimpleMath">10^6</span> are available via this function.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(AllSmallNonabelianSimpleGroups([1..1000000]),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> StructureDescription);</span>
[ "A5", "PSL(3,2)", "A6", "PSL(2,8)", "PSL(2,11)", "PSL(2,13)",
"PSL(2,17)", "A7", "PSL(2,19)", "PSL(2,16)", "PSL(3,3)",
"PSU(3,3)", "PSL(2,23)", "PSL(2,25)", "M11", "PSL(2,27)",
"PSL(2,29)", "PSL(2,31)", "A8", "PSL(3,4)", "PSL(2,37)", "O(5,3)",
"Sz(8)", "PSL(2,32)", "PSL(2,41)", "PSL(2,43)", "PSL(2,47)",
"PSL(2,49)", "PSU(3,4)", "PSL(2,53)", "M12", "PSL(2,59)",
"PSL(2,61)", "PSU(3,5)", "PSL(2,67)", "J1", "PSL(2,71)", "A9",
"PSL(2,73)", "PSL(2,79)", "PSL(2,64)", "PSL(2,81)", "PSL(2,83)",
"PSL(2,89)", "PSL(3,5)", "M22", "PSL(2,97)", "PSL(2,101)",
"PSL(2,103)", "HJ", "PSL(2,107)", "PSL(2,109)", "PSL(2,113)",
"PSL(2,121)", "PSL(2,125)", "O(5,4)" ]
</pre></div>
<p><a id="X81E22D07871DF37E" name="X81E22D07871DF37E"></a></p>
<h5>39.15-17 IsFinitelyGeneratedGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsFinitelyGeneratedGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>tests whether the group <var class="Arg">G</var> can be generated by a finite number of generators. (This property is mainly used to obtain finiteness conditions.)</p>
<p>Note that this is a pure existence statement. Even if a group is known to be generated by a finite number of elements, it can be very hard or even impossible to obtain such a generating set if it is not known.</p>
<p><a id="X8648EDA287829755" name="X8648EDA287829755"></a></p>
<h5>39.15-18 IsSubsetLocallyFiniteGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsSubsetLocallyFiniteGroup</code>( <var class="Arg">U</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A group is called locally finite if every finitely generated subgroup is finite. This property checks whether the group <var class="Arg">U</var> is a subset of a locally finite group. This is used to check whether finite generation will imply finiteness, as it does for example for permutation groups.</p>
<p><a id="X8089F18C810B7E3E" name="X8089F18C810B7E3E"></a></p>
<h5>39.15-19 IsPGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsPGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A <em><span class="SimpleMath">p</span>-group</em> is a finite group whose order (see <code class="func">Size</code> (<a href="chap30.html#X858ADA3B7A684421"><span class="RefLink">30.4-6</span></a>)) is of the form <span class="SimpleMath">p^n</span> for a prime integer <span class="SimpleMath">p</span> and a nonnegative integer <span class="SimpleMath">n</span>. <code class="func">IsPGroup</code> returns <code class="keyw">true</code> if <var class="Arg">G</var> is a <span class="SimpleMath">p</span>-group, and <code class="keyw">false</code> otherwise.</p>
<p><a id="X87356BAA7E9E2142" name="X87356BAA7E9E2142"></a></p>
<h5>39.15-20 PrimePGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PrimePGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>If <var class="Arg">G</var> is a nontrivial <span class="SimpleMath">p</span>-group (see <code class="func">IsPGroup</code> (<a href="chap39.html#X8089F18C810B7E3E"><span class="RefLink">39.15-19</span></a>)), <code class="func">PrimePGroup</code> returns the prime integer <span class="SimpleMath">p</span>; if <var class="Arg">G</var> is trivial then <code class="func">PrimePGroup</code> returns <code class="keyw">fail</code>. Otherwise an error is issued.</p>
<p>(One should avoid a common error of writing <code class="code">if IsPGroup(g) then ... PrimePGroup(g) ...</code> where the code represented by dots assumes that <code class="code">PrimePGroup(g)</code> is an integer.)</p>
<p><a id="X863434AD7DDE514B" name="X863434AD7DDE514B"></a></p>
<h5>39.15-21 PClassPGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PClassPGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>The <span class="SimpleMath">p</span>-class of a <span class="SimpleMath">p</span>-group <var class="Arg">G</var> (see <code class="func">IsPGroup</code> (<a href="chap39.html#X8089F18C810B7E3E"><span class="RefLink">39.15-19</span></a>)) is the length of the lower <span class="SimpleMath">p</span>-central series (see <code class="func">PCentralSeries</code> (<a href="chap39.html#X7809B7ED792669F3"><span class="RefLink">39.17-13</span></a>)) of <var class="Arg">G</var>. If <var class="Arg">G</var> is not a <span class="SimpleMath">p</span>-group then an error is issued.</p>
<p><a id="X840A4F937ABF15E1" name="X840A4F937ABF15E1"></a></p>
<h5>39.15-22 RankPGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RankPGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>For a <span class="SimpleMath">p</span>-group <var class="Arg">G</var> (see <code class="func">IsPGroup</code> (<a href="chap39.html#X8089F18C810B7E3E"><span class="RefLink">39.15-19</span></a>)), <code class="func">RankPGroup</code> returns the <em>rank</em> of <var class="Arg">G</var>, which is defined as the minimal size of a generating system of <var class="Arg">G</var>. If <var class="Arg">G</var> is not a <span class="SimpleMath">p</span>-group then an error is issued.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">h:=Group((1,2,3,4),(1,3));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PClassPGroup(h);</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">RankPGroup(h);</span>
2
</pre></div>
<p><a id="X81130F9A7CFCF6BF" name="X81130F9A7CFCF6BF"></a></p>
<h5>39.15-23 IsPSolvable</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsPSolvable</code>( <var class="Arg">G</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>A finite group is <span class="SimpleMath">p</span>-solvable if every chief factor either has order not divisible by <span class="SimpleMath">p</span>, or is solvable.</p>
<p><a id="X87415A8485FCF510" name="X87415A8485FCF510"></a></p>
<h5>39.15-24 IsPNilpotent</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsPNilpotent</code>( <var class="Arg">G</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>A group is <span class="SimpleMath">p</span>-nilpotent if it possesses a normal <span class="SimpleMath">p</span>-complement.</p>
<p><a id="X7F8264FA796B2B7D" name="X7F8264FA796B2B7D"></a></p>
<h4>39.16 <span class="Heading">Numerical Group Attributes</span></h4>
<p>This section gives only some examples of numerical group attributes, so it should not serve as a collection of all numerical group attributes. The manual contains more such attributes documented in this manual, for example, <code class="func">NrConjugacyClasses</code> (<a href="chap39.html#X8733F87B7E4C9903"><span class="RefLink">39.10-5</span></a>), <code class="func">NilpotencyClassOfGroup</code> (<a href="chap39.html#X7E3056237C6A5D43"><span class="RefLink">39.15-4</span></a>) and others.</p>
<p>Note also that some functions, such as <code class="func">EulerianFunction</code> (<a href="chap39.html#X843E0CCA8351FDF4"><span class="RefLink">39.16-3</span></a>), are mathematical attributes, but not <strong class="pkg">GAP</strong> attributes (see <a href="chap13.html#X7C701DBF7BAE649A"><span class="RefLink">13.5</span></a>) as they are depending on a parameter.</p>
<p><a id="X812827937F403300" name="X812827937F403300"></a></p>
<h5>39.16-1 AbelianInvariants</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AbelianInvariants</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the abelian invariants (also sometimes called primary decomposition) of the commutator factor group of the group <var class="Arg">G</var>. These are given as a list of prime-powers or zeroes and describe the structure of <span class="SimpleMath"><var class="Arg">G</var>/<var class="Arg">G</var>'</span> as a direct product of cyclic groups of prime power (or infinite) order.</p>
<p>(See <code class="func">IndependentGeneratorsOfAbelianGroup</code> (<a href="chap39.html#X7D1574457B152333"><span class="RefLink">39.22-5</span></a>) to obtain actual generators).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=Group((1,2,3,4),(1,2),(5,6));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AbelianInvariants(g);</span>
[ 2, 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">h:=FreeGroup(2);;h:=h/[h.1^3];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AbelianInvariants(h);</span>
[ 0, 3 ]
</pre></div>
<p><a id="X7D44470C7DA59C1C" name="X7D44470C7DA59C1C"></a></p>
<h5>39.16-2 Exponent</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Exponent</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>The exponent <span class="SimpleMath">e</span> of a group <var class="Arg">G</var> is the lcm of the orders of its elements, that is, <span class="SimpleMath">e</span> is the smallest integer such that <span class="SimpleMath">g^e = 1</span> for all <span class="SimpleMath">g ∈ <var class="Arg">G</var></span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Exponent(g);</span>
12
</pre></div>
<p><a id="X843E0CCA8351FDF4" name="X843E0CCA8351FDF4"></a></p>
<h5>39.16-3 EulerianFunction</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ EulerianFunction</code>( <var class="Arg">G</var>, <var class="Arg">n</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the number of <var class="Arg">n</var>-tuples <span class="SimpleMath">(g_1, g_2, ..., g_n)</span> of elements of the group <var class="Arg">G</var> that generate the whole group <var class="Arg">G</var>. The elements of such an <var class="Arg">n</var>-tuple need not be different.</p>
<p>In <a href="chapBib.html#biBHal36">[Hal36]</a>, the notation <span class="SimpleMath">ϕ_<var class="Arg">n</var>(<var class="Arg">G</var>)</span> is used for the value returned by <code class="func">EulerianFunction</code>, and the quotient of <span class="SimpleMath">ϕ_<var class="Arg">n</var>(<var class="Arg">G</var>)</span> by the order of the automorphism group of <var class="Arg">G</var> is called <span class="SimpleMath">d_<var class="Arg">n</var>(<var class="Arg">G</var>)</span>. If <var class="Arg">G</var> is a nonabelian simple group then <span class="SimpleMath">d_<var class="Arg">n</var>(<var class="Arg">G</var>)</span> is the greatest number <span class="SimpleMath">d</span> for which the direct product of <span class="SimpleMath">d</span> groups isomorphic with <var class="Arg">G</var> can be generated by <var class="Arg">n</var> elements.</p>
<p>If the Library of Tables of Marks (see Chapter <a href="chap70.html#X84DBFB8287C3F1B4"><span class="RefLink">70</span></a>) covers the group <var class="Arg">G</var>, you may also use <code class="func">EulerianFunctionByTom</code> (<a href="chap70.html#X7B1C1A7C867A4082"><span class="RefLink">70.9-9</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">EulerianFunction( g, 2 );</span>
432
</pre></div>
<p><a id="X7AEDEDF67CFED672" name="X7AEDEDF67CFED672"></a></p>
<h4>39.17 <span class="Heading">Subgroup Series</span></h4>
<p>In group theory many subgroup series are considered, and <strong class="pkg">GAP</strong> provides commands to compute them. In the following sections, there is always a series <span class="SimpleMath">G = U_1 > U_2 > ⋯ > U_m = ⟨ 1 ⟩</span> of subgroups considered. A series also may stop without reaching <span class="SimpleMath">G</span> or <span class="SimpleMath">⟨ 1 ⟩</span>.</p>
<p>A series is called <em>subnormal</em> if every <span class="SimpleMath">U_{i+1}</span> is normal in <span class="SimpleMath">U_i</span>.</p>
<p>A series is called <em>normal</em> if every <span class="SimpleMath">U_i</span> is normal in <span class="SimpleMath">G</span>.</p>
<p>A series of normal subgroups is called <em>central</em> if <span class="SimpleMath">U_i/U_{i+1}</span> is central in <span class="SimpleMath">G / U_{i+1}</span>.</p>
<p>We call a series <em>refinable</em> if intermediate subgroups can be added to the series without destroying the properties of the series.</p>
<p>Unless explicitly declared otherwise, all subgroup series are descending. That is they are stored in decreasing order.</p>
<p><a id="X7BDD116F7833800F" name="X7BDD116F7833800F"></a></p>
<h5>39.17-1 ChiefSeries</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ChiefSeries</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>is a series of normal subgroups of <var class="Arg">G</var> which cannot be refined further. That is there is no normal subgroup <span class="SimpleMath">N</span> of <var class="Arg">G</var> with <span class="SimpleMath">U_i > N > U_{i+1}</span>. This attribute returns <em>one</em> chief series (of potentially many possibilities).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=Group((1,2,3,4),(1,2));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ChiefSeries(g);</span>
[ Group([ (1,2,3,4), (1,2) ]),
Group([ (2,4,3), (1,4)(2,3), (1,3)(2,4) ]),
Group([ (1,4)(2,3), (1,3)(2,4) ]), Group(()) ]
</pre></div>
<p><a id="X7AC93E977AC9ED58" name="X7AC93E977AC9ED58"></a></p>
<h5>39.17-2 ChiefSeriesThrough</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ChiefSeriesThrough</code>( <var class="Arg">G</var>, <var class="Arg">l</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>is a chief series of the group <var class="Arg">G</var> going through the normal subgroups in the list <var class="Arg">l</var>, which must be a list of normal subgroups of <var class="Arg">G</var> contained in each other, sorted by descending size. This attribute returns <em>one</em> chief series (of potentially many possibilities).</p>
<p><a id="X8724E15F81B51173" name="X8724E15F81B51173"></a></p>
<h5>39.17-3 ChiefSeriesUnderAction</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ChiefSeriesUnderAction</code>( <var class="Arg">H</var>, <var class="Arg">G</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns a series of normal subgroups of <var class="Arg">G</var> which are invariant under <var class="Arg">H</var> such that the series cannot be refined any further. <var class="Arg">G</var> must be a subgroup of <var class="Arg">H</var>. This attribute returns <em>one</em> such series (of potentially many possibilities).</p>
<p><a id="X7A0E7A8B8495B79D" name="X7A0E7A8B8495B79D"></a></p>
<h5>39.17-4 SubnormalSeries</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SubnormalSeries</code>( <var class="Arg">G</var>, <var class="Arg">U</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>If <var class="Arg">U</var> is a subgroup of <var class="Arg">G</var> this operation returns a subnormal series that descends from <var class="Arg">G</var> to a subnormal subgroup <span class="SimpleMath">V ≥</span><var class="Arg">U</var>. If <var class="Arg">U</var> is subnormal, <span class="SimpleMath">V =</span> <var class="Arg">U</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">s:=SubnormalSeries(g,Group((1,2)(3,4)));</span>
[ Group([ (1,2,3,4), (1,2) ]), Group([ (1,2)(3,4), (1,3)(2,4) ]),
Group([ (1,2)(3,4) ]) ]
</pre></div>
<p><a id="X81CDCBD67BC98A5A" name="X81CDCBD67BC98A5A"></a></p>
<h5>39.17-5 CompositionSeries</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CompositionSeries</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>A composition series is a subnormal series which cannot be refined. This attribute returns <em>one</em> composition series (of potentially many possibilities).</p>
<p><a id="X82C0D0217ACB2042" name="X82C0D0217ACB2042"></a></p>
<h5>39.17-6 DisplayCompositionSeries</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DisplayCompositionSeries</code>( <var class="Arg">G</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Displays a composition series of <var class="Arg">G</var> in a nice way, identifying the simple factors.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CompositionSeries(g);</span>
[ Group([ (3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4) ]),
Group([ (2,4,3), (1,4)(2,3), (1,3)(2,4) ]),
Group([ (1,4)(2,3), (1,3)(2,4) ]), Group([ (1,3)(2,4) ]), Group(())
]
<span class="GAPprompt">gap></span> <span class="GAPinput">DisplayCompositionSeries(Group((1,2,3,4,5,6,7),(1,2)));</span>
G (2 gens, size 5040)
| Z(2)
S (5 gens, size 2520)
| A(7)
1 (0 gens, size 1)
</pre></div>
<p><a id="X7A879948834BD889" name="X7A879948834BD889"></a></p>
<h5>39.17-7 DerivedSeriesOfGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DerivedSeriesOfGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>The derived series of a group is obtained by <span class="SimpleMath">U_{i+1} = U_i'</span>. It stops if <span class="SimpleMath">U_i</span> is perfect.</p>
<p><a id="X7A9AA1577CEC891F" name="X7A9AA1577CEC891F"></a></p>
<h5>39.17-8 DerivedLength</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DerivedLength</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>The derived length of a group is the number of steps in the derived series. (As there is always the group, it is the series length minus 1.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(DerivedSeriesOfGroup(g),Size);</span>
[ 24, 12, 4, 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">DerivedLength(g);</span>
3
</pre></div>
<p><a id="X83F057E5791944D6" name="X83F057E5791944D6"></a></p>
<h5>39.17-9 <span class="Heading">ElementaryAbelianSeries</span></h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ElementaryAbelianSeries</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ElementaryAbelianSeriesLargeSteps</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ElementaryAbelianSeries</code>( <var class="Arg">list</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a series of normal subgroups of <span class="SimpleMath">G</span> such that all factors are elementary abelian. If the group is not solvable (and thus no such series exists) it returns <code class="keyw">fail</code>.</p>
<p>The variant <code class="func">ElementaryAbelianSeriesLargeSteps</code> tries to make the steps in this series large (by eliminating intermediate subgroups if possible) at a small additional cost.</p>
<p>In the third variant, an elementary abelian series through the given series of normal subgroups in the list <var class="Arg">list</var> is constructed.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(ElementaryAbelianSeries(g),Size);</span>
[ 24, 12, 4, 1 ]
</pre></div>
<p><a id="X782BD7A47D6B6503" name="X782BD7A47D6B6503"></a></p>
<h5>39.17-10 InvariantElementaryAbelianSeries</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ InvariantElementaryAbelianSeries</code>( <var class="Arg">G</var>, <var class="Arg">morph</var>[, <var class="Arg">N</var>[, <var class="Arg">fine</var>]] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>For a (solvable) group <var class="Arg">G</var> and a list of automorphisms <var class="Arg">morph</var> of <var class="Arg">G</var>, this command finds a normal series of <var class="Arg">G</var> with elementary abelian factors such that every group in this series is invariant under every automorphism in <var class="Arg">morph</var>.</p>
<p>If a normal subgroup <var class="Arg">N</var> of <var class="Arg">G</var> which is invariant under <var class="Arg">morph</var> is given, this series is chosen to contain <var class="Arg">N</var>. No tests are performed to check the validity of the arguments.</p>
<p>The series obtained will be constructed to prefer large steps unless <var class="Arg">fine</var> is given as <code class="keyw">true</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=Group((1,2,3,4),(1,3));</span>
Group([ (1,2,3,4), (1,3) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">hom:=GroupHomomorphismByImages(g,g,GeneratorsOfGroup(g),</span>
<span class="GAPprompt">></span> <span class="GAPinput">[(1,4,3,2),(1,4)(2,3)]);</span>
[ (1,2,3,4), (1,3) ] -> [ (1,4,3,2), (1,4)(2,3) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">InvariantElementaryAbelianSeries(g,[hom]);</span>
[ Group([ (1,2,3,4), (1,3) ]), Group([ (1,3)(2,4) ]), Group(()) ]
</pre></div>
<p><a id="X879D55A67DB42676" name="X879D55A67DB42676"></a></p>
<h5>39.17-11 LowerCentralSeriesOfGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LowerCentralSeriesOfGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>The lower central series of a group <var class="Arg">G</var> is defined as <span class="SimpleMath">U_{i+1}:= [<var class="Arg">G</var>, U_i]</span>. It is a central series of normal subgroups. The name derives from the fact that <span class="SimpleMath">U_i</span> is contained in the <span class="SimpleMath">i</span>-th step subgroup of any central series.</p>
<p><a id="X8428592E8773CD7B" name="X8428592E8773CD7B"></a></p>
<h5>39.17-12 UpperCentralSeriesOfGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ UpperCentralSeriesOfGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>The upper central series of a group <var class="Arg">G</var> is defined as an ending series <span class="SimpleMath">U_i / U_{i+1}:= Z(<var class="Arg">G</var>/U_{i+1})</span>. It is a central series of normal subgroups. The name derives from the fact that <span class="SimpleMath">U_i</span> contains every <span class="SimpleMath">i</span>-th step subgroup of a central series.</p>
<p><a id="X7809B7ED792669F3" name="X7809B7ED792669F3"></a></p>
<h5>39.17-13 PCentralSeries</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PCentralSeries</code>( <var class="Arg">G</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The <var class="Arg">p</var>-central series of <var class="Arg">G</var> is defined by <span class="SimpleMath">U_1:= <var class="Arg">G</var></span>, <span class="SimpleMath">U_i:= [<var class="Arg">G</var>, U_{i-1}] U_{i-1}^<var class="Arg">p</var></span>.</p>
<p><a id="X82A34BD681F24A94" name="X82A34BD681F24A94"></a></p>
<h5>39.17-14 JenningsSeries</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ JenningsSeries</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>For a <span class="SimpleMath">p</span>-group <var class="Arg">G</var>, this function returns its Jennings series. This series is defined by setting <span class="SimpleMath">G_1 = <var class="Arg">G</var></span> and for <span class="SimpleMath">i ≥ 0</span>, <span class="SimpleMath">G_{i+1} = [G_i,<var class="Arg">G</var>] G_j^p</span>, where <span class="SimpleMath">j</span> is the smallest integer <span class="SimpleMath">≥ i/p</span>.</p>
<p><a id="X7C08A8B77EC09CFF" name="X7C08A8B77EC09CFF"></a></p>
<h5>39.17-15 DimensionsLoewyFactors</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DimensionsLoewyFactors</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>This operation computes the dimensions of the factors of the Loewy series of <var class="Arg">G</var>. (See <a href="chapBib.html#biBHup82">[HB82, p. 157]</a> for the slightly complicated definition of the Loewy Series.)</p>
<p>The dimensions are computed via the <code class="func">JenningsSeries</code> (<a href="chap39.html#X82A34BD681F24A94"><span class="RefLink">39.17-14</span></a>) without computing the Loewy series itself.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:= SmallGroup( 3^6, 100 );</span>
<pc group of size 729 with 6 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">JenningsSeries( G );</span>
[ <pc group of size 729 with 6 generators>, Group([ f3, f4, f5, f6 ]),
Group([ f4, f5, f6 ]), Group([ f5, f6 ]), Group([ f5, f6 ]),
Group([ f5, f6 ]), Group([ f6 ]), Group([ f6 ]), Group([ f6 ]),
Group([ <identity> of ... ]) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">DimensionsLoewyFactors(G);</span>
[ 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26,
27, 27, 27, 27, 27, 27, 27, 27, 27, 26, 25, 23, 22, 20, 19, 17, 16,
14, 13, 11, 10, 8, 7, 5, 4, 2, 1 ]
</pre></div>
<p><a id="X84112774812180DD" name="X84112774812180DD"></a></p>
<h5>39.17-16 AscendingChain</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AscendingChain</code>( <var class="Arg">G</var>, <var class="Arg">U</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function computes an ascending chain of subgroups from <var class="Arg">U</var> to <var class="Arg">G</var>. This chain is given as a list whose first entry is <var class="Arg">U</var> and the last entry is <var class="Arg">G</var>. The function tries to make the links in this chain small.</p>
<p>The option <code class="code">refineIndex</code> can be used to give a bound for refinements of steps to avoid <strong class="pkg">GAP</strong> trying to enforce too small steps. The option <code class="code">cheap</code> (if set to <code class="keyw">true</code>) will overall limit the amount of heuristic searches.</p>
<p><a id="X7C5029EE86D7FC96" name="X7C5029EE86D7FC96"></a></p>
<h5>39.17-17 IntermediateGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IntermediateGroup</code>( <var class="Arg">G</var>, <var class="Arg">U</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This routine tries to find a subgroup <span class="SimpleMath">E</span> of <var class="Arg">G</var>, such that <span class="SimpleMath"><var class="Arg">G</var> > E > <var class="Arg">U</var></span> holds. If <var class="Arg">U</var> is maximal in <var class="Arg">G</var>, the function returns <code class="keyw">fail</code>. This is done by finding minimal blocks for the operation of <var class="Arg">G</var> on the right cosets of <var class="Arg">U</var>.</p>
<p><a id="X781661FB78DC83B5" name="X781661FB78DC83B5"></a></p>
<h5>39.17-18 IntermediateSubgroups</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IntermediateSubgroups</code>( <var class="Arg">G</var>, <var class="Arg">U</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns a list of all subgroups of <var class="Arg">G</var> that properly contain <var class="Arg">U</var>; that is all subgroups between <var class="Arg">G</var> and <var class="Arg">U</var>. It returns a record with a component <code class="code">subgroups</code>, which is a list of these subgroups, as well as a component <code class="code">inclusions</code>, which lists all maximality inclusions among these subgroups. A maximality inclusion is given as a list <span class="SimpleMath">[i, j]</span> indicating that the subgroup number <span class="SimpleMath">i</span> is a maximal subgroup of the subgroup number <span class="SimpleMath">j</span>, the numbers <span class="SimpleMath">0</span> and <span class="SimpleMath">1 +</span> <code class="code">Length(subgroups)</code> are used to denote <var class="Arg">U</var> and <var class="Arg">G</var>, respectively.</p>
<p><a id="X84091B0A7E401E2B" name="X84091B0A7E401E2B"></a></p>
<h4>39.18 <span class="Heading">Factor Groups</span></h4>
<p><a id="X80FC390C7F38A13F" name="X80FC390C7F38A13F"></a></p>
<h5>39.18-1 NaturalHomomorphismByNormalSubgroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ NaturalHomomorphismByNormalSubgroup</code>( <var class="Arg">G</var>, <var class="Arg">N</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ NaturalHomomorphismByNormalSubgroupNC</code>( <var class="Arg">G</var>, <var class="Arg">N</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a homomorphism from <var class="Arg">G</var> to another group whose kernel is <var class="Arg">N</var>. <strong class="pkg">GAP</strong> will try to select the image group as to make computations in it as efficient as possible. As the factor group <span class="SimpleMath"><var class="Arg">G</var>/<var class="Arg">N</var></span> can be identified with the image of <var class="Arg">G</var> this permits efficient computations in the factor group. The homomorphism returned is not necessarily surjective, so <code class="func">ImagesSource</code> (<a href="chap32.html#X7D23C1CE863DACD8"><span class="RefLink">32.4-1</span></a>) should be used instead of <code class="func">Range</code> (<a href="chap32.html#X7B6FD7277CDE9FCB"><span class="RefLink">32.3-7</span></a>) to get a group isomorphic to the factor group. The <code class="code">NC</code> variant does not check whether <var class="Arg">N</var> is normal in <var class="Arg">G</var>.</p>
<p><a id="X7E6EED0185B27C48" name="X7E6EED0185B27C48"></a></p>
<h5>39.18-2 FactorGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FactorGroup</code>( <var class="Arg">G</var>, <var class="Arg">N</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FactorGroupNC</code>( <var class="Arg">G</var>, <var class="Arg">N</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the image of the <code class="code">NaturalHomomorphismByNormalSubgroup(<var class="Arg">G</var>,<var class="Arg">N</var>)</code>. The homomorphism will be stored in the attribute <code class="code">NaturalHomomorphism</code> of the result. The <code class="code">NC</code> version does not test whether <var class="Arg">N</var> is normal in <var class="Arg">G</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=Group((1,2,3,4),(1,2));;n:=Subgroup(g,[(1,2)(3,4),(1,3)(2,4)]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">hom:=NaturalHomomorphismByNormalSubgroup(g,n);</span>
[ (1,2,3,4), (1,2) ] -> [ f1*f2, f1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(ImagesSource(hom));</span>
6
<span class="GAPprompt">gap></span> <span class="GAPinput">FactorGroup(g,n);</span>
Group([ f1, f2 ])
</pre></div>
<p><a id="X7816FA867BF1B8ED" name="X7816FA867BF1B8ED"></a></p>
<h5>39.18-3 CommutatorFactorGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CommutatorFactorGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>computes the commutator factor group <span class="SimpleMath"><var class="Arg">G</var>/<var class="Arg">G</var>'</span> of the group <var class="Arg">G</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CommutatorFactorGroup(g);</span>
Group([ f1 ])
</pre></div>
<p><a id="X7BB93B9778C5A0B2" name="X7BB93B9778C5A0B2"></a></p>
<h5>39.18-4 MaximalAbelianQuotient</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MaximalAbelianQuotient</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns an epimorphism from <var class="Arg">G</var> onto the maximal abelian quotient of <var class="Arg">G</var>. The kernel of this epimorphism is the derived subgroup of <var class="Arg">G</var>, see <code class="func">DerivedSubgroup</code> (<a href="chap39.html#X7CC17CF179ED7EF2"><span class="RefLink">39.12-3</span></a>).</p>
<p><a id="X7FC83E4C783572E7" name="X7FC83E4C783572E7"></a></p>
<h5>39.18-5 HasAbelianFactorGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ HasAbelianFactorGroup</code>( <var class="Arg">G</var>, <var class="Arg">N</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>tests whether <var class="Arg">G</var> <span class="SimpleMath">/</span> <var class="Arg">N</var> is abelian (without explicitly constructing the factor group).</p>
<p><a id="X7FAC018680B766B7" name="X7FAC018680B766B7"></a></p>
<h5>39.18-6 HasElementaryAbelianFactorGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ HasElementaryAbelianFactorGroup</code>( <var class="Arg">G</var>, <var class="Arg">N</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>tests whether <var class="Arg">G</var> <span class="SimpleMath">/</span> <var class="Arg">N</var> is elementary abelian (without explicitly constructing the factor group).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">HasAbelianFactorGroup(g,n);</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">HasAbelianFactorGroup(DerivedSubgroup(g),n);</span>
true
</pre></div>
<p><a id="X822A3AB27919BC1E" name="X822A3AB27919BC1E"></a></p>
<h5>39.18-7 CentralizerModulo</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CentralizerModulo</code>( <var class="Arg">G</var>, <var class="Arg">N</var>, <var class="Arg">elm</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Computes the full preimage of the centralizer <span class="SimpleMath">C_{<var class="Arg">G</var>/<var class="Arg">N</var>}(<var class="Arg">elm</var> ⋅ <var class="Arg">N</var>)</span> in <var class="Arg">G</var> (without necessarily constructing the factor group).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CentralizerModulo(g,n,(1,2));</span>
Group([ (3,4), (1,3)(2,4), (1,4)(2,3) ])
</pre></div>
<p><a id="X7D8EFB2F85AA24EE" name="X7D8EFB2F85AA24EE"></a></p>
<h4>39.19 <span class="Heading">Sets of Subgroups</span></h4>
<p><a id="X7DDE67C67E871336" name="X7DDE67C67E871336"></a></p>
<h5>39.19-1 ConjugacyClassSubgroups</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ConjugacyClassSubgroups</code>( <var class="Arg">G</var>, <var class="Arg">U</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>generates the conjugacy class of subgroups of <var class="Arg">G</var> with representative <var class="Arg">U</var>. This class is an external set, so functions such as <code class="func">Representative</code> (<a href="chap30.html#X865507568182424E"><span class="RefLink">30.4-7</span></a>), (which returns <var class="Arg">U</var>), <code class="func">ActingDomain</code> (<a href="chap41.html#X7B9DB15D80CE28B4"><span class="RefLink">41.12-3</span></a>) (which returns <var class="Arg">G</var>), <code class="func">StabilizerOfExternalSet</code> (<a href="chap41.html#X7BAFF02B7D6DF9F2"><span class="RefLink">41.12-10</span></a>) (which returns the normalizer of <var class="Arg">U</var>), and <code class="func">AsList</code> (<a href="chap30.html#X8289FCCC8274C89D"><span class="RefLink">30.3-8</span></a>) work for it.</p>
<p>(The use of the <code class="code">[]</code> list access to select elements of the class is considered obsolescent and will be removed in future versions. Use <code class="func">ClassElementLattice</code> (<a href="chap39.html#X78928A3582882BFD"><span class="RefLink">39.20-2</span></a>) instead.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=Group((1,2,3,4),(1,2));;IsNaturalSymmetricGroup(g);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cl:=ConjugacyClassSubgroups(g,Subgroup(g,[(1,2)]));</span>
Group( [ (1,2) ] )^G
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(cl);</span>
6
<span class="GAPprompt">gap></span> <span class="GAPinput">ClassElementLattice(cl,4);</span>
Group([ (2,3) ])
</pre></div>
<p><a id="X7C5BBF487977B8CD" name="X7C5BBF487977B8CD"></a></p>
<h5>39.19-2 IsConjugacyClassSubgroupsRep</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsConjugacyClassSubgroupsRep</code>( <var class="Arg">obj</var> )</td><td class="tdright">( representation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsConjugacyClassSubgroupsByStabilizerRep</code>( <var class="Arg">obj</var> )</td><td class="tdright">( representation )</td></tr></table></div>
<p>Is the representation <strong class="pkg">GAP</strong> uses for conjugacy classes of subgroups. It can be used to check whether an object is a class of subgroups. The second representation <code class="func">IsConjugacyClassSubgroupsByStabilizerRep</code> in addition is an external orbit by stabilizer and will compute its elements via a transversal of the stabilizer.</p>
<p><a id="X7E986BF48393113A" name="X7E986BF48393113A"></a></p>
<h5>39.19-3 ConjugacyClassesSubgroups</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ConjugacyClassesSubgroups</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>This attribute returns a list of all conjugacy classes of subgroups of the group <var class="Arg">G</var>. It also is applicable for lattices of subgroups (see <code class="func">LatticeSubgroups</code> (<a href="chap39.html#X7B104E2C86166188"><span class="RefLink">39.20-1</span></a>)). The order in which the classes are listed depends on the method chosen by <strong class="pkg">GAP</strong>. For each class of subgroups, a representative can be accessed using <code class="func">Representative</code> (<a href="chap30.html#X865507568182424E"><span class="RefLink">30.4-7</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ConjugacyClassesSubgroups(g);</span>
[ Group( () )^G, Group( [ (1,3)(2,4) ] )^G, Group( [ (3,4) ] )^G,
Group( [ (2,4,3) ] )^G, Group( [ (1,4)(2,3), (1,3)(2,4) ] )^G,
Group( [ (3,4), (1,2)(3,4) ] )^G,
Group( [ (1,3,2,4), (1,2)(3,4) ] )^G, Group( [ (3,4), (2,4,3) ] )^G,
Group( [ (1,4)(2,3), (1,3)(2,4), (3,4) ] )^G,
Group( [ (1,4)(2,3), (1,3)(2,4), (2,4,3) ] )^G,
Group( [ (1,4)(2,3), (1,3)(2,4), (2,4,3), (3,4) ] )^G ]
</pre></div>
<p><a id="X8486C25380853F9B" name="X8486C25380853F9B"></a></p>
<h5>39.19-4 ConjugacyClassesMaximalSubgroups</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ConjugacyClassesMaximalSubgroups</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the conjugacy classes of maximal subgroups of <var class="Arg">G</var>. Representatives of the classes can be computed directly by <code class="func">MaximalSubgroupClassReps</code> (<a href="chap39.html#X798BF55C837DB188"><span class="RefLink">39.19-6</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ConjugacyClassesMaximalSubgroups(g);</span>
[ AlternatingGroup( [ 1 .. 4 ] )^G, Group( [ (1,2,3), (1,2) ] )^G,
Group( [ (1,2), (3,4), (1,3)(2,4) ] )^G ]
</pre></div>
<p><a id="X80399CD4870FFC4B" name="X80399CD4870FFC4B"></a></p>
<h5>39.19-5 AllSubgroups</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AllSubgroups</code>( <var class="Arg">G</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>For a finite group <var class="Arg">G</var> <code class="func">AllSubgroups</code> returns a list of all subgroups of <var class="Arg">G</var>, intended primarily for use in class for small examples. This list will quickly get very long and in general use of <code class="func">ConjugacyClassesSubgroups</code> (<a href="chap39.html#X7E986BF48393113A"><span class="RefLink">39.19-3</span></a>) is recommended.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">AllSubgroups(SymmetricGroup(3));</span>
[ Group(()), Group([ (2,3) ]), Group([ (1,2) ]), Group([ (1,3) ]),
Group([ (1,2,3) ]), Group([ (1,2,3), (2,3) ]) ]
</pre></div>
<p><a id="X798BF55C837DB188" name="X798BF55C837DB188"></a></p>
<h5>39.19-6 MaximalSubgroupClassReps</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MaximalSubgroupClassReps</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a list of conjugacy representatives of the maximal subgroups of <var class="Arg">G</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">MaximalSubgroupClassReps(g);</span>
[ Alt( [ 1 .. 4 ] ), Group([ (1,2,3), (1,2) ]),
Group([ (1,2), (3,4), (1,3)(2,4) ]) ]
</pre></div>
<p><a id="X861CD8DA790D81C2" name="X861CD8DA790D81C2"></a></p>
<h5>39.19-7 MaximalSubgroups</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MaximalSubgroups</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a list of all maximal subgroups of <var class="Arg">G</var>. This may take up much space, therefore the command should be avoided if possible. See <code class="func">ConjugacyClassesMaximalSubgroups</code> (<a href="chap39.html#X8486C25380853F9B"><span class="RefLink">39.19-4</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">MaximalSubgroups(Group((1,2,3),(1,2)));</span>
[ Group([ (1,2,3) ]), Group([ (2,3) ]), Group([ (1,2) ]),
Group([ (1,3) ]) ]
</pre></div>
<p><a id="X80237A847E24E6CF" name="X80237A847E24E6CF"></a></p>
<h5>39.19-8 NormalSubgroups</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ NormalSubgroups</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a list of all normal subgroups of <var class="Arg">G</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=SymmetricGroup(4);;NormalSubgroups(g);</span>
[ Sym( [ 1 .. 4 ] ), Group([ (2,4,3), (1,4)(2,3), (1,3)(2,4) ]),
Group([ (1,4)(2,3), (1,3)(2,4) ]), Group(()) ]
</pre></div>
<p>The algorithm for the computation of normal subgroups is described in <a href="chapBib.html#biBHulpke98">[Hul98]</a>.</p>
<p><a id="X82ECAA427C987318" name="X82ECAA427C987318"></a></p>
<h5>39.19-9 MaximalNormalSubgroups</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MaximalNormalSubgroups</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>is a list containing those proper normal subgroups of the group <var class="Arg">G</var> that are maximal among the proper normal subgroups.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">MaximalNormalSubgroups( g );</span>
[ Group([ (2,4,3), (1,4)(2,3), (1,3)(2,4) ]) ]
</pre></div>
<p><a id="X86FDD9BA819F5644" name="X86FDD9BA819F5644"></a></p>
<h5>39.19-10 MinimalNormalSubgroups</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MinimalNormalSubgroups</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>is a list containing those nontrivial normal subgroups of the group <var class="Arg">G</var> that are minimal among the nontrivial normal subgroups.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">MinimalNormalSubgroups( g );</span>
[ Group([ (1,4)(2,3), (1,3)(2,4) ]) ]
</pre></div>
<p><a id="X7FA267497CFC0550" name="X7FA267497CFC0550"></a></p>
<h4>39.20 <span class="Heading">Subgroup Lattice</span></h4>
<p><a id="X7B104E2C86166188" name="X7B104E2C86166188"></a></p>
<h5>39.20-1 LatticeSubgroups</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LatticeSubgroups</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>computes the lattice of subgroups of the group <var class="Arg">G</var>. This lattice has the conjugacy classes of subgroups as attribute <code class="func">ConjugacyClassesSubgroups</code> (<a href="chap39.html#X7E986BF48393113A"><span class="RefLink">39.19-3</span></a>) and permits one to test maximality/minimality relations.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=SymmetricGroup(4);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">l:=LatticeSubgroups(g);</span>
<subgroup lattice of Sym( [ 1 .. 4 ] ), 11 classes, 30 subgroups>
<span class="GAPprompt">gap></span> <span class="GAPinput">ConjugacyClassesSubgroups(l);</span>
[ Group( () )^G, Group( [ (1,3)(2,4) ] )^G, Group( [ (3,4) ] )^G,
Group( [ (2,4,3) ] )^G, Group( [ (1,4)(2,3), (1,3)(2,4) ] )^G,
Group( [ (3,4), (1,2)(3,4) ] )^G,
Group( [ (1,3,2,4), (1,2)(3,4) ] )^G, Group( [ (3,4), (2,4,3) ] )^G,
Group( [ (1,4)(2,3), (1,3)(2,4), (3,4) ] )^G,
Group( [ (1,4)(2,3), (1,3)(2,4), (2,4,3) ] )^G,
Group( [ (1,4)(2,3), (1,3)(2,4), (2,4,3), (3,4) ] )^G ]
</pre></div>
<p><a id="X78928A3582882BFD" name="X78928A3582882BFD"></a></p>
<h5>39.20-2 ClassElementLattice</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ClassElementLattice</code>( <var class="Arg">C</var>, <var class="Arg">n</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>For a class <var class="Arg">C</var> of subgroups, obtained by a lattice computation, this operation returns the <var class="Arg">n</var>-th conjugate subgroup in the class.</p>
<p><em>Because of other methods installed, calling <code class="func">AsList</code> (<a href="chap30.html#X8289FCCC8274C89D"><span class="RefLink">30.3-8</span></a>) with <var class="Arg">C</var> can give a different arrangement of the class elements!</em></p>
<p>The <strong class="pkg">GAP</strong> package <strong class="pkg">XGAP</strong> permits a graphical display of the lattice of subgroups in a nice way.</p>
<p><a id="X7E5DF287825EE7BA" name="X7E5DF287825EE7BA"></a></p>
<h5>39.20-3 DotFileLatticeSubgroups</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DotFileLatticeSubgroups</code>( <var class="Arg">L</var>, <var class="Arg">file</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function produces a graphical representation of the subgroup lattice <var class="Arg">L</var> in file <var class="Arg">file</var>. The output is in <code class="code">.dot</code> (also known as <code class="code">GraphViz</code> format). For details on the format, and information about how to display or edit this format see <span class="URL"><a href="http://www.graphviz.org">http://www.graphviz.org</a></span>. (On the Macintosh, the program <code class="code">OmniGraffle</code> is also able to read this format.)</p>
<p>Subgroups are labelled in the form <code class="code"><var class="Arg">i</var>-<var class="Arg">j</var></code> where <var class="Arg">i</var> is the number of the class of subgroups and <var class="Arg">j</var> the number within this class. Normal subgroups are represented by a box.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">DotFileLatticeSubgroups(l,"s4lat.dot");</span>
</pre></div>
<p><a id="X815CDA447C5DB285" name="X815CDA447C5DB285"></a></p>
<h5>39.20-4 MaximalSubgroupsLattice</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MaximalSubgroupsLattice</code>( <var class="Arg">lat</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>For a lattice <var class="Arg">lat</var> of subgroups this attribute contains the maximal subgroup relations among the subgroups of the lattice. It is a list corresponding to the <code class="func">ConjugacyClassesSubgroups</code> (<a href="chap39.html#X7E986BF48393113A"><span class="RefLink">39.19-3</span></a>) value of the lattice, each entry giving a list of the maximal subgroups of the representative of this class. Every maximal subgroup is indicated by a list of the form <span class="SimpleMath">[ c, n ]</span> which means that the <span class="SimpleMath">n</span>-th subgroup in class number <span class="SimpleMath">c</span> is a maximal subgroup of the representative.</p>
<p>The number <span class="SimpleMath">n</span> corresponds to access via <code class="func">ClassElementLattice</code> (<a href="chap39.html#X78928A3582882BFD"><span class="RefLink">39.20-2</span></a>) and <em>not</em> necessarily the <code class="func">AsList</code> (<a href="chap30.html#X8289FCCC8274C89D"><span class="RefLink">30.3-8</span></a>) arrangement! See also <code class="func">MinimalSupergroupsLattice</code> (<a href="chap39.html#X8138997C871EDF96"><span class="RefLink">39.20-5</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">MaximalSubgroupsLattice(l);</span>
[ [ ], [ [ 1, 1 ] ], [ [ 1, 1 ] ], [ [ 1, 1 ] ],
[ [ 2, 1 ], [ 2, 2 ], [ 2, 3 ] ], [ [ 3, 1 ], [ 3, 6 ], [ 2, 3 ] ],
[ [ 2, 3 ] ], [ [ 4, 1 ], [ 3, 1 ], [ 3, 2 ], [ 3, 3 ] ],
[ [ 7, 1 ], [ 6, 1 ], [ 5, 1 ] ],
[ [ 5, 1 ], [ 4, 1 ], [ 4, 2 ], [ 4, 3 ], [ 4, 4 ] ],
[ [ 10, 1 ], [ 9, 1 ], [ 9, 2 ], [ 9, 3 ], [ 8, 1 ], [ 8, 2 ],
[ 8, 3 ], [ 8, 4 ] ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">last[6];</span>
[ [ 3, 1 ], [ 3, 6 ], [ 2, 3 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">u1:=Representative(ConjugacyClassesSubgroups(l)[6]);</span>
Group([ (3,4), (1,2)(3,4) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">u2:=ClassElementLattice(ConjugacyClassesSubgroups(l)[3],1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">u3:=ClassElementLattice(ConjugacyClassesSubgroups(l)[3],6);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">u4:=ClassElementLattice(ConjugacyClassesSubgroups(l)[2],3);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsSubgroup(u1,u2);IsSubgroup(u1,u3);IsSubgroup(u1,u4);</span>
true
true
true
</pre></div>
<p><a id="X8138997C871EDF96" name="X8138997C871EDF96"></a></p>
<h5>39.20-5 MinimalSupergroupsLattice</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MinimalSupergroupsLattice</code>( <var class="Arg">lat</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>For a lattice <var class="Arg">lat</var> of subgroups this attribute contains the minimal supergroup relations among the subgroups of the lattice. It is a list corresponding to the <code class="func">ConjugacyClassesSubgroups</code> (<a href="chap39.html#X7E986BF48393113A"><span class="RefLink">39.19-3</span></a>) value of the lattice, each entry giving a list of the minimal supergroups of the representative of this class. Every minimal supergroup is indicated by a list of the form <span class="SimpleMath">[ c, n ]</span>, which means that the <span class="SimpleMath">n</span>-th subgroup in class number <span class="SimpleMath">c</span> is a minimal supergroup of the representative.</p>
<p>The number <span class="SimpleMath">n</span> corresponds to access via <code class="func">ClassElementLattice</code> (<a href="chap39.html#X78928A3582882BFD"><span class="RefLink">39.20-2</span></a>) and <em>not</em> necessarily the <code class="func">AsList</code> (<a href="chap30.html#X8289FCCC8274C89D"><span class="RefLink">30.3-8</span></a>) arrangement! See also <code class="func">MaximalSubgroupsLattice</code> (<a href="chap39.html#X815CDA447C5DB285"><span class="RefLink">39.20-4</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">MinimalSupergroupsLattice(l);</span>
[ [ [ 2, 1 ], [ 2, 2 ], [ 2, 3 ], [ 3, 1 ], [ 3, 2 ], [ 3, 3 ],
[ 3, 4 ], [ 3, 5 ], [ 3, 6 ], [ 4, 1 ], [ 4, 2 ], [ 4, 3 ],
[ 4, 4 ] ], [ [ 5, 1 ], [ 6, 2 ], [ 7, 2 ] ],
[ [ 6, 1 ], [ 8, 1 ], [ 8, 3 ] ], [ [ 8, 1 ], [ 10, 1 ] ],
[ [ 9, 1 ], [ 9, 2 ], [ 9, 3 ], [ 10, 1 ] ], [ [ 9, 1 ] ],
[ [ 9, 1 ] ], [ [ 11, 1 ] ], [ [ 11, 1 ] ], [ [ 11, 1 ] ], [ ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">last[3];</span>
[ [ 6, 1 ], [ 8, 1 ], [ 8, 3 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">u5:=ClassElementLattice(ConjugacyClassesSubgroups(l)[8],1);</span>
Group([ (3,4), (2,4,3) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">u6:=ClassElementLattice(ConjugacyClassesSubgroups(l)[8],3);</span>
Group([ (1,3), (1,3,4) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">IsSubgroup(u5,u2);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">IsSubgroup(u6,u2);</span>
true
</pre></div>
<p><a id="X7BA3484E7AE0A0E1" name="X7BA3484E7AE0A0E1"></a></p>
<h5>39.20-6 RepresentativesPerfectSubgroups</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RepresentativesPerfectSubgroups</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RepresentativesSimpleSubgroups</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a list of conjugacy representatives of perfect (respectively simple) subgroups of <var class="Arg">G</var>. This uses the library of perfect groups (see <code class="func">PerfectGroup</code> (<a href="chap50.html#X7906BBA7818E9415"><span class="RefLink">50.8-2</span></a>)), thus it will issue an error if the library is insufficient to determine all perfect subgroups.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">m11:=TransitiveGroup(11,6);</span>
M(11)
<span class="GAPprompt">gap></span> <span class="GAPinput">r:=RepresentativesPerfectSubgroups(m11);</span>
[ Group([ (2,3,4)(5,6,8)(7,11,9), (3,11)(4,5)(6,10)(7,8) ]),
Group([ (1,2,3)(5,9,6)(7,8,11), (3,11)(4,5)(6,10)(7,8) ]),
Group([ (2,3,4,11,6)(5,7,10,8,9), (3,11)(4,5)(6,10)(7,8) ]),
Group([ (1,2,3)(4,6,11)(7,9,10), (3,11)(4,5)(6,10)(7,8) ]), M(11),
Group(()) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List(r,Size);</span>
[ 60, 60, 360, 660, 7920, 1 ]
</pre></div>
<p><a id="X7B2233D180DF77A1" name="X7B2233D180DF77A1"></a></p>
<h5>39.20-7 ConjugacyClassesPerfectSubgroups</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ConjugacyClassesPerfectSubgroups</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a list of the conjugacy classes of perfect subgroups of <var class="Arg">G</var>. (see <code class="func">RepresentativesPerfectSubgroups</code> (<a href="chap39.html#X7BA3484E7AE0A0E1"><span class="RefLink">39.20-6</span></a>).)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ConjugacyClassesPerfectSubgroups(m11);</span>
[ Group( [ ( 2, 3, 4)( 5, 6, 8)( 7,11, 9),
( 3,11)( 4, 5)( 6,10)( 7, 8) ] )^G,
Group( [ ( 1, 2, 3)( 5, 9, 6)( 7, 8,11),
( 3,11)( 4, 5)( 6,10)( 7, 8) ] )^G,
Group( [ ( 2, 3, 4,11, 6)( 5, 7,10, 8, 9),
( 3,11)( 4, 5)( 6,10)( 7, 8) ] )^G,
Group( [ ( 1, 2, 3)( 4, 6,11)( 7, 9,10),
( 3,11)( 4, 5)( 6,10)( 7, 8) ] )^G, M(11)^G, Group( () )^G ]
</pre></div>
<p><a id="X7BFE573187B4BEF8" name="X7BFE573187B4BEF8"></a></p>
<h5>39.20-8 Zuppos</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Zuppos</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>The <em>Zuppos</em> of a group are the cyclic subgroups of prime power order. (The name "Zuppo" derives from the German abbreviation for "zyklische Untergruppen von Primzahlpotenzordnung".) This attribute gives generators of all such subgroups of a group <var class="Arg">G</var>. That is all elements of <var class="Arg">G</var> of prime power order up to the equivalence that they generate the same cyclic subgroup.</p>
<p><a id="X82C12E2C81963B23" name="X82C12E2C81963B23"></a></p>
<h5>39.20-9 InfoLattice</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ InfoLattice</code></td><td class="tdright">( info class )</td></tr></table></div>
<p>is the information class used by the cyclic extension methods for subgroup lattice calculations.</p>
<p><a id="X85E613D57F28AEFF" name="X85E613D57F28AEFF"></a></p>
<h4>39.21 <span class="Heading">Specific Methods for Subgroup Lattice Computations</span></h4>
<p><a id="X86462A567DDBA6BC" name="X86462A567DDBA6BC"></a></p>
<h5>39.21-1 LatticeByCyclicExtension</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LatticeByCyclicExtension</code>( <var class="Arg">G</var>[, <var class="Arg">func</var>[, <var class="Arg">noperf</var>]] )</td><td class="tdright">( function )</td></tr></table></div>
<p>computes the lattice of <var class="Arg">G</var> using the cyclic extension algorithm. If the function <var class="Arg">func</var> is given, the algorithm will discard all subgroups not fulfilling <var class="Arg">func</var> (and will also not extend them), returning a partial lattice. This can be useful to compute only subgroups with certain properties. Note however that this will <em>not</em> necessarily yield all subgroups that fulfill <var class="Arg">func</var>, but the subgroups whose subgroups are used for the construction must also fulfill <var class="Arg">func</var> as well. (In fact the filter <var class="Arg">func</var> will simply discard subgroups in the cyclic extension algorithm. Therefore the trivial subgroup will always be included.) Also note, that for such a partial lattice maximality/minimality inclusion relations cannot be computed. (If <var class="Arg">func</var> is a list of length 2, its first entry is such a discarding function, the second a function for discarding zuppos.)</p>
<p>The cyclic extension algorithm requires the perfect subgroups of <var class="Arg">G</var>. However <strong class="pkg">GAP</strong> cannot analyze the function <var class="Arg">func</var> for its implication but can only apply it. If it is known that <var class="Arg">func</var> implies solvability, the computation of the perfect subgroups can be avoided by giving a third parameter <var class="Arg">noperf</var> set to <code class="keyw">true</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=WreathProduct(Group((1,2,3),(1,2)),Group((1,2,3,4)));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">l:=LatticeByCyclicExtension(g,function(G)</span>
<span class="GAPprompt">></span> <span class="GAPinput">return Size(G) in [1,2,3,6];end);</span>
<subgroup lattice of <permutation group of size 5184 with
9 generators>, 47 classes,
2628 subgroups, restricted under further condition l!.func>
</pre></div>
<p>The total number of classes in this example is much bigger, as the following example shows:</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">LatticeSubgroups(g);</span>
<subgroup lattice of <permutation group of size 5184 with
9 generators>, 566 classes, 27134 subgroups>
</pre></div>
<p>##</p>
<p><a id="X78918D83835A0EDF" name="X78918D83835A0EDF"></a></p>
<h5>39.21-2 InvariantSubgroupsElementaryAbelianGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ InvariantSubgroupsElementaryAbelianGroup</code>( <var class="Arg">G</var>, <var class="Arg">homs</var>[, <var class="Arg">dims</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>Let <var class="Arg">G</var> be an elementary abelian group and <var class="Arg">homs</var> be a set of automorphisms of <var class="Arg">G</var>. Then this function computes all subspaces of <var class="Arg">G</var> which are invariant under all automorphisms in <var class="Arg">homs</var>. When considering <var class="Arg">G</var> as a module for the algebra generated by <var class="Arg">homs</var>, these are all submodules. If <var class="Arg">homs</var> is empty, it computes all subgroups. If the optional parameter <var class="Arg">dims</var> is given, only submodules of this dimension are computed.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=Group((1,2,3),(4,5,6),(7,8,9));</span>
Group([ (1,2,3), (4,5,6), (7,8,9) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">hom:=GroupHomomorphismByImages(g,g,[(1,2,3),(4,5,6),(7,8,9)],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[(7,8,9),(1,2,3),(4,5,6)]);</span>
[ (1,2,3), (4,5,6), (7,8,9) ] -> [ (7,8,9), (1,2,3), (4,5,6) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">u:=InvariantSubgroupsElementaryAbelianGroup(g,[hom]);</span>
[ Group(()), Group([ (1,2,3)(4,5,6)(7,8,9) ]),
Group([ (1,3,2)(7,8,9), (1,3,2)(4,5,6) ]),
Group([ (7,8,9), (4,5,6), (1,2,3) ]) ]
</pre></div>
<p><a id="X7AD7804A803910AC" name="X7AD7804A803910AC"></a></p>
<h5>39.21-3 SubgroupsSolvableGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SubgroupsSolvableGroup</code>( <var class="Arg">G</var>[, <var class="Arg">opt</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function (implementing the algorithm published in <a href="chapBib.html#biBHulpke99">[Hul99]</a>) computes subgroups of a solvable group <var class="Arg">G</var>, using the homomorphism principle. It returns a list of representatives up to <var class="Arg">G</var>-conjugacy.</p>
<p>The optional argument <var class="Arg">opt</var> is a record, which may be used to put restrictions on the subgroups computed. The following record components of <var class="Arg">opt</var> are recognized and have the following effects:</p>
<dl>
<dt><strong class="Mark"><code class="code">actions</code></strong></dt>
<dd><p>must be a list of automorphisms of <var class="Arg">G</var>. If given, only groups which are invariant under all these automorphisms are computed. The algorithm must know the normalizer in <var class="Arg">G</var> of the group generated by <code class="code">actions</code> (defined formally by embedding in the semidirect product of <var class="Arg">G</var> with <var class="Arg">actions</var>). This can be given in the component <code class="code">funcnorm</code> and will be computed if this component is not given.</p>
</dd>
<dt><strong class="Mark"><code class="code">normal</code></strong></dt>
<dd><p>if set to <code class="keyw">true</code> only normal subgroups are guaranteed to be returned (though some of the returned subgroups might still be not normal).</p>
</dd>
<dt><strong class="Mark"><code class="code">consider</code></strong></dt>
<dd><p>a function to restrict the groups computed. This must be a function of five parameters, <span class="SimpleMath">C</span>, <span class="SimpleMath">A</span>, <span class="SimpleMath">N</span>, <span class="SimpleMath">B</span>, <span class="SimpleMath">M</span>, that are interpreted as follows: The arguments are subgroups of a factor <span class="SimpleMath">F</span> of <var class="Arg">G</var> in the relation <span class="SimpleMath">F ≥ C > A > N > B > M</span>. <span class="SimpleMath">N</span> and <span class="SimpleMath">M</span> are normal subgroups. <span class="SimpleMath">C</span> is the full preimage of the normalizer of <span class="SimpleMath">A/N</span> in <span class="SimpleMath">F/N</span>. When computing modulo <span class="SimpleMath">M</span> and looking for subgroups <span class="SimpleMath">U</span> such that <span class="SimpleMath">U ∩ N = B</span> and <span class="SimpleMath">⟨ U, N ⟩ = A</span>, this function is called. If it returns <code class="keyw">false</code> then all potential groups <span class="SimpleMath">U</span> (and therefore all groups later arising from them) are disregarded. This can be used for example to compute only subgroups of certain sizes.</p>
<p>(<em>This is just a restriction to speed up computations. The function may still return (invariant) subgroups which don't fulfill this condition!</em>) This parameter is used to permit calculations of some subgroups if the set of all subgroups would be too large to handle.</p>
<p>The actual groups <span class="SimpleMath">C</span>, <span class="SimpleMath">A</span>, <span class="SimpleMath">N</span> and <span class="SimpleMath">B</span> which are passed to this function are not necessarily subgroups of <var class="Arg">G</var> but might be subgroups of a proper factor group <span class="SimpleMath">F = <var class="Arg">G</var>/H</span>. Therefore the <code class="code">consider</code> function may not relate the parameter groups to <var class="Arg">G</var>.</p>
</dd>
<dt><strong class="Mark"><code class="code">retnorm</code></strong></dt>
<dd><p>if set to <code class="keyw">true</code> the function not only returns a list <code class="code">subs</code> of subgroups but also a corresponding list <code class="code">norms</code> of normalizers in the form <code class="code">[ subs, norms ]</code>.</p>
</dd>
<dt><strong class="Mark"><code class="code">series</code></strong></dt>
<dd><p>is an elementary abelian series of <var class="Arg">G</var> which will be used for the computation.</p>
</dd>
<dt><strong class="Mark"><code class="code">groups</code></strong></dt>
<dd><p>is a list of groups to seed the calculation. Only subgroups of these groups are constructed.</p>
</dd>
</dl>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=Group((1,2,3),(1,2),(4,5,6),(4,5),(7,8,9),(7,8));</span>
Group([ (1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), (7,8) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">hom:=GroupHomomorphismByImages(g,g,</span>
<span class="GAPprompt">></span> <span class="GAPinput">[(1,2,3),(1,2),(4,5,6),(4,5),(7,8,9),(7,8)],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[(4,5,6),(4,5),(7,8,9),(7,8),(1,2,3),(1,2)]);</span>
[ (1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), (7,8) ] ->
[ (4,5,6), (4,5), (7,8,9), (7,8), (1,2,3), (1,2) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">l:=SubgroupsSolvableGroup(g,rec(actions:=[hom]));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(l,Size);</span>
[ 1, 3, 9, 27, 54, 2, 6, 18, 108, 4, 216, 8 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Length(ConjugacyClassesSubgroups(g)); # to compare</span>
162
</pre></div>
<p><a id="X7F60BBB8874DFE40" name="X7F60BBB8874DFE40"></a></p>
<h5>39.21-4 SizeConsiderFunction</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SizeConsiderFunction</code>( <var class="Arg">size</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function returns a function <code class="code">consider</code> of four arguments that can be used in <code class="func">SubgroupsSolvableGroup</code> (<a href="chap39.html#X7AD7804A803910AC"><span class="RefLink">39.21-3</span></a>) for the option <code class="code">consider</code> to compute subgroups whose sizes are divisible by <var class="Arg">size</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">l:=SubgroupsSolvableGroup(g,rec(actions:=[hom],</span>
<span class="GAPprompt">></span> <span class="GAPinput">consider:=SizeConsiderFunction(6)));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(l,Size);</span>
[ 1, 3, 9, 27, 54, 6, 18, 108, 216 ]
</pre></div>
<p>This example shows that in general the <code class="code">consider</code> function does not provide a perfect filter. It is guaranteed that all subgroups fulfilling the condition are returned, but not all subgroups returned necessarily fulfill the condition.</p>
<p><a id="X833C51BD7E7812C4" name="X833C51BD7E7812C4"></a></p>
<h5>39.21-5 ExactSizeConsiderFunction</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ExactSizeConsiderFunction</code>( <var class="Arg">size</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function returns a function <code class="code">consider</code> of four arguments that can be used in <code class="func">SubgroupsSolvableGroup</code> (<a href="chap39.html#X7AD7804A803910AC"><span class="RefLink">39.21-3</span></a>) for the option <code class="code">consider</code> to compute subgroups whose sizes are exactly <var class="Arg">size</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">l:=SubgroupsSolvableGroup(g,rec(actions:=[hom],</span>
<span class="GAPprompt">></span> <span class="GAPinput">consider:=ExactSizeConsiderFunction(6)));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(l,Size);</span>
[ 1, 3, 9, 27, 54, 6, 108, 216 ]
</pre></div>
<p>Again, the <code class="code">consider</code> function does not provide a perfect filter. It is guaranteed that all subgroups fulfilling the condition are returned, but not all subgroups returned necessarily fulfill the condition.</p>
<p><a id="X7A2C774B7CFF3E07" name="X7A2C774B7CFF3E07"></a></p>
<h5>39.21-6 InfoPcSubgroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ InfoPcSubgroup</code></td><td class="tdright">( info class )</td></tr></table></div>
<p>Information function for the subgroup lattice functions using pcgs.</p>
<p><a id="X79F894537D526B61" name="X79F894537D526B61"></a></p>
<h4>39.22 <span class="Heading">Special Generating Sets</span></h4>
<p><a id="X82FD78AF7F80A0E2" name="X82FD78AF7F80A0E2"></a></p>
<h5>39.22-1 GeneratorsSmallest</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GeneratorsSmallest</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a "smallest" generating set for the group <var class="Arg">G</var>. This is the lexicographically (using <strong class="pkg">GAP</strong>s order of group elements) smallest list <span class="SimpleMath">l</span> of elements of <var class="Arg">G</var> such that <span class="SimpleMath">G = ⟨ l ⟩</span> and <span class="SimpleMath">l_i not ∈ ⟨ l_1, ..., l_{i-1} ⟩</span> (in particular <span class="SimpleMath">l_1</span> is not the identity element of the group). The comparison of two groups via lexicographic comparison of their sorted element lists yields the same relation as lexicographic comparison of their smallest generating sets.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=SymmetricGroup(4);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">GeneratorsSmallest(g);</span>
[ (3,4), (2,3), (1,2) ]
</pre></div>
<p><a id="X7A258CCF79552198" name="X7A258CCF79552198"></a></p>
<h5>39.22-2 LargestElementGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LargestElementGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the largest element of <var class="Arg">G</var> with respect to the ordering <code class="code"><</code> of the elements family.</p>
<p><a id="X81D15723804771E2" name="X81D15723804771E2"></a></p>
<h5>39.22-3 MinimalGeneratingSet</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MinimalGeneratingSet</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a generating set of <var class="Arg">G</var> of minimal possible length.</p>
<p>Note that –apart from special cases– currently there are only efficient methods known to compute minimal generating sets of finite solvable groups and of finitely generated nilpotent groups. Hence so far these are the only cases for which methods are available. The former case is covered by a method implemented in the <strong class="pkg">GAP</strong> library, while the second case requires the package <strong class="pkg">Polycyclic</strong>.</p>
<p>If you do not really need a minimal generating set, but are satisfied with getting a reasonably small set of generators, you better use <code class="func">SmallGeneratingSet</code> (<a href="chap39.html#X814DBABC878D5232"><span class="RefLink">39.22-4</span></a>).</p>
<p>Information about the minimal generating sets of the finite simple groups of order less than <span class="SimpleMath">10^6</span> can be found in <a href="chapBib.html#biBMY79">[MY79]</a>. See also the package <strong class="pkg">AtlasRep</strong>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">MinimalGeneratingSet(g);</span>
[ (2,4,3), (1,4,2,3) ]
</pre></div>
<p><a id="X814DBABC878D5232" name="X814DBABC878D5232"></a></p>
<h5>39.22-4 SmallGeneratingSet</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SmallGeneratingSet</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a generating set of <var class="Arg">G</var> which has few elements. As neither irredundancy, nor minimal length is proven it runs much faster than <code class="func">MinimalGeneratingSet</code> (<a href="chap39.html#X81D15723804771E2"><span class="RefLink">39.22-3</span></a>). It can be used whenever a short generating set is desired which not necessarily needs to be optimal.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SmallGeneratingSet(g);</span>
[ (1,2,3,4), (1,2) ]
</pre></div>
<p><a id="X7D1574457B152333" name="X7D1574457B152333"></a></p>
<h5>39.22-5 IndependentGeneratorsOfAbelianGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IndependentGeneratorsOfAbelianGroup</code>( <var class="Arg">A</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a list of generators <span class="SimpleMath">a_1, a_2, ...</span> of prime power order or infinite order of the abelian group <var class="Arg">A</var> such that <var class="Arg">A</var> is the direct product of the cyclic groups generated by the <span class="SimpleMath">a_i</span>. The list of orders of the returned generators must match the result of <code class="func">AbelianInvariants</code> (<a href="chap39.html#X812827937F403300"><span class="RefLink">39.16-1</span></a>) (taking into account that zero and <code class="func">infinity</code> (<a href="chap18.html#X8511B8DF83324C27"><span class="RefLink">18.2-1</span></a>) are identified).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=AbelianGroup(IsPermGroup,[15,14,22,78]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(IndependentGeneratorsOfAbelianGroup(g),Order);</span>
[ 2, 2, 2, 3, 3, 5, 7, 11, 13 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">AbelianInvariants(g);</span>
[ 2, 2, 2, 3, 3, 5, 7, 11, 13 ]
</pre></div>
<p><a id="X86F835DA8264A0CE" name="X86F835DA8264A0CE"></a></p>
<h5>39.22-6 IndependentGeneratorExponents</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IndependentGeneratorExponents</code>( <var class="Arg">G</var>, <var class="Arg">g</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>For an abelian group <var class="Arg">G</var>, with <code class="func">IndependentGeneratorsOfAbelianGroup</code> (<a href="chap39.html#X7D1574457B152333"><span class="RefLink">39.22-5</span></a>) value the list <span class="SimpleMath">[ a_1, ..., a_n ]</span>, this operation returns the exponent vector <span class="SimpleMath">[ e_1, ..., e_n ]</span> to represent <span class="SimpleMath"><var class="Arg">g</var> = ∏_i a_i^{e_i}</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g := AbelianGroup([16,9,625]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">gens := IndependentGeneratorsOfAbelianGroup(g);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(gens, Order);</span>
[ 9, 16, 625 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">AbelianInvariants(g);</span>
[ 9, 16, 625 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">r:=gens[1]^4*gens[2]^12*gens[3]^128;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IndependentGeneratorExponents(g,r);</span>
[ 4, 12, 128 ]
</pre></div>
<p><a id="X7CA0B6A27E0BE6B8" name="X7CA0B6A27E0BE6B8"></a></p>
<h4>39.23 <span class="Heading">1-Cohomology</span></h4>
<p>Let <span class="SimpleMath">G</span> be a finite group and <span class="SimpleMath">M</span> an elementary abelian normal <span class="SimpleMath">p</span>-subgroup of <span class="SimpleMath">G</span>. Then the group of 1-cocycles <span class="SimpleMath">Z^1( G/M, M )</span> is defined as</p>
<p class="pcenter">Z^1(G/M, M) = { γ: G/M → M ∣ ∀ g_1, g_2 ∈ G : γ(g_1 M ⋅ g_2 M ) = γ(g_1 M)^{g_2} ⋅ γ(g_2 M) }</p>
<p>and is a <span class="SimpleMath">GF(p)</span>-vector space.</p>
<p>The group of 1-coboundaries <span class="SimpleMath">B^1( G/M, M )</span> is defined as</p>
<p class="pcenter">B^1(G/M, M) = { γ : G/M → M ∣ ∃ m ∈ M ∀ g ∈ G : γ(gM) = (m^{-1})^g ⋅ m }</p>
<p>It also is a <span class="SimpleMath">GF(p)</span>-vector space.</p>
<p>Let <span class="SimpleMath">α</span> be the isomorphism of <span class="SimpleMath">M</span> into a row vector space <span class="SimpleMath">cal W</span> and <span class="SimpleMath">(g_1, ..., g_l)</span> representatives for a generating set of <span class="SimpleMath">G/M</span>. Then there exists a monomorphism <span class="SimpleMath">β</span> of <span class="SimpleMath">Z^1( G/M, M )</span> in the <span class="SimpleMath">l</span>-fold direct sum of <span class="SimpleMath">cal W</span>, such that <span class="SimpleMath">β( γ ) = ( α( γ(g_1 M) ),..., α( γ(g_l M) ) )</span> for every <span class="SimpleMath">γ ∈ Z^1( G/M, M )</span>.</p>
<p><a id="X847BEC137A49BAF4" name="X847BEC137A49BAF4"></a></p>
<h5>39.23-1 <span class="Heading">OneCocycles</span></h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ OneCocycles</code>( <var class="Arg">G</var>, <var class="Arg">M</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ OneCocycles</code>( <var class="Arg">G</var>, <var class="Arg">mpcgs</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ OneCocycles</code>( <var class="Arg">gens</var>, <var class="Arg">M</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ OneCocycles</code>( <var class="Arg">gens</var>, <var class="Arg">mpcgs</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Computes the group of 1-cocycles <span class="SimpleMath">Z^1(<var class="Arg">G</var>/<var class="Arg">M</var>,<var class="Arg">M</var>)</span>. The normal subgroup <var class="Arg">M</var> may be given by a (Modulo)Pcgs <var class="Arg">mpcgs</var>. In this case the whole calculation is performed modulo the normal subgroup defined by <code class="code">DenominatorOfModuloPcgs(<var class="Arg">mpcgs</var>)</code> (see <a href="chap45.html#X7F18A01785DBAC4E"><span class="RefLink">45.1</span></a>). Similarly the group <var class="Arg">G</var> may instead be specified by a set of elements <var class="Arg">gens</var> that are representatives for a generating system for the factor group <var class="Arg">G</var>/<var class="Arg">M</var>. If this is done the 1-cocycles are computed with respect to these generators (otherwise the routines try to select suitable generators themselves). The current version of the code assumes that <var class="Arg">G</var> is a permutation group or a pc group.</p>
<p><a id="X7E6438D5834ACCDA" name="X7E6438D5834ACCDA"></a></p>
<h5>39.23-2 OneCoboundaries</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ OneCoboundaries</code>( <var class="Arg">G</var>, <var class="Arg">M</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>computes the group of 1-coboundaries. Syntax of input and output otherwise is the same as with <code class="func">OneCocycles</code> (<a href="chap39.html#X847BEC137A49BAF4"><span class="RefLink">39.23-1</span></a>) except that entries that refer to cocycles are not computed.</p>
<p>The operations <code class="func">OneCocycles</code> (<a href="chap39.html#X847BEC137A49BAF4"><span class="RefLink">39.23-1</span></a>) and <code class="func">OneCoboundaries</code> return a record with (at least) the components:</p>
<dl>
<dt><strong class="Mark"><code class="code">generators</code></strong></dt>
<dd><p>Is a list of representatives for a generating set of <var class="Arg">G</var>/<var class="Arg">M</var>. Cocycles are represented with respect to these generators.</p>
</dd>
<dt><strong class="Mark"><code class="code">oneCocycles</code></strong></dt>
<dd><p>A space of row vectors over GF(<span class="SimpleMath">p</span>), representing <span class="SimpleMath">Z^1</span>. The vectors are represented in dimension <span class="SimpleMath">a ⋅ b</span> where <span class="SimpleMath">a</span> is the length of <code class="code">generators</code> and <span class="SimpleMath">p^b</span> the size of <var class="Arg">M</var>.</p>
</dd>
<dt><strong class="Mark"><code class="code">oneCoboundaries</code></strong></dt>
<dd><p>A space of row vectors that represents <span class="SimpleMath">B^1</span>.</p>
</dd>
<dt><strong class="Mark"><code class="code">cocycleToList</code></strong></dt>
<dd><p>is a function to convert a cocycle (a row vector in <code class="code">oneCocycles</code>) to a corresponding list of elements of <var class="Arg">M</var>.</p>
</dd>
<dt><strong class="Mark"><code class="code">listToCocycle</code></strong></dt>
<dd><p>is a function to convert a list of elements of <var class="Arg">M</var> to a cocycle.</p>
</dd>
<dt><strong class="Mark"><code class="code">isSplitExtension</code></strong></dt>
<dd><p>indicates whether <var class="Arg">G</var> splits over <var class="Arg">M</var>. The following components are only bound if the extension splits. Note that if <var class="Arg">M</var> is given by a modulo pcgs all subgroups are given as subgroups of <var class="Arg">G</var> by generators corresponding to <code class="code">generators</code> and thus may not contain the denominator of the modulo pcgs. In this case taking the closure with this denominator will give the full preimage of the complement in the factor group.</p>
</dd>
<dt><strong class="Mark"><code class="code">complement</code></strong></dt>
<dd><p>One complement to <var class="Arg">M</var> in <var class="Arg">G</var>.</p>
</dd>
<dt><strong class="Mark"><code class="code">cocycleToComplement( cyc )</code></strong></dt>
<dd><p>is a function that takes a cocycle from <code class="code">oneCocycles</code> and returns the corresponding complement to <var class="Arg">M</var> in <var class="Arg">G</var> (with respect to the fixed complement <code class="code">complement</code>).</p>
</dd>
<dt><strong class="Mark"><code class="code">complementToCocycle(<var class="Arg">U</var>)</code></strong></dt>
<dd><p>is a function that takes a complement and returns the corresponding cocycle.</p>
</dd>
</dl>
<p>If the factor <var class="Arg">G</var>/<var class="Arg">M</var> is given by a (modulo) pcgs <var class="Arg">gens</var> then special methods are used that compute a presentation for the factor implicitly from the pcgs.</p>
<p>Note that the groups of 1-cocycles and 1-coboundaries are not groups in the sense of <code class="func">Group</code> (<a href="chap39.html#X7D8E473384DE9CD4"><span class="RefLink">39.2-1</span></a>) for <strong class="pkg">GAP</strong> but vector spaces.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=Group((1,2,3,4),(1,2));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">n:=Group((1,2)(3,4),(1,3)(2,4));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">oc:=OneCocycles(g,n);</span>
rec( cocycleToComplement := function( c ) ... end,
cocycleToList := function( c ) ... end,
complement := Group([ (3,4), (2,4,3) ]),
complementGens := [ (3,4), (2,4,3) ],
complementToCocycle := function( K ) ... end,
factorGens := [ (3,4), (2,4,3) ], generators := [ (3,4), (2,4,3) ],
isSplitExtension := true, listToCocycle := function( L ) ... end,
oneCoboundaries := <vector space over GF(2), with 2 generators>,
oneCocycles := <vector space over GF(2), with 2 generators> )
<span class="GAPprompt">gap></span> <span class="GAPinput">oc.cocycleToList([ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ]);</span>
[ (1,2)(3,4), (1,2)(3,4) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">oc.listToCocycle([(),(1,3)(2,4)]) = Z(2) * [ 0, 0, 1, 0];</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">oc.cocycleToComplement([ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ]);</span>
Group([ (3,4), (1,3,4) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">oc.complementToCocycle(Group((1,2,4),(1,4))) = Z(2) * [ 0, 1, 1, 1 ];</span>
true
</pre></div>
<p>The factor group <span class="SimpleMath">H^1(<var class="Arg">G</var>/<var class="Arg">M</var>, <var class="Arg">M</var>) = Z^1(<var class="Arg">G</var>/<var class="Arg">M</var>, <var class="Arg">M</var>) / B^1(<var class="Arg">G</var>/<var class="Arg">M</var>, <var class="Arg">M</var>)</span> is called the first cohomology group. Currently there is no function which explicitly computes this group. The easiest way to represent it is as a vector space complement to <span class="SimpleMath">B^1</span> in <span class="SimpleMath">Z^1</span>.</p>
<p>If the only purpose of the calculation of <span class="SimpleMath">H^1</span> is the determination of complements it might be desirable to stop calculations once it is known that the extension cannot split. This can be achieved via the more technical function <code class="func">OCOneCocycles</code> (<a href="chap39.html#X80400ABD7F40FAA0"><span class="RefLink">39.23-3</span></a>).</p>
<p><a id="X80400ABD7F40FAA0" name="X80400ABD7F40FAA0"></a></p>
<h5>39.23-3 OCOneCocycles</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ OCOneCocycles</code>( <var class="Arg">ocr</var>, <var class="Arg">onlySplit</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>is the more technical function to compute 1-cocycles. It takes an record <var class="Arg">ocr</var> as first argument which must contain at least the components <code class="code">group</code> for the group and <code class="code">modulePcgs</code> for a (modulo) pcgs of the module. This record will also be returned with components as described under <code class="func">OneCocycles</code> (<a href="chap39.html#X847BEC137A49BAF4"><span class="RefLink">39.23-1</span></a>) (with the exception of <code class="code">isSplitExtension</code> which is indicated by the existence of a <code class="code">complement</code>) but components such as <code class="code">oneCoboundaries</code> will only be computed if not already present.</p>
<p>If <var class="Arg">onlySplit</var> is <code class="keyw">true</code>, <code class="func">OCOneCocycles</code> returns <code class="keyw">false</code> as soon as possible if the extension does not split.</p>
<p><a id="X811E1CF07DABE924" name="X811E1CF07DABE924"></a></p>
<h5>39.23-4 ComplementClassesRepresentativesEA</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ComplementClassesRepresentativesEA</code>( <var class="Arg">G</var>, <var class="Arg">N</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>computes complement classes to an elementary abelian normal subgroup <var class="Arg">N</var> via 1-Cohomology. Normally, a user program should call <code class="func">ComplementClassesRepresentatives</code> (<a href="chap39.html#X811B8A4683DDE1F9"><span class="RefLink">39.11-6</span></a>) instead, which also works for a solvable (not necessarily elementary abelian) <var class="Arg">N</var>.</p>
<p><a id="X8199B1D27D487897" name="X8199B1D27D487897"></a></p>
<h5>39.23-5 InfoCoh</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ InfoCoh</code></td><td class="tdright">( info class )</td></tr></table></div>
<p>The info class for the cohomology calculations is <code class="func">InfoCoh</code>.</p>
<p><a id="X80A4B0F282977074" name="X80A4B0F282977074"></a></p>
<h4>39.24 <span class="Heading">Schur Covers and Multipliers</span></h4>
<p>Additional attributes and properties of a group can be derived from computing its Schur cover. For example, if <span class="SimpleMath">G</span> is a finitely presented group, the derived subgroup of a Schur cover of <span class="SimpleMath">G</span> is invariant and isomorphic to the <code class="func">NonabelianExteriorSquare</code> (<a href="chap39.html#X8739CD4686301A0E"><span class="RefLink">39.24-5</span></a>) value of <span class="SimpleMath">G</span>, see <a href="chapBib.html#biBBJR87">[BJR87]</a>.</p>
<p><a id="X7F619DDA7DD6C43B" name="X7F619DDA7DD6C43B"></a></p>
<h5>39.24-1 EpimorphismSchurCover</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ EpimorphismSchurCover</code>( <var class="Arg">G</var>[, <var class="Arg">pl</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns an epimorphism <span class="SimpleMath">epi</span> from a group <span class="SimpleMath">D</span> onto <var class="Arg">G</var>. The group <span class="SimpleMath">D</span> is one (of possibly several) Schur covers of <var class="Arg">G</var>. The group <span class="SimpleMath">D</span> can be obtained as the <code class="func">Source</code> (<a href="chap32.html#X7DE8173F80E07AB1"><span class="RefLink">32.3-8</span></a>) value of <var class="Arg">epi</var>. The kernel of <span class="SimpleMath">epi</span> is the Schur multiplier of <var class="Arg">G</var>. If <var class="Arg">pl</var> is given as a list of primes, only the multiplier part for these primes is realized. At the moment, <span class="SimpleMath">D</span> is represented as a finitely presented group.</p>
<p><a id="X7DD1E37987612042" name="X7DD1E37987612042"></a></p>
<h5>39.24-2 SchurCover</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SchurCover</code>( <var class="Arg">G</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns one (of possibly several) Schur covers of the group <var class="Arg">G</var>.</p>
<p>At the moment this cover is represented as a finitely presented group and <code class="func">IsomorphismPermGroup</code> (<a href="chap43.html#X80B7B1C783AA1567"><span class="RefLink">43.3-1</span></a>) would be needed to convert it to a permutation group.</p>
<p>If also the relation to <var class="Arg">G</var> is needed, <code class="func">EpimorphismSchurCover</code> (<a href="chap39.html#X7F619DDA7DD6C43B"><span class="RefLink">39.24-1</span></a>) should be used.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=Group((1,2,3,4),(1,2));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">epi:=EpimorphismSchurCover(g);</span>
[ f1, f2, f3 ] -> [ (3,4), (2,4,3), (1,3)(2,4) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(Source(epi));</span>
48
</pre></div>
<p>If the group becomes bigger, Schur Cover calculations might become unfeasible.</p>
<p>There is another operation, <code class="func">AbelianInvariantsMultiplier</code> (<a href="chap39.html#X792BC39D7CEB1D27"><span class="RefLink">39.24-3</span></a>), which only returns the structure of the Schur Multiplier, and which should work for larger groups as well.</p>
<p><a id="X792BC39D7CEB1D27" name="X792BC39D7CEB1D27"></a></p>
<h5>39.24-3 AbelianInvariantsMultiplier</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AbelianInvariantsMultiplier</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a list of the abelian invariants of the Schur multiplier of <var class="Arg">G</var>.</p>
<p>At the moment, this operation will not give any information about how to extend the multiplier to a Schur Cover.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">AbelianInvariantsMultiplier(g);</span>
[ 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">AbelianInvariantsMultiplier(AlternatingGroup(6));</span>
[ 2, 3 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">AbelianInvariantsMultiplier(SL(2,3));</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">AbelianInvariantsMultiplier(SL(3,2));</span>
[ 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">AbelianInvariantsMultiplier(PSU(4,2));</span>
[ 2 ]
</pre></div>
<p>(Note that the last command from the example will take some time.)</p>
<p>The <strong class="pkg">GAP</strong> 4.4.12 manual contained examples for larger groups e.g. <span class="SimpleMath">M_22</span>. However, some issues that may very rarely (and not easily reproducibly) lead to wrong results were discovered in the code capable of handling larger groups, and in <strong class="pkg">GAP</strong> 4.5 it was replaced by a more reliable basic method. To deal with larger groups, one can use the function <code class="func">SchurMultiplier</code> (<span class="RefLink">???</span>) from the <strong class="pkg">cohomolo</strong> package. Also, additional methods for <code class="func">AbelianInvariantsMultiplier</code> are installed in the <strong class="pkg">Polycyclic</strong> package for pcp-groups.</p>
<p><a id="X819E8AEC835F8CD1" name="X819E8AEC835F8CD1"></a></p>
<h5>39.24-4 Epicentre</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Epicentre</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ExteriorCentre</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>There are various ways of describing the epicentre of a group <var class="Arg">G</var>. It is the smallest normal subgroup <span class="SimpleMath">N</span> of <var class="Arg">G</var> such that <span class="SimpleMath"><var class="Arg">G</var>/N</span> is a central quotient of a group. It is also equal to the Exterior Center of <var class="Arg">G</var>, see <a href="chapBib.html#biBEllis98">[Ell98]</a>.</p>
<p><a id="X8739CD4686301A0E" name="X8739CD4686301A0E"></a></p>
<h5>39.24-5 NonabelianExteriorSquare</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ NonabelianExteriorSquare</code>( <var class="Arg">G</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Computes the nonabelian exterior square <span class="SimpleMath"><var class="Arg">G</var> ∧ <var class="Arg">G</var></span> of the group <var class="Arg">G</var>, which for a finitely presented group is the derived subgroup of any Schur cover of <var class="Arg">G</var> (see <a href="chapBib.html#biBBJR87">[BJR87]</a>).</p>
<p><a id="X7E1C8CD77CDB9F71" name="X7E1C8CD77CDB9F71"></a></p>
<h5>39.24-6 EpimorphismNonabelianExteriorSquare</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ EpimorphismNonabelianExteriorSquare</code>( <var class="Arg">G</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Computes the mapping <span class="SimpleMath"><var class="Arg">G</var> ∧ <var class="Arg">G</var> → <var class="Arg">G</var></span>. The kernel of this mapping is equal to the Schur multiplier of <var class="Arg">G</var>.</p>
<p><a id="X7BF8DB3D8300BB3F" name="X7BF8DB3D8300BB3F"></a></p>
<h5>39.24-7 IsCentralFactor</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsCentralFactor</code>( <var class="Arg">G</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>This function determines if there exists a group <span class="SimpleMath">H</span> such that <var class="Arg">G</var> is isomorphic to the quotient <span class="SimpleMath">H/Z(H)</span>. A group with this property is called in literature <em>capable</em>. A group being capable is equivalent to the epicentre of <var class="Arg">G</var> being trivial, see <a href="chapBib.html#biBBFS79">[BFS79]</a>.</p>
<p><a id="X7F4240CD782B6032" name="X7F4240CD782B6032"></a></p>
<h5>39.24-8 <span class="Heading">Covering groups of symmetric groups</span></h5>
<p>The covering groups of symmetric groups were classified in <a href="chapBib.html#biBSchur1911">[Sch11]</a>; an inductive procedure to construct faithful, irreducible representations of minimal degree over all fields was presented in <a href="chapBib.html#biBMaas2010">[Maa10]</a>. Methods for <code class="func">EpimorphismSchurCover</code> (<a href="chap39.html#X7F619DDA7DD6C43B"><span class="RefLink">39.24-1</span></a>) are provided for natural symmetric groups which use these representations. For alternating groups, the restriction of these representations are provided, but they may not be irreducible. In the case of degree <span class="SimpleMath">6</span> and <span class="SimpleMath">7</span>, they are not the full covering groups and so matrix representations are just stored explicitly for the six-fold covers.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">EpimorphismSchurCover(SymmetricGroup(15));</span>
[ < immutable compressed matrix 64x64 over GF(9) >,
< immutable compressed matrix 64x64 over GF(9) > ] ->
[ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15), (1,2) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">EpimorphismSchurCover(AlternatingGroup(15));</span>
[ < immutable compressed matrix 64x64 over GF(9) >,
< immutable compressed matrix 64x64 over GF(9) > ] ->
[ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15), (13,14,15) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">SchurCoverOfSymmetricGroup(12);</span>
<matrix group of size 958003200 with 2 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">DoubleCoverOfAlternatingGroup(12);</span>
<matrix group of size 479001600 with 2 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">BasicSpinRepresentationOfSymmetricGroup( 10, 3, -1 );</span>
[ < immutable compressed matrix 16x16 over GF(9) >,
< immutable compressed matrix 16x16 over GF(9) >,
< immutable compressed matrix 16x16 over GF(9) >,
< immutable compressed matrix 16x16 over GF(9) >,
< immutable compressed matrix 16x16 over GF(9) >,
< immutable compressed matrix 16x16 over GF(9) >,
< immutable compressed matrix 16x16 over GF(9) >,
< immutable compressed matrix 16x16 over GF(9) >,
< immutable compressed matrix 16x16 over GF(9) > ]
</pre></div>
<p><a id="X7DDA6BC1824F78FD" name="X7DDA6BC1824F78FD"></a></p>
<h5>39.24-9 BasicSpinRepresentationOfSymmetricGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ BasicSpinRepresentationOfSymmetricGroup</code>( <var class="Arg">n</var>, <var class="Arg">p</var>, <var class="Arg">sign</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Constructs the image of the Coxeter generators in the basic spin (projective) representation of the symmetric group of degree <var class="Arg">n</var> over a field of characteristic <span class="SimpleMath"><var class="Arg">p</var> ≥ 0</span>. There are two such representations and <var class="Arg">sign</var> controls which is returned: +1 gives a group where the preimage of an adjacent transposition <span class="SimpleMath">(i,i+1)</span> has order 4, -1 gives a group where the preimage of an adjacent transposition <span class="SimpleMath">(i,i+1)</span> has order 2. If no <var class="Arg">sign</var> is specified, +1 is used by default. If no <var class="Arg">p</var> is specified, 3 is used by default.</p>
<p><a id="X844CFFDE80F6AD15" name="X844CFFDE80F6AD15"></a></p>
<h5>39.24-10 SchurCoverOfSymmetricGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SchurCoverOfSymmetricGroup</code>( <var class="Arg">n</var>, <var class="Arg">p</var>, <var class="Arg">sign</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Constructs a Schur cover of <code class="code">SymmetricGroup(<var class="Arg">n</var>)</code> as a faithful, irreducible matrix group in characteristic <var class="Arg">p</var> (<span class="SimpleMath"><var class="Arg">p</var> ≠ 2</span>). For <span class="SimpleMath"><var class="Arg">n</var> ≥ 4</span>, there are two such covers, and <var class="Arg">sign</var> determines which is returned: +1 gives a group where the preimage of an adjacent transposition <span class="SimpleMath">(i,i+1)</span> has order 4, -1 gives a group where the preimage of an adjacent transposition <span class="SimpleMath">(i,i+1)</span> has order 2. If no <var class="Arg">sign</var> is specified, +1 is used by default. If no <var class="Arg">p</var> is specified, 3 is used by default. For <span class="SimpleMath"><var class="Arg">n</var> ≤ 3</span>, the symmetric group is its own Schur cover and <var class="Arg">sign</var> is ignored. For <span class="SimpleMath"><var class="Arg">p</var> = 2</span>, there is no faithful, irreducible representation of the Schur cover unless <span class="SimpleMath"><var class="Arg">n</var> = 1</span> or <span class="SimpleMath"><var class="Arg">n</var> = 3</span>, so <code class="keyw">fail</code> is returned if <span class="SimpleMath"><var class="Arg">p</var> = 2</span>. For <span class="SimpleMath"><var class="Arg">p</var> = 3</span>, <span class="SimpleMath"><var class="Arg">n</var> = 3</span>, the representation is indecomposable, but reducible. The field of the matrix group is generally <code class="code">GF(<var class="Arg">p</var>^2)</code> if <span class="SimpleMath"><var class="Arg">p</var> > 0</span>, and an abelian number field if <span class="SimpleMath"><var class="Arg">p</var> = 0</span>.</p>
<p><a id="X7E0F4896795E34FC" name="X7E0F4896795E34FC"></a></p>
<h5>39.24-11 DoubleCoverOfAlternatingGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DoubleCoverOfAlternatingGroup</code>( <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Constructs a double cover of <code class="code">AlternatingGroup(<var class="Arg">n</var>)</code> as a faithful, completely reducible matrix group in characteristic <var class="Arg">p</var> (<span class="SimpleMath">p ≠ 2</span>) for <span class="SimpleMath">n ≥ 4</span>. For <span class="SimpleMath">n ≥ 3</span>, the symmetric group is its own Schur cover so <code class="keyw">fail</code> is returned. For <span class="SimpleMath">p = 2</span>, there is no faithful, completely reducible representation of the double cover, so <code class="keyw">fail</code> is returned. The field of the matrix group is generally <code class="code">GF(p^2)</code> if <span class="SimpleMath">p>0</span>, and an abelian number field if <span class="SimpleMath">p=0</span>. If <var class="Arg">p</var> is omitted, the default is 3.</p>
<p><a id="X865722987E0E19B6" name="X865722987E0E19B6"></a></p>
<h4>39.25 <span class="Heading">Tests for the Availability of Methods</span></h4>
<p>The following filters and operations indicate capabilities of <strong class="pkg">GAP</strong>. They can be used in the method selection or algorithms to check whether it is feasible to compute certain operations for a given group. In general, they return <code class="keyw">true</code> if good algorithms for the given arguments are available in <strong class="pkg">GAP</strong>. An answer <code class="keyw">false</code> indicates that no method for this group may exist, or that the existing methods might run into problems.</p>
<p>Typical examples when this might happen is with finitely presented groups, for which many of the methods cannot be guaranteed to succeed in all situations.</p>
<p>The willingness of <strong class="pkg">GAP</strong> to perform certain operations may change, depending on which further information is known about the arguments. Therefore the filters used are not implemented as properties but as "other filters" (see <a href="chap13.html#X871597447BB998A1"><span class="RefLink">13.7</span></a> and <a href="chap13.html#X7997705185C7E720"><span class="RefLink">13.8</span></a>).</p>
<p><a id="X798F13EA810FB215" name="X798F13EA810FB215"></a></p>
<h5>39.25-1 CanEasilyTestMembership</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CanEasilyTestMembership</code>( <var class="Arg">G</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This filter indicates whether <strong class="pkg">GAP</strong> can test membership of elements in the group <var class="Arg">G</var> (via the operation <code class="func">\in</code> (<a href="chap30.html#X84B7FA8C7C94400F"><span class="RefLink">30.6-1</span></a>)) in reasonable time. It is used by the method selection to decide whether an algorithm that relies on membership tests may be used.</p>
<p><a id="X7C2A89607BDFD920" name="X7C2A89607BDFD920"></a></p>
<h5>39.25-2 CanEasilyComputeWithIndependentGensAbelianGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CanEasilyComputeWithIndependentGensAbelianGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This filter indicates whether <strong class="pkg">GAP</strong> can in reasonable time compute independent abelian generators of the group <var class="Arg">G</var> (via <code class="func">IndependentGeneratorsOfAbelianGroup</code> (<a href="chap39.html#X7D1574457B152333"><span class="RefLink">39.22-5</span></a>)) and then can decompose arbitrary group elements with respect to these generators using <code class="func">IndependentGeneratorExponents</code> (<a href="chap39.html#X86F835DA8264A0CE"><span class="RefLink">39.22-6</span></a>). It is used by the method selection to decide whether an algorithm that relies on these two operations may be used.</p>
<p><a id="X83245C82835D496C" name="X83245C82835D496C"></a></p>
<h5>39.25-3 CanComputeSize</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CanComputeSize</code>( <var class="Arg">dom</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This filter indicates whether the size of the domain <var class="Arg">dom</var> (which might be <code class="func">infinity</code> (<a href="chap18.html#X8511B8DF83324C27"><span class="RefLink">18.2-1</span></a>)) can be computed.</p>
<p><a id="X8268965487364912" name="X8268965487364912"></a></p>
<h5>39.25-4 CanComputeSizeAnySubgroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CanComputeSizeAnySubgroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This filter indicates whether <strong class="pkg">GAP</strong> can easily compute the size of any subgroup of the group <var class="Arg">G</var>. (This is for example advantageous if one can test that a stabilizer index equals the length of the orbit computed so far to stop early.)</p>
<p><a id="X82DDE00D82A32083" name="X82DDE00D82A32083"></a></p>
<h5>39.25-5 CanComputeIndex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CanComputeIndex</code>( <var class="Arg">G</var>, <var class="Arg">H</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function indicates whether the index <span class="SimpleMath">[<var class="Arg">G</var>:<var class="Arg">H</var>]</span> (which might be <code class="func">infinity</code> (<a href="chap18.html#X8511B8DF83324C27"><span class="RefLink">18.2-1</span></a>)) can be computed. It assumes that <span class="SimpleMath"><var class="Arg">H</var> ≤ <var class="Arg">G</var></span> (see <code class="func">CanComputeIsSubset</code> (<a href="chap39.html#X7BE7C36B84C23511"><span class="RefLink">39.25-6</span></a>)).</p>
<p><a id="X7BE7C36B84C23511" name="X7BE7C36B84C23511"></a></p>
<h5>39.25-6 CanComputeIsSubset</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CanComputeIsSubset</code>( <var class="Arg">A</var>, <var class="Arg">B</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>This filter indicates that <strong class="pkg">GAP</strong> can test (via <code class="func">IsSubset</code> (<a href="chap30.html#X79CA175481F8105F"><span class="RefLink">30.5-1</span></a>)) whether <var class="Arg">B</var> is a subset of <var class="Arg">A</var>.</p>
<p><a id="X87D62C2C7C375E2D" name="X87D62C2C7C375E2D"></a></p>
<h5>39.25-7 KnowsHowToDecompose</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ KnowsHowToDecompose</code>( <var class="Arg">G</var>[, <var class="Arg">gens</var>] )</td><td class="tdright">( property )</td></tr></table></div>
<p>Tests whether the group <var class="Arg">G</var> can decompose elements in the generators <var class="Arg">gens</var>. If <var class="Arg">gens</var> is not given it tests, whether it can decompose in the generators given in the <code class="func">GeneratorsOfGroup</code> (<a href="chap39.html#X79C44528864044C5"><span class="RefLink">39.2-4</span></a>) value of <var class="Arg">G</var>.</p>
<p>This property can be used for example to check whether a group homomorphism by images (see <code class="func">GroupHomomorphismByImages</code> (<a href="chap40.html#X7F348F497C813BE0"><span class="RefLink">40.1-1</span></a>)) can be reasonably defined from this group.</p>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap38.html">[Previous Chapter]</a> <a href="chap40.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chap41.html">41</a> <a href="chap42.html">42</a> <a href="chap43.html">43</a> <a href="chap44.html">44</a> <a href="chap45.html">45</a> <a href="chap46.html">46</a> <a href="chap47.html">47</a> <a href="chap48.html">48</a> <a href="chap49.html">49</a> <a href="chap50.html">50</a> <a href="chap51.html">51</a> <a href="chap52.html">52</a> <a href="chap53.html">53</a> <a href="chap54.html">54</a> <a href="chap55.html">55</a> <a href="chap56.html">56</a> <a href="chap57.html">57</a> <a href="chap58.html">58</a> <a href="chap59.html">59</a> <a href="chap60.html">60</a> <a href="chap61.html">61</a> <a href="chap62.html">62</a> <a href="chap63.html">63</a> <a href="chap64.html">64</a> <a href="chap65.html">65</a> <a href="chap66.html">66</a> <a href="chap67.html">67</a> <a href="chap68.html">68</a> <a href="chap69.html">69</a> <a href="chap70.html">70</a> <a href="chap71.html">71</a> <a href="chap72.html">72</a> <a href="chap73.html">73</a> <a href="chap74.html">74</a> <a href="chap75.html">75</a> <a href="chap76.html">76</a> <a href="chap77.html">77</a> <a href="chap78.html">78</a> <a href="chap79.html">79</a> <a href="chap80.html">80</a> <a href="chap81.html">81</a> <a href="chap82.html">82</a> <a href="chap83.html">83</a> <a href="chap84.html">84</a> <a href="chap85.html">85</a> <a href="chap86.html">86</a> <a href="chap87.html">87</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|