This file is indexed.

/usr/share/gap/doc/ref/chap46.html is in gap-doc 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (ref) - Chapter 46: Pc Groups</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap46"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap45.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap47.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap46_mj.html">[MathJax on]</a></p>
<p><a id="X7EAD57C97EBF7E67" name="X7EAD57C97EBF7E67"></a></p>
<div class="ChapSects"><a href="chap46.html#X7EAD57C97EBF7E67">46 <span class="Heading">Pc Groups</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap46.html#X78E9E4D778A57A96">46.1 <span class="Heading">The family pcgs</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X79EDB35E82C99304">46.1-1 FamilyPcgs</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X80893D2A7FFC791B">46.1-2 IsFamilyPcgs</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X85C1596A867BE93D">46.1-3 InducedPcgsWrtFamilyPcgs</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X8333ACCB7F530406">46.1-4 IsParentPcgsFamilyPcgs</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap46.html#X842526BE7FEFE8BD">46.2 <span class="Heading">Elements of pc groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X869DCE7D86E32337">46.2-1 <span class="Heading">Comparison of elements of pc groups</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X7D1B700882FC6C78">46.2-2 <span class="Heading">Arithmetic operations for elements of pc groups</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap46.html#X87B866C386B386E4">46.3 <span class="Heading">Pc groups versus fp groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X7D1F506D7830B1D9">46.3-1 IsPcGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X7D2735A18111FE39">46.3-2 IsomorphismFpGroupByPcgs</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap46.html#X8581887880556E0C">46.4 <span class="Heading">Constructing Pc Groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X84C10D1F7CB5274F">46.4-1 PcGroupFpGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X7E958DB281E070FD">46.4-2 SingleCollector</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X86A08D887E049347">46.4-3 SetConjugate</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X7B25997C7DF92B6D">46.4-4 SetCommutator</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X7BC319BA8698420C">46.4-5 SetPower</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X84F0521486672C3C">46.4-6 GroupByRws</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X7DF4835F79667099">46.4-7 IsConfluent</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X7E6226597DFE5F8F">46.4-8 IsomorphismRefinedPcGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X821560A387762DD1">46.4-9 RefinedPcGroup</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap46.html#X83F69FE27B024E24">46.5 <span class="Heading">Computing Pc Groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X81C55D4F825C36D4">46.5-1 PcGroupWithPcgs</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X873CEB137BA1CD6E">46.5-2 IsomorphismPcGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X82BE14A986FA6882">46.5-3 IsomorphismSpecialPcGroup</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap46.html#X85696AB9791DF047">46.6 <span class="Heading">Saving a Pc Group</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X8593253380D84508">46.6-1 GapInputPcGroup</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap46.html#X8391EE8D782D0C9E">46.7 <span class="Heading">Operations for Pc Groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap46.html#X7ECDC1A1853F0658">46.8 <span class="Heading"><span class="SimpleMath">2</span>-Cohomology and Extensions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X78E6E11E8285E288">46.8-1 TwoCoboundaries</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X784FCA207B8694A6">46.8-2 TwoCocycles</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X838065F97F60468F">46.8-3 TwoCohomology</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X8236AD927A5A0E5A">46.8-4 Extensions</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X7B3BE908867CE4F9">46.8-5 Extension</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X83DCB5AB7B6EE785">46.8-6 SplitExtension</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X7EAC6B8B7ABEEB86">46.8-7 ModuleOfExtension</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X824F2B2E7C11ABAF">46.8-8 CompatiblePairs</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X854FFEF187C4AAB9">46.8-9 ExtensionRepresentatives</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X7958281D801DC9FF">46.8-10 SplitExtensions</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap46.html#X874E4B107BD78F5A">46.9 <span class="Heading">Coding a Pc Presentation</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X79948F1D7D4FF8D9">46.9-1 CodePcgs</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X8041C2D88721EEA9">46.9-2 CodePcGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X826BFDA07A707C54">46.9-3 PcGroupCode</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap46.html#X81D211D8838B875C">46.10 <span class="Heading">Random Isomorphism Testing</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap46.html#X84F6F9787CB2CF16">46.10-1 RandomIsomorphismTest</a></span>
</div></div>
</div>

<h3>46 <span class="Heading">Pc Groups</span></h3>

<p>Pc groups are polycyclic groups that use the polycyclic presentation for element arithmetic. This presentation gives them a "natural" pcgs, the <code class="func">FamilyPcgs</code> (<a href="chap46.html#X79EDB35E82C99304"><span class="RefLink">46.1-1</span></a>) with respect to which pcgs operations as described in chapter <a href="chap45.html#X86007B0083F60470"><span class="RefLink">45</span></a> are particularly efficient.</p>

<p>Let <span class="SimpleMath">G</span> be a polycyclic group with pcgs <span class="SimpleMath">P = (g_1, ..., g_n)</span> and corresponding relative orders <span class="SimpleMath">(r_1, ..., r_n)</span>. Recall that the <span class="SimpleMath">r_i</span> are positive integers or infinity and let <span class="SimpleMath">I</span> be the set of indices <span class="SimpleMath">i</span> with <span class="SimpleMath">r_i</span> a positive integer. Then <span class="SimpleMath">G</span> has a finite presentation on the generators <span class="SimpleMath">g_1, ..., g_n</span> with relations of the following form.</p>

<div class="pcenter"><table class="GAPDocTablenoborder">
<tr>
<td class="tdleft"><span class="SimpleMath">g_i^{r_i}</span></td>
<td class="tdcenter">=</td>
<td class="tdleft"><span class="SimpleMath">g_{i+1}^a(i,i,i+1) ⋯ g_n^a(i,i,n)</span></td>
</tr>
<tr>
<td class="tdleft"></td>
<td class="tdcenter"></td>
<td class="tdleft">for <span class="SimpleMath">1 ≤ i ≤ n</span> and <span class="SimpleMath">i ∈ I</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">g_i^{-1} g_j g_i</span></td>
<td class="tdcenter">=</td>
<td class="tdleft"><span class="SimpleMath">g_{i+1}^a(i,j,i+1) ⋯ g_n^a(i,j,n)</span></td>
</tr>
<tr>
<td class="tdleft"></td>
<td class="tdcenter"></td>
<td class="tdleft">for <span class="SimpleMath">1 ≤ i &lt; j ≤ n</span></td>
</tr>
</table><br /><p>&nbsp;</p><br />
</div>

<p>For infinite groups we need additionally</p>

<div class="pcenter"><table class="GAPDocTablenoborder">
<tr>
<td class="tdleft"><span class="SimpleMath">g_i^{-1} g_j^{-1} g_i</span></td>
<td class="tdcenter">=</td>
<td class="tdleft"><span class="SimpleMath">g_{i+1}^b(i,j,i+1) ⋯ g_n^b(i,j,n)</span></td>
</tr>
<tr>
<td class="tdleft"></td>
<td class="tdcenter"></td>
<td class="tdleft">for <span class="SimpleMath">1 ≤ i &lt; j ≤ n</span> and <span class="SimpleMath">j not ∈ I</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">g_i g_j g_i^{-1}</span></td>
<td class="tdcenter">=</td>
<td class="tdleft"><span class="SimpleMath">g_{i+1}^c(i,j,i+1) ⋯ g_n^c(i,j,n)</span></td>
</tr>
<tr>
<td class="tdleft"></td>
<td class="tdcenter"></td>
<td class="tdleft">for <span class="SimpleMath">1 ≤ i &lt; j ≤ n</span> and <span class="SimpleMath">i not ∈ I</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">g_i g_j^{-1} g_i^{-1}</span></td>
<td class="tdcenter">=</td>
<td class="tdleft"><span class="SimpleMath">g_{i+1}^d(i,j,i+1) ⋯ g_n^d(i,j,n)</span></td>
</tr>
<tr>
<td class="tdleft"></td>
<td class="tdcenter"></td>
<td class="tdleft">for <span class="SimpleMath">1 ≤ i &lt; j ≤ n</span> and <span class="SimpleMath">i, j, not ∈ I</span></td>
</tr>
</table><br /><p>&nbsp;</p><br />
</div>

<p>Here the right hand sides are assumed to be words in normal form; that is, for <span class="SimpleMath">k ∈ I</span> we have for all exponents <span class="SimpleMath">0 ≤ a(i,j,k), b(i,j,k), c(i,j,k), d(i,j,k) &lt; r_k</span>.</p>

<p>A finite presentation of this type is called a <em>power-conjugate presentation</em> and a <em>pc group</em> is a polycyclic group defined by a power-conjugate presentation. Instead of conjugates we could just as well work with commutators and then the presentation would be called a <em>power-commutator</em> presentation. Both types of presentation are abbreviated as <em>pc presentation</em>. Note that a pc presentation is a rewriting system.</p>

<p>Clearly, whenever a group <span class="SimpleMath">G</span> with pcgs <span class="SimpleMath">P</span> is given, then we can write down the corresponding pc presentation. On the other hand, one may just write down a presentation on <span class="SimpleMath">n</span> abstract generators <span class="SimpleMath">g_1, ..., g_n</span> with relations of the above form and define a group <span class="SimpleMath">H</span> by this. Then the subgroups <span class="SimpleMath">C_i = ⟨ g_i, ..., g_n ⟩</span> of <span class="SimpleMath">H</span> form a subnormal series whose factors are cyclic or trivial. In the case that all factors are non-trivial, we say that the pc presentation of <span class="SimpleMath">H</span> is <em>confluent</em>. Note that <strong class="pkg">GAP</strong> 4 can only work correctly with pc groups defined by a confluent pc presentation.</p>

<p>At the current state of implementations the <strong class="pkg">GAP</strong> library contains methods to compute with finite polycyclic groups, while the <strong class="pkg">GAP</strong> package <strong class="pkg">Polycyclic</strong> by Bettina Eick and Werner Nickel allows also computations with infinite polycyclic groups which are given by a pc-presentation.</p>

<p>Algorithms for pc groups use the methods for polycyclic groups described in chapter <a href="chap45.html#X86007B0083F60470"><span class="RefLink">45</span></a>.</p>

<p><a id="X78E9E4D778A57A96" name="X78E9E4D778A57A96"></a></p>

<h4>46.1 <span class="Heading">The family pcgs</span></h4>

<p>Clearly, the generators of a power-conjugate presentation of a pc group <span class="SimpleMath">G</span> form a pcgs of the pc group. This pcgs is called the <em>family pcgs</em>.</p>

<p><a id="X79EDB35E82C99304" name="X79EDB35E82C99304"></a></p>

<h5>46.1-1 FamilyPcgs</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FamilyPcgs</code>( <var class="Arg">grp</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a "natural" pcgs of a pc group <var class="Arg">grp</var> (with respect to which pcgs operations as described in Chapter <a href="chap45.html#X86007B0083F60470"><span class="RefLink">45</span></a> are particularly efficient).</p>

<p><a id="X80893D2A7FFC791B" name="X80893D2A7FFC791B"></a></p>

<h5>46.1-2 IsFamilyPcgs</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsFamilyPcgs</code>( <var class="Arg">pcgs</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>specifies whether the pcgs is a <code class="func">FamilyPcgs</code> (<a href="chap46.html#X79EDB35E82C99304"><span class="RefLink">46.1-1</span></a>) of a pc group.</p>

<p><a id="X85C1596A867BE93D" name="X85C1596A867BE93D"></a></p>

<h5>46.1-3 InducedPcgsWrtFamilyPcgs</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; InducedPcgsWrtFamilyPcgs</code>( <var class="Arg">grp</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the pcgs which induced with respect to a family pcgs (see <code class="func">IsParentPcgsFamilyPcgs</code> (<a href="chap46.html#X8333ACCB7F530406"><span class="RefLink">46.1-4</span></a>) for further details).</p>

<p><a id="X8333ACCB7F530406" name="X8333ACCB7F530406"></a></p>

<h5>46.1-4 IsParentPcgsFamilyPcgs</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsParentPcgsFamilyPcgs</code>( <var class="Arg">pcgs</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>This property indicates that the pcgs <var class="Arg">pcgs</var> is induced with respect to a family pcgs.</p>

<p>This property is needed to distinguish between different independent polycyclic generating sequences which a pc group may have, since the elementary operations for a non-family pcgs may not be as efficient as the elementary operations for the family pcgs.</p>

<p>This can have a significant influence on the performance of algorithms for polycyclic groups. Many algorithms require a pcgs that corresponds to an elementary abelian series (see <code class="func">PcgsElementaryAbelianSeries</code> (<a href="chap45.html#X863A20B57EA37BAC"><span class="RefLink">45.11-2</span></a>)) or even a special pcgs (see <a href="chap45.html#X83039CF97D27D819"><span class="RefLink">45.13</span></a>). If the family pcgs has the required properties, it will be used for these purposes, if not <strong class="pkg">GAP</strong> has to work with respect to a new pcgs which is <em>not</em> the family pcgs and thus takes longer for elementary calculations like <code class="func">ExponentsOfPcElement</code> (<a href="chap45.html#X848DAEBF7DC448A5"><span class="RefLink">45.5-3</span></a>).</p>

<p>Therefore, if the family pcgs chosen for arithmetic is not of importance it might be worth to <em>change</em> to another, nicer, pcgs to speed up calculations. This can be achieved, for example, by using the <code class="func">Range</code> (<a href="chap32.html#X7B6FD7277CDE9FCB"><span class="RefLink">32.3-7</span></a>) value of the isomorphism obtained by <code class="func">IsomorphismSpecialPcGroup</code> (<a href="chap46.html#X82BE14A986FA6882"><span class="RefLink">46.5-3</span></a>).</p>

<p><a id="X842526BE7FEFE8BD" name="X842526BE7FEFE8BD"></a></p>

<h4>46.2 <span class="Heading">Elements of pc groups</span></h4>

<p><a id="X869DCE7D86E32337" name="X869DCE7D86E32337"></a></p>

<h5>46.2-1 <span class="Heading">Comparison of elements of pc groups</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \=</code>( <var class="Arg">pcword1</var>, <var class="Arg">pcword2</var> )</td><td class="tdright">( method )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \&lt;</code>( <var class="Arg">pcword1</var>, <var class="Arg">pcword2</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>The elements of a pc group <span class="SimpleMath">G</span> are always represented as words in normal form with respect to the family pcgs of <span class="SimpleMath">G</span>. Thus it is straightforward to compare elements of a pc group, since this boils down to a mere comparison of exponent vectors with respect to the family pcgs. In particular, the word problem is efficiently solvable in pc groups.</p>

<p><a id="X7D1B700882FC6C78" name="X7D1B700882FC6C78"></a></p>

<h5>46.2-2 <span class="Heading">Arithmetic operations for elements of pc groups</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \*</code>( <var class="Arg">pcword1</var>, <var class="Arg">pcword2</var> )</td><td class="tdright">( method )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Inverse</code>( <var class="Arg">pcword</var> )</td><td class="tdright">( method )</td></tr></table></div>
<p>However, multiplication and inversion of elements in pc groups is not as straightforward as in arbitrary finitely presented groups where a simple concatenation or reversion of the corresponding words is sufficient (but one cannot solve the word problem).</p>

<p>To multiply two elements in a pc group, we first concatenate the corresponding words and then use an algorithm called <em>collection</em> to transform the new word into a word in normal form.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g := FamilyPcgs( SmallGroup( 24, 12 ) );</span>
Pcgs([ f1, f2, f3, f4 ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g[4] * g[1];</span>
f1*f3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">(g[2] * g[3])^-1;</span>
f2^2*f3*f4
</pre></div>

<p><a id="X87B866C386B386E4" name="X87B866C386B386E4"></a></p>

<h4>46.3 <span class="Heading">Pc groups versus fp groups</span></h4>

<p>In theory pc groups are finitely presented groups. In practice the arithmetic in pc groups is different from the arithmetic in fp groups. Thus for technical reasons the pc groups in <strong class="pkg">GAP</strong> do not form a subcategory of the fp groups and hence the methods for fp groups cannot be applied to pc groups in general.</p>

<p><a id="X7D1F506D7830B1D9" name="X7D1F506D7830B1D9"></a></p>

<h5>46.3-1 IsPcGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsPcGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>tests whether <var class="Arg">G</var> is a pc group.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := SmallGroup( 24, 12 );</span>
&lt;pc group of size 24 with 4 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsPcGroup( G );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsFpGroup( G );</span>
false
</pre></div>

<p><a id="X7D2735A18111FE39" name="X7D2735A18111FE39"></a></p>

<h5>46.3-2 IsomorphismFpGroupByPcgs</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsomorphismFpGroupByPcgs</code>( <var class="Arg">pcgs</var>, <var class="Arg">str</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>It is possible to convert a pc group to a fp group in <strong class="pkg">GAP</strong>. The function <code class="func">IsomorphismFpGroupByPcgs</code> computes the power-commutator presentation defined by <var class="Arg">pcgs</var>. The string <var class="Arg">str</var> can be used to give a name to the generators of the fp group.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">p := FamilyPcgs( SmallGroup( 24, 12 ) );</span>
Pcgs([ f1, f2, f3, f4 ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso := IsomorphismFpGroupByPcgs( p, "g" );</span>
[ f1, f2, f3, f4 ] -&gt; [ g1, g2, g3, g4 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F := Image( iso );</span>
&lt;fp group of size 24 on the generators [ g1, g2, g3, g4 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RelatorsOfFpGroup( F );</span>
[ g1^2, g2^-1*g1^-1*g2*g1*g2^-1, g3^-1*g1^-1*g3*g1*g4^-1*g3^-1, 
  g4^-1*g1^-1*g4*g1*g4^-1*g3^-1, g2^3, g3^-1*g2^-1*g3*g2*g4^-1*g3^-1, 
  g4^-1*g2^-1*g4*g2*g3^-1, g3^2, g4^-1*g3^-1*g4*g3, g4^2 ]
</pre></div>

<p><a id="X8581887880556E0C" name="X8581887880556E0C"></a></p>

<h4>46.4 <span class="Heading">Constructing Pc Groups</span></h4>

<p>If necessary, you can supply <strong class="pkg">GAP</strong> with a pc presentation by hand. (Although this is the most tedious way to input a pc group.) Note that the pc presentation has to be confluent in order to work with the pc group in <strong class="pkg">GAP</strong>.</p>

<p>(If you have already a suitable pcgs in another representation, use <code class="func">PcGroupWithPcgs</code> (<a href="chap46.html#X81C55D4F825C36D4"><span class="RefLink">46.5-1</span></a>), see below.)</p>

<p>One way is to define a finitely presented group with a pc presentation in <strong class="pkg">GAP</strong> and then convert this presentation into a pc group, see <code class="func">PcGroupFpGroup</code> (<a href="chap46.html#X84C10D1F7CB5274F"><span class="RefLink">46.4-1</span></a>). Note that this does not work for arbitrary presentations of polycyclic groups, see Chapter <a href="chap47.html#X846072F779B51087"><span class="RefLink">47.14</span></a> for further information.</p>

<p>Another way is to create and manipulate a collector of a pc group by hand and to use it to define a pc group. <strong class="pkg">GAP</strong> provides different collectors for different collecting strategies; at the moment, there are two collectors to choose from: the single collector for finite pc groups (see <code class="func">SingleCollector</code> (<a href="chap46.html#X7E958DB281E070FD"><span class="RefLink">46.4-2</span></a>)) and the combinatorial collector for finite <span class="SimpleMath">p</span>-groups. See <a href="chapBib.html#biBSims94">[Sim94]</a> for further information on collecting strategies.</p>

<p>A collector is initialized with an underlying free group and the relative orders of the pc series. Then one adds the right hand sides of the power and the commutator or conjugate relations one by one. Note that omitted relators are assumed to be trivial.</p>

<p>For performance reasons it is beneficial to enforce a "syllable" representation in the free group (see <a href="chap37.html#X80A9F39582ED296E"><span class="RefLink">37.6</span></a>).</p>

<p>Note that in the end, the collector has to be converted to a group, see <code class="func">GroupByRws</code> (<a href="chap46.html#X84F0521486672C3C"><span class="RefLink">46.4-6</span></a>).</p>

<p>With these methods a pc group with arbitrary defining pcgs can be constructed. However, for almost all applications within <strong class="pkg">GAP</strong> we need to have a pc group whose defining pcgs is a prime order pcgs, see <code class="func">IsomorphismRefinedPcGroup</code> (<a href="chap46.html#X7E6226597DFE5F8F"><span class="RefLink">46.4-8</span></a>) and <code class="func">RefinedPcGroup</code> (<a href="chap46.html#X821560A387762DD1"><span class="RefLink">46.4-9</span></a>).</p>

<p><a id="X84C10D1F7CB5274F" name="X84C10D1F7CB5274F"></a></p>

<h5>46.4-1 PcGroupFpGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PcGroupFpGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>creates a pc group <var class="Arg">P</var> from an fp group (see Chapter <a href="chap47.html#X7AA982637E90B35A"><span class="RefLink">47</span></a>) <var class="Arg">G</var> whose presentation is polycyclic. The resulting group <var class="Arg">P</var> has generators corresponding to the generators of <var class="Arg">G</var>. They are printed in the same way as generators of <var class="Arg">G</var>, but they lie in a different family. If the pc presentation of <var class="Arg">G</var> is not confluent, an error message occurs.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F := FreeGroup(IsSyllableWordsFamily,"a","b","c","d");;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">a := F.1;; b := F.2;; c := F.3;; d := F.4;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rels := [a^2, b^3, c^2, d^2, Comm(b,a)/b, Comm(c,a)/d, Comm(d,a),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            Comm(c,b)/(c*d), Comm(d,b)/c, Comm(d,c)];</span>
[ a^2, b^3, c^2, d^2, b^-1*a^-1*b*a*b^-1, c^-1*a^-1*c*a*d^-1, 
  d^-1*a^-1*d*a, c^-1*b^-1*c*b*d^-1*c^-1, d^-1*b^-1*d*b*c^-1, 
  d^-1*c^-1*d*c ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := F / rels;</span>
&lt;fp group on the generators [ a, b, c, d ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">H := PcGroupFpGroup( G );</span>
&lt;pc group of size 24 with 4 generators&gt;
</pre></div>

<p><a id="X7E958DB281E070FD" name="X7E958DB281E070FD"></a></p>

<h5>46.4-2 SingleCollector</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SingleCollector</code>( <var class="Arg">fgrp</var>, <var class="Arg">relorders</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CombinatorialCollector</code>( <var class="Arg">fgrp</var>, <var class="Arg">relorders</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>initializes a single collector or a combinatorial collector, where <var class="Arg">fgrp</var> must be a free group and <var class="Arg">relorders</var> must be a list of the relative orders of the pc series.</p>

<p>A combinatorial collector can only be set up for a finite <span class="SimpleMath">p</span>-group. Here, the relative orders <var class="Arg">relorders</var> must all be equal and a prime.</p>

<p><a id="X86A08D887E049347" name="X86A08D887E049347"></a></p>

<h5>46.4-3 SetConjugate</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SetConjugate</code>( <var class="Arg">coll</var>, <var class="Arg">j</var>, <var class="Arg">i</var>, <var class="Arg">w</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Let <span class="SimpleMath">f_1, ..., f_n</span> be the generators of the underlying free group of the collector <var class="Arg">coll</var>.</p>

<p>For <var class="Arg">i</var> <span class="SimpleMath">&lt;</span> <var class="Arg">j</var>, <code class="func">SetConjugate</code> sets the conjugate <span class="SimpleMath">f_j^{f_i}</span> to equal <var class="Arg">w</var>, which is assumed to be a word in <span class="SimpleMath">f_{i+1}, ..., f_n</span>.</p>

<p><a id="X7B25997C7DF92B6D" name="X7B25997C7DF92B6D"></a></p>

<h5>46.4-4 SetCommutator</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SetCommutator</code>( <var class="Arg">coll</var>, <var class="Arg">j</var>, <var class="Arg">i</var>, <var class="Arg">w</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Let <span class="SimpleMath">f_1, ..., f_n</span> be the generators of the underlying free group of the collector <var class="Arg">coll</var>.</p>

<p>For <var class="Arg">i</var> <span class="SimpleMath">&lt;</span> <var class="Arg">j</var>, <code class="func">SetCommutator</code> sets the commutator of <span class="SimpleMath">f_j</span> and <span class="SimpleMath">f_i</span> to equal <var class="Arg">w</var>, which is assumed to be a word in <span class="SimpleMath">f_{i+1}, ..., f_n</span>.</p>

<p><a id="X7BC319BA8698420C" name="X7BC319BA8698420C"></a></p>

<h5>46.4-5 SetPower</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SetPower</code>( <var class="Arg">coll</var>, <var class="Arg">i</var>, <var class="Arg">w</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Let <span class="SimpleMath">f_1, ..., f_n</span> be the generators of the underlying free group of the collector <var class="Arg">coll</var>, and let <span class="SimpleMath">r_i</span> be the corresponding relative orders.</p>

<p><code class="func">SetPower</code> sets the power <span class="SimpleMath">f_i^{r_i}</span> to equal <var class="Arg">w</var>, which is assumed to be a word in <span class="SimpleMath">f_{i+1}, ..., f_n</span>.</p>

<p><a id="X84F0521486672C3C" name="X84F0521486672C3C"></a></p>

<h5>46.4-6 GroupByRws</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GroupByRws</code>( <var class="Arg">coll</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GroupByRwsNC</code>( <var class="Arg">coll</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>creates a group from a rewriting system. In the first version it is checked whether the rewriting system is confluent, in the second version this is assumed to be true.</p>

<p><a id="X7DF4835F79667099" name="X7DF4835F79667099"></a></p>

<h5>46.4-7 IsConfluent</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsConfluent</code>( <var class="Arg">G</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>checks whether the pc group <var class="Arg">G</var> has been built from a collector with a confluent power-commutator presentation.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F := FreeGroup(IsSyllableWordsFamily, 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">coll1 := SingleCollector( F, [2,3] );</span>
&lt;&lt;single collector, 8 Bits&gt;&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetConjugate( coll1, 2, 1, F.2 );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetPower( coll1, 1, F.2 );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G1 := GroupByRws( coll1 );</span>
&lt;pc group of size 6 with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsConfluent(G1);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsAbelian(G1);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">coll2 := SingleCollector( F, [2,3] );</span>
&lt;&lt;single collector, 8 Bits&gt;&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetConjugate( coll2, 2, 1, F.2^2 );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G2 := GroupByRws( coll2 );</span>
&lt;pc group of size 6 with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsAbelian(G2);</span>
false
</pre></div>

<p><a id="X7E6226597DFE5F8F" name="X7E6226597DFE5F8F"></a></p>

<h5>46.4-8 IsomorphismRefinedPcGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsomorphismRefinedPcGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns an isomorphism from <var class="Arg">G</var> onto an isomorphic pc group whose family pcgs is a prime order pcgs.</p>

<p><a id="X821560A387762DD1" name="X821560A387762DD1"></a></p>

<h5>46.4-9 RefinedPcGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RefinedPcGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the range of the <code class="func">IsomorphismRefinedPcGroup</code> (<a href="chap46.html#X7E6226597DFE5F8F"><span class="RefLink">46.4-8</span></a>) value of <var class="Arg">G</var>.</p>

<p><a id="X83F69FE27B024E24" name="X83F69FE27B024E24"></a></p>

<h4>46.5 <span class="Heading">Computing Pc Groups</span></h4>

<p>Another possibility to get a pc group in <strong class="pkg">GAP</strong> is to convert a polycyclic group given by some other representation to a pc group. For finitely presented groups there are various quotient methods available. For all other types of groups one can use the following functions.</p>

<p><a id="X81C55D4F825C36D4" name="X81C55D4F825C36D4"></a></p>

<h5>46.5-1 PcGroupWithPcgs</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PcGroupWithPcgs</code>( <var class="Arg">mpcgs</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>creates a new pc group <var class="Arg">G</var> whose family pcgs is isomorphic to the (modulo) pcgs <var class="Arg">mpcgs</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := Group( (1,2,3), (3,4,1) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PcGroupWithPcgs( Pcgs(G) );</span>
&lt;pc group of size 12 with 3 generators&gt;
</pre></div>

<p>If a pcgs is only given by a list of pc elements, <code class="func">PcgsByPcSequence</code> (<a href="chap45.html#X7E139C3D80847D76"><span class="RefLink">45.3-1</span></a>) can be used:</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=Group((1,2,3,4),(1,2));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">p:=PcgsByPcSequence(FamilyObj(One(G)),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ (3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4) ]);</span>
Pcgs([ (3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4) ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PcGroupWithPcgs(p);</span>
&lt;pc group of size 24 with 4 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := SymmetricGroup( 5 );</span>
Sym( [ 1 .. 5 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">H := Subgroup( G, [(1,2,3,4,5), (3,4,5)] );</span>
Group([ (1,2,3,4,5), (3,4,5) ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">modu := ModuloPcgs( G, H );</span>
Pcgs([ (4,5) ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PcGroupWithPcgs(modu);</span>
&lt;pc group of size 2 with 1 generators&gt;
</pre></div>

<p><a id="X873CEB137BA1CD6E" name="X873CEB137BA1CD6E"></a></p>

<h5>46.5-2 IsomorphismPcGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsomorphismPcGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns an isomorphism from <var class="Arg">G</var> onto an isomorphic pc group. The series chosen for this pc representation depends on the method chosen. <var class="Arg">G</var> must be a polycyclic group of any kind, for example a solvable permutation group.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := Group( (1,2,3), (3,4,1) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso := IsomorphismPcGroup( G );</span>
Pcgs([ (2,4,3), (1,2)(3,4), (1,3)(2,4) ]) -&gt; [ f1, f2, f3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">H := Image( iso );</span>
Group([ f1, f2, f3 ])
</pre></div>

<p><a id="X82BE14A986FA6882" name="X82BE14A986FA6882"></a></p>

<h5>46.5-3 IsomorphismSpecialPcGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsomorphismSpecialPcGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns an isomorphism from <var class="Arg">G</var> onto an isomorphic pc group whose family pcgs is a special pcgs. (This can be beneficial to the runtime of calculations.) <var class="Arg">G</var> may be a polycyclic group of any kind, for example a solvable permutation group.</p>

<p><a id="X85696AB9791DF047" name="X85696AB9791DF047"></a></p>

<h4>46.6 <span class="Heading">Saving a Pc Group</span></h4>

<p>As printing a polycyclic group does not display the presentation, one cannot simply print a pc group to a file to save it. For this purpose we need the following function.</p>

<p><a id="X8593253380D84508" name="X8593253380D84508"></a></p>

<h5>46.6-1 GapInputPcGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GapInputPcGroup</code>( <var class="Arg">grp</var>, <var class="Arg">string</var> )</td><td class="tdright">( function )</td></tr></table></div>

<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := SmallGroup( 24, 12 );</span>
&lt;pc group of size 24 with 4 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrintTo( "save", GapInputPcGroup( G, "H" ) );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Read( "save" );</span>
#I A group of order 24 has been defined.
#I It is called H
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">H = G;</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IdSmallGroup( H ) = IdSmallGroup( G );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RemoveFile( "save" );;</span>
</pre></div>

<p><a id="X8391EE8D782D0C9E" name="X8391EE8D782D0C9E"></a></p>

<h4>46.7 <span class="Heading">Operations for Pc Groups</span></h4>

<p>All the operations described in Chapters <a href="chap39.html#X8716635F7951801B"><span class="RefLink">39</span></a> and <a href="chap45.html#X86007B0083F60470"><span class="RefLink">45</span></a> apply to a pc group. Nearly all methods for pc groups are methods for groups with pcgs as described in Chapter <a href="chap45.html#X86007B0083F60470"><span class="RefLink">45</span></a>. The only method with is special for pc groups is a method to compute intersections of subgroups, since here a pcgs of a parent group is needed and this can only by guaranteed within pc groups.</p>

<p><a id="X7ECDC1A1853F0658" name="X7ECDC1A1853F0658"></a></p>

<h4>46.8 <span class="Heading"><span class="SimpleMath">2</span>-Cohomology and Extensions</span></h4>

<p>One of the most interesting applications of pc groups is the possibility to compute with extensions of these groups by elementary abelian groups; that is, <span class="SimpleMath">H</span> is an extension of <span class="SimpleMath">G</span> by <span class="SimpleMath">M</span>, if there exists a normal subgroup <span class="SimpleMath">N</span> in <span class="SimpleMath">H</span> which is isomorphic to <span class="SimpleMath">M</span> such that <span class="SimpleMath">H/N</span> is isomorphic to <span class="SimpleMath">G</span>.</p>

<p>Pc groups are particularly suited for such applications, since the <span class="SimpleMath">2</span>-cohomology can be computed efficiently for such groups and, moreover, extensions of pc groups by elementary abelian groups can be represented as pc groups again.</p>

<p>To define the elementary abelian group <span class="SimpleMath">M</span> together with an action of <span class="SimpleMath">G</span> on <span class="SimpleMath">M</span> we consider <span class="SimpleMath">M</span> as a MeatAxe module for <span class="SimpleMath">G</span> over a finite field (section <code class="func">IrreducibleModules</code> (<a href="chap71.html#X87E82F8085745523"><span class="RefLink">71.15-1</span></a>) describes functions that can be used to obtain certain modules). For further information on meataxe modules see Chapter <a href="chap69.html#X7BF9D3CB81A8F8F9"><span class="RefLink">69</span></a>. Note that the matrices defining the module must correspond to the pcgs of the group <var class="Arg">G</var>.</p>

<p>There exists an action of the subgroup of <em>compatible pairs</em> in <span class="SimpleMath">Aut(G) × Aut(M)</span> which acts on the second cohomology group, see <code class="func">CompatiblePairs</code> (<a href="chap46.html#X824F2B2E7C11ABAF"><span class="RefLink">46.8-8</span></a>). <span class="SimpleMath">2</span>-cocycles which lie in the same orbit under this action define isomorphic extensions of <span class="SimpleMath">G</span>. However, there may be isomorphic extensions of <span class="SimpleMath">G</span> corresponding to cocycles in different orbits.</p>

<p>See also the <strong class="pkg">GAP</strong> package <strong class="pkg">GrpConst</strong> by Hans Ulrich Besche and Bettina Eick that contains methods to construct up to isomorphism the groups of a given order.</p>

<p>Finally we note that for the computation of split extensions it is not necessary that <var class="Arg">M</var> must correspond to an elementary abelian group. Here it is possible to construct split extensions of arbitrary pc groups, see <code class="func">SplitExtensions</code> (<a href="chap46.html#X7958281D801DC9FF"><span class="RefLink">46.8-10</span></a>).</p>

<p><a id="X78E6E11E8285E288" name="X78E6E11E8285E288"></a></p>

<h5>46.8-1 TwoCoboundaries</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TwoCoboundaries</code>( <var class="Arg">G</var>, <var class="Arg">M</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the group of <span class="SimpleMath">2</span>-coboundaries of a pc group <var class="Arg">G</var> by the <var class="Arg">G</var>-module <var class="Arg">M</var>. The generators of <var class="Arg">M</var> must correspond to the <code class="func">Pcgs</code> (<a href="chap45.html#X84C3750C7A4EEC34"><span class="RefLink">45.2-1</span></a>) value of <var class="Arg">G</var>. The group of coboundaries is given as vector space over the field underlying <var class="Arg">M</var>.</p>

<p><a id="X784FCA207B8694A6" name="X784FCA207B8694A6"></a></p>

<h5>46.8-2 TwoCocycles</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TwoCocycles</code>( <var class="Arg">G</var>, <var class="Arg">M</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the <span class="SimpleMath">2</span>-cocycles of a pc group <var class="Arg">G</var> by the <var class="Arg">G</var>-module <var class="Arg">M</var>. The generators of <var class="Arg">M</var> must correspond to the <code class="func">Pcgs</code> (<a href="chap45.html#X84C3750C7A4EEC34"><span class="RefLink">45.2-1</span></a>) value of <var class="Arg">G</var>. The operation returns a list of vectors over the field underlying <var class="Arg">M</var> and the additive group generated by these vectors is the group of <span class="SimpleMath">2</span>-cocyles.</p>

<p><a id="X838065F97F60468F" name="X838065F97F60468F"></a></p>

<h5>46.8-3 TwoCohomology</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TwoCohomology</code>( <var class="Arg">G</var>, <var class="Arg">M</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns a record defining the second cohomology group as factor space of the space of cocycles by the space of coboundaries. <var class="Arg">G</var> must be a pc group and the generators of <var class="Arg">M</var> must correspond to the pcgs of <var class="Arg">G</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := SmallGroup( 4, 2 );</span>
&lt;pc group of size 4 with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mats := List( Pcgs( G ), x -&gt; IdentityMat( 1, GF(2) ) );</span>
[ &lt;a 1x1 matrix over GF2&gt;, &lt;a 1x1 matrix over GF2&gt; ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M := GModuleByMats( mats, GF(2) );</span>
rec( dimension := 1, field := GF(2), 
  generators := [ &lt;an immutable 1x1 matrix over GF2&gt;, 
      &lt;an immutable 1x1 matrix over GF2&gt; ], isMTXModule := true )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TwoCoboundaries( G, M );</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TwoCocycles( G, M );</span>
[ [ Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2) ], 
  [ 0*Z(2), 0*Z(2), Z(2)^0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cc := TwoCohomology( G, M );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cc.cohom;</span>
&lt;linear mapping by matrix, &lt;vector space of dimension 3 over GF(
2)&gt; -&gt; ( GF(2)^3 )&gt;
</pre></div>

<p><a id="X8236AD927A5A0E5A" name="X8236AD927A5A0E5A"></a></p>

<h5>46.8-4 Extensions</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Extensions</code>( <var class="Arg">G</var>, <var class="Arg">M</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns all extensions of <var class="Arg">G</var> by the <var class="Arg">G</var>-module <var class="Arg">M</var> up to equivalence as pc groups.</p>

<p><a id="X7B3BE908867CE4F9" name="X7B3BE908867CE4F9"></a></p>

<h5>46.8-5 Extension</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Extension</code>( <var class="Arg">G</var>, <var class="Arg">M</var>, <var class="Arg">c</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ExtensionNC</code>( <var class="Arg">G</var>, <var class="Arg">M</var>, <var class="Arg">c</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the extension of <var class="Arg">G</var> by the <var class="Arg">G</var>-module <var class="Arg">M</var> via the cocycle <var class="Arg">c</var> as pc groups. The <code class="code">NC</code> version does not check the resulting group for consistence.</p>

<p><a id="X83DCB5AB7B6EE785" name="X83DCB5AB7B6EE785"></a></p>

<h5>46.8-6 SplitExtension</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SplitExtension</code>( <var class="Arg">G</var>, <var class="Arg">M</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the split extension of <var class="Arg">G</var> by the <var class="Arg">G</var>-module <var class="Arg">M</var>.</p>

<p><a id="X7EAC6B8B7ABEEB86" name="X7EAC6B8B7ABEEB86"></a></p>

<h5>46.8-7 ModuleOfExtension</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ModuleOfExtension</code>( <var class="Arg">E</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the module of an extension <var class="Arg">E</var> of <var class="Arg">G</var> by <var class="Arg">M</var>. This is the normal subgroup of <var class="Arg">E</var> which corresponds to <var class="Arg">M</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := SmallGroup( 4, 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mats := List( Pcgs( G ), x -&gt; IdentityMat( 1, GF(2) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M := GModuleByMats( mats, GF(2) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">co := TwoCocycles( G, M );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Extension( G, M, co[2] );</span>
&lt;pc group of size 8 with 3 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SplitExtension( G, M );</span>
&lt;pc group of size 8 with 3 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Extensions( G, M );</span>
[ &lt;pc group of size 8 with 3 generators&gt;, 
  &lt;pc group of size 8 with 3 generators&gt;, 
  &lt;pc group of size 8 with 3 generators&gt;, 
  &lt;pc group of size 8 with 3 generators&gt;, 
  &lt;pc group of size 8 with 3 generators&gt;, 
  &lt;pc group of size 8 with 3 generators&gt;, 
  &lt;pc group of size 8 with 3 generators&gt;, 
  &lt;pc group of size 8 with 3 generators&gt; ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(last, IdSmallGroup);</span>
[ [ 8, 5 ], [ 8, 2 ], [ 8, 3 ], [ 8, 3 ], [ 8, 2 ], [ 8, 2 ], 
  [ 8, 3 ], [ 8, 4 ] ]
</pre></div>

<p>Note that the extensions returned by <code class="func">Extensions</code> (<a href="chap46.html#X8236AD927A5A0E5A"><span class="RefLink">46.8-4</span></a>) are computed up to equivalence, but not up to isomorphism.</p>

<p><a id="X824F2B2E7C11ABAF" name="X824F2B2E7C11ABAF"></a></p>

<h5>46.8-8 CompatiblePairs</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CompatiblePairs</code>( <var class="Arg">G</var>, <var class="Arg">M</var>[, <var class="Arg">D</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the group of compatible pairs of the group <var class="Arg">G</var> with the <var class="Arg">G</var>-module <var class="Arg">M</var> as subgroup of the direct product Aut(<var class="Arg">G</var>) <span class="SimpleMath">×</span> Aut(<var class="Arg">M</var>). Here Aut(<var class="Arg">M</var>) is considered as subgroup of a general linear group. The optional argument <var class="Arg">D</var> should be a subgroup of Aut(<var class="Arg">G</var>) <span class="SimpleMath">×</span> Aut(<var class="Arg">M</var>). If it is given, then only the compatible pairs in <var class="Arg">D</var> are computed.</p>

<p><a id="X854FFEF187C4AAB9" name="X854FFEF187C4AAB9"></a></p>

<h5>46.8-9 ExtensionRepresentatives</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ExtensionRepresentatives</code>( <var class="Arg">G</var>, <var class="Arg">M</var>, <var class="Arg">P</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns all extensions of <var class="Arg">G</var> by the <var class="Arg">G</var>-module <var class="Arg">M</var> up to equivalence under action of <var class="Arg">P</var> where <var class="Arg">P</var> has to be a subgroup of the group of compatible pairs of <var class="Arg">G</var> with <var class="Arg">M</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := SmallGroup( 4, 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mats := List( Pcgs( G ), x -&gt; IdentityMat( 1, GF(2) ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M := GModuleByMats( mats, GF(2) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A := AutomorphismGroup( G );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">B := GL( 1, 2 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D := DirectProduct( A, B );</span>
&lt;group of size 6 with 4 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P := CompatiblePairs( G, M, D );</span>
&lt;group of size 6 with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ExtensionRepresentatives( G, M, P );</span>
[ &lt;pc group of size 8 with 3 generators&gt;, 
  &lt;pc group of size 8 with 3 generators&gt;, 
  &lt;pc group of size 8 with 3 generators&gt;, 
  &lt;pc group of size 8 with 3 generators&gt; ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Extensions( G, M );</span>
[ &lt;pc group of size 8 with 3 generators&gt;, 
  &lt;pc group of size 8 with 3 generators&gt;, 
  &lt;pc group of size 8 with 3 generators&gt;, 
  &lt;pc group of size 8 with 3 generators&gt;, 
  &lt;pc group of size 8 with 3 generators&gt;, 
  &lt;pc group of size 8 with 3 generators&gt;, 
  &lt;pc group of size 8 with 3 generators&gt;, 
  &lt;pc group of size 8 with 3 generators&gt; ]
</pre></div>

<p><a id="X7958281D801DC9FF" name="X7958281D801DC9FF"></a></p>

<h5>46.8-10 SplitExtensions</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SplitExtensions</code>( <var class="Arg">G</var>, <var class="Arg">aut</var>, <var class="Arg">N</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the split extensions of the pc group <var class="Arg">G</var> by the pc group <var class="Arg">N</var>. <var class="Arg">aut</var> should be a homomorphism from <var class="Arg">G</var> into Aut(<var class="Arg">N</var>).</p>

<p>In the following example we construct the holomorph of <span class="SimpleMath">Q_8</span> as split extension of <span class="SimpleMath">Q_8</span> by <span class="SimpleMath">S_4</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">N := SmallGroup( 8, 4 );</span>
&lt;pc group of size 8 with 3 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsAbelian( N );</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A := AutomorphismGroup( N );</span>
&lt;group of size 24 with 4 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso := IsomorphismPcGroup( A );</span>
CompositionMapping( Pcgs([ (2,6,5,3), (1,3,5)(2,4,6), (2,5)(3,6), 
  (1,4)(3,6) ]) -&gt; [ f1, f2, f3, f4 ], &lt;action isomorphism&gt; )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">H := Image( iso );</span>
Group([ f1, f2, f3, f4 ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := Subgroup( H, Pcgs(H){[1,2]} );</span>
Group([ f1, f2 ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inv := InverseGeneralMapping( iso );</span>
[ f1*f2, f2^2*f3, f4, f3 ] -&gt; 
[ Pcgs([ f1, f2, f3 ]) -&gt; [ f1*f2, f2, f3 ], 
  Pcgs([ f1, f2, f3 ]) -&gt; [ f2, f1*f2, f3 ], 
  Pcgs([ f1, f2, f3 ]) -&gt; [ f1*f3, f2, f3 ], 
  Pcgs([ f1, f2, f3 ]) -&gt; [ f1, f2*f3, f3 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">K := SplitExtension( G, inv, N );</span>
&lt;pc group of size 192 with 7 generators&gt;
</pre></div>

<p><a id="X874E4B107BD78F5A" name="X874E4B107BD78F5A"></a></p>

<h4>46.9 <span class="Heading">Coding a Pc Presentation</span></h4>

<p>If one wants to store a large number of pc groups, then it can be useful to store them in a compressed format, since pc presentations can be space consuming. Here we introduce a method to code and decode pc presentations by integers. To decode a given code the size of the underlying pc group is needed as well. For the full definition and the coding and decoding procedures see <a href="chapBib.html#biBBescheEick98">[BE99a]</a>. This method is used with the small groups library, see Section <a href="chap50.html#X814D329A7B59F0EB"><span class="RefLink">50.7</span></a>.</p>

<p><a id="X79948F1D7D4FF8D9" name="X79948F1D7D4FF8D9"></a></p>

<h5>46.9-1 CodePcgs</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CodePcgs</code>( <var class="Arg">pcgs</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the code corresponding to <var class="Arg">pcgs</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := CyclicGroup(512);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">p := Pcgs( G );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CodePcgs( p );  </span>
162895587718739690298008513020159
</pre></div>

<p><a id="X8041C2D88721EEA9" name="X8041C2D88721EEA9"></a></p>

<h5>46.9-2 CodePcGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CodePcGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the code for a pcgs of <var class="Arg">G</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := DihedralGroup(512);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CodePcGroup( G );       </span>
2940208627577393070560341803949986912431725641726
</pre></div>

<p><a id="X826BFDA07A707C54" name="X826BFDA07A707C54"></a></p>

<h5>46.9-3 PcGroupCode</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PcGroupCode</code>( <var class="Arg">code</var>, <var class="Arg">size</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a pc group of size <var class="Arg">size</var> corresponding to <var class="Arg">code</var>. The argument <var class="Arg">code</var> must be a valid code for a pcgs, otherwise anything may happen. Valid codes are usually obtained by one of the functions <code class="func">CodePcgs</code> (<a href="chap46.html#X79948F1D7D4FF8D9"><span class="RefLink">46.9-1</span></a>) or <code class="func">CodePcGroup</code> (<a href="chap46.html#X8041C2D88721EEA9"><span class="RefLink">46.9-2</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := SmallGroup( 24, 12 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">p := Pcgs( G );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">code := CodePcgs( p );</span>
5790338948
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">H := PcGroupCode( code, 24 );</span>
&lt;pc group of size 24 with 4 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">map := GroupHomomorphismByImages( G, H, p, FamilyPcgs(H) );</span>
Pcgs([ f1, f2, f3, f4 ]) -&gt; Pcgs([ f1, f2, f3, f4 ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsBijective(map);</span>
true
</pre></div>

<p><a id="X81D211D8838B875C" name="X81D211D8838B875C"></a></p>

<h4>46.10 <span class="Heading">Random Isomorphism Testing</span></h4>

<p>The generic isomorphism test for groups may be applied to pc groups as well. However, this test is often quite time consuming. Here we describe another method to test isomorphism by a probabilistic approach.</p>

<p><a id="X84F6F9787CB2CF16" name="X84F6F9787CB2CF16"></a></p>

<h5>46.10-1 RandomIsomorphismTest</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RandomIsomorphismTest</code>( <var class="Arg">coderecs</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>The first argument is a list <var class="Arg">coderecs</var> containing records describing groups, and the second argument is a non-negative integer <var class="Arg">n</var>.</p>

<p>The test returns a sublist of <var class="Arg">coderecs</var> where isomorphic copies detected by the probabilistic test have been removed.</p>

<p>The list <var class="Arg">coderecs</var> should contain records with two components, <code class="code">code</code> and <code class="code">order</code>, describing a group via <code class="code">PcGroupCode( code, order )</code> (see <code class="func">PcGroupCode</code> (<a href="chap46.html#X826BFDA07A707C54"><span class="RefLink">46.9-3</span></a>)).</p>

<p>The integer <var class="Arg">n</var> gives a certain amount of control over the probability to detect all isomorphisms. If it is <span class="SimpleMath">0</span>, then nothing will be done at all. The larger <var class="Arg">n</var> is, the larger is the probability of finding all isomorphisms. However, due to the underlying method we can not guarantee that the algorithm finds all isomorphisms, no matter how large <var class="Arg">n</var> is.</p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap45.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap47.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>