This file is indexed.

/usr/share/gap/doc/ref/chap54.html is in gap-doc 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (ref) - Chapter 54: Transformations</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap54"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap53.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap55.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap54_mj.html">[MathJax on]</a></p>
<p><a id="X860026B880BCB2A5" name="X860026B880BCB2A5"></a></p>
<div class="ChapSects"><a href="chap54.html#X860026B880BCB2A5">54 <span class="Heading">Transformations</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap54.html#X7EB5F6967BC9D340">54.1 <span class="Heading">Functions for Transformations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7B6259467974FB70">54.1-1 IsTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7E58AFA1832FF064">54.1-2 TransformationFamily</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7B2E556E7BCF9CDF">54.1-3 Transformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X8268A58685BEFD6F">54.1-4 IdentityTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X8475448F87E8CB8A">54.1-5 RandomTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X78A209C87CF0E32B">54.1-6 DegreeOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7AEC9E6687B3505A">54.1-7 ImageListOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X839A6D6082A21D1F">54.1-8 ImageSetOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X85F22DDD84C28583">54.1-9 RankOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X80FCB5048789CF75">54.1-10 KernelOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X82F5DEEC837B60A3">54.1-11 PreimagesOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X846A6F6B7B715188">54.1-12 RestrictedTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7C5360B2799943F3">54.1-13 AsTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X83DBA2A18719EFA8">54.1-14 PermLeftQuoTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7CCD27327CC84626">54.1-15 BinaryRelationTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54.html#X7BF5FA5C8068EB3B">54.1-16 TransformationRelation</a></span>
</div></div>
</div>

<h3>54 <span class="Heading">Transformations</span></h3>

<p>This chapter describes functions for transformations.</p>

<p>A <em>transformation</em> in <strong class="pkg">GAP</strong> is an endomorphism of a set of integers of the form <span class="SimpleMath">{ 1, ..., n }</span>. Transformations are taken to act on the right, which defines the composition <span class="SimpleMath">i^(α β) = (i^α)^β</span> for <span class="SimpleMath">i</span> in <span class="SimpleMath">{ 1, ..., n }</span>.</p>

<p>For a transformation <span class="SimpleMath">α</span> on the set <span class="SimpleMath">{ 1, ..., n }</span>, we define its <em>degree</em> to be <span class="SimpleMath">n</span>, its <em>image list</em> to be the list <span class="SimpleMath">[1 α, ..., n α]</span>, its <em>image</em> to be the image list considered as a set, and its <em>rank</em> to be the size of the image. We also define the <em>kernel</em> of <span class="SimpleMath">α</span> to be the equivalence relation containing the pair <span class="SimpleMath">(i, j)</span> if and only if <span class="SimpleMath">i^α = j^α</span>.</p>

<p>Note that unlike permutations, we do not consider unspecified points to be fixed by a transformation. Therefore multiplication is only defined on two transformations of the same degree.</p>

<p><a id="X7EB5F6967BC9D340" name="X7EB5F6967BC9D340"></a></p>

<h4>54.1 <span class="Heading">Functions for Transformations</span></h4>

<p><a id="X7B6259467974FB70" name="X7B6259467974FB70"></a></p>

<h5>54.1-1 IsTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsTransformation</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsTransformationCollection</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>We declare it as <code class="func">IsMultiplicativeElementWithOne</code> (<a href="chap31.html#X82BC294F7D388AE8"><span class="RefLink">31.14-11</span></a>) since the identity automorphism of <span class="SimpleMath">{ 1, ..., n }</span> is a multiplicative two sided identity for any transformation on the same set.</p>

<p><a id="X7E58AFA1832FF064" name="X7E58AFA1832FF064"></a></p>

<h5>54.1-2 TransformationFamily</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransformationFamily</code>( <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransformationType</code>( <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransformationData</code>( <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>For each <code class="code"><var class="Arg">n</var> &gt; 0</code> there is a single family and type of transformations on <var class="Arg">n</var> points. To speed things up, we store these in a database of types. The three functions above a then access functions. If the <var class="Arg">n</var>th entry isn't yet created, they trigger creation as well.</p>

<p>For <code class="code"><var class="Arg">n</var> &gt; 0</code>, element <var class="Arg">n</var> of the type database is <code class="code">[TransformationFamily(</code><var class="Arg">n</var><code class="code">), TransformationType(</code><var class="Arg">n</var><code class="code">)]</code></p>

<p><a id="X7B2E556E7BCF9CDF" name="X7B2E556E7BCF9CDF"></a></p>

<h5>54.1-3 Transformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Transformation</code>( <var class="Arg">images</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransformationNC</code>( <var class="Arg">images</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>both return a transformation with the image list <var class="Arg">images</var>. The first version checks that the all the elements of the given list lie within the range <span class="SimpleMath">{ 1, ..., n }</span> where <span class="SimpleMath">n</span> is the length of <var class="Arg">images</var>, but for speed purposes, a non-checking version is also supplied.</p>

<p><a id="X8268A58685BEFD6F" name="X8268A58685BEFD6F"></a></p>

<h5>54.1-4 IdentityTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IdentityTransformation</code>( <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the identity transformation of degree <var class="Arg">n</var>.</p>

<p><a id="X8475448F87E8CB8A" name="X8475448F87E8CB8A"></a></p>

<h5>54.1-5 RandomTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RandomTransformation</code>( <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns a random transformation of degree <var class="Arg">n</var>.</p>

<p><a id="X78A209C87CF0E32B" name="X78A209C87CF0E32B"></a></p>

<h5>54.1-6 DegreeOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DegreeOfTransformation</code>( <var class="Arg">trans</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the degree of <var class="Arg">trans</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= Transformation([2, 3, 4, 2, 4]);</span>
Transformation( [ 2, 3, 4, 2, 4 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DegreeOfTransformation(t);</span>
5
</pre></div>

<p><a id="X7AEC9E6687B3505A" name="X7AEC9E6687B3505A"></a></p>

<h5>54.1-7 ImageListOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ImageListOfTransformation</code>( <var class="Arg">trans</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the image list of <var class="Arg">trans</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ImageListOfTransformation(t);</span>
[ 2, 3, 4, 2, 4 ]
</pre></div>

<p><a id="X839A6D6082A21D1F" name="X839A6D6082A21D1F"></a></p>

<h5>54.1-8 ImageSetOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ImageSetOfTransformation</code>( <var class="Arg">trans</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the image of <var class="Arg">trans</var> as a set.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ImageSetOfTransformation(t);</span>
[ 2, 3, 4 ]
</pre></div>

<p><a id="X85F22DDD84C28583" name="X85F22DDD84C28583"></a></p>

<h5>54.1-9 RankOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RankOfTransformation</code>( <var class="Arg">trans</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the rank of <var class="Arg">trans</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RankOfTransformation(t);</span>
3
</pre></div>

<p><a id="X80FCB5048789CF75" name="X80FCB5048789CF75"></a></p>

<h5>54.1-10 KernelOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; KernelOfTransformation</code>( <var class="Arg">trans</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the kernel of <var class="Arg">trans</var> as an equivalence relation, see <a href="chap33.html#X7DED7F1F78D31785"><span class="RefLink">33.1</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">KernelOfTransformation(t);         </span>
[ [ 1, 4 ], [ 2 ], [ 3, 5 ] ]
</pre></div>

<p><a id="X82F5DEEC837B60A3" name="X82F5DEEC837B60A3"></a></p>

<h5>54.1-11 PreimagesOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PreimagesOfTransformation</code>( <var class="Arg">trans</var>, <var class="Arg">i</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the subset of <span class="SimpleMath">{ 1, ..., n }</span> which maps to <var class="Arg">i</var> under <var class="Arg">trans</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PreimagesOfTransformation(t, 2);</span>
[ 1, 4 ]
</pre></div>

<p><a id="X846A6F6B7B715188" name="X846A6F6B7B715188"></a></p>

<h5>54.1-12 RestrictedTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RestrictedTransformation</code>( <var class="Arg">trans</var>, <var class="Arg">alpha</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>The transformation <var class="Arg">trans</var> is restricted to only those points of <var class="Arg">alpha</var>.</p>

<p><a id="X7C5360B2799943F3" name="X7C5360B2799943F3"></a></p>

<h5>54.1-13 AsTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AsTransformation</code>( <var class="Arg">O</var>[, <var class="Arg">n</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AsTransformationNC</code>( <var class="Arg">O</var>, <var class="Arg">n</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the object <var class="Arg">O</var> as a transformation. Supported objects are permutations and binary relations on points. Called with two arguments, the operation returns a transformation of degree <var class="Arg">n</var>, signalling an error if such a representation is not possible. <code class="func">AsTransformationNC</code> does not perform this check.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsTransformation((1, 3)(2, 4));</span>
Transformation( [ 3, 4, 1, 2 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsTransformation((1, 3)(2, 4), 10);</span>
Transformation( [ 3, 4, 1, 2, 5, 6, 7, 8, 9, 10 ] )
</pre></div>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsTransformation((1, 3)(2, 4), 3);</span>
Error, Permutation moves points over the degree specified called from
&lt;function&gt;( &lt;arguments&gt; ) called from read-eval-loop
Entering break read-eval-print loop ...
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
<span class="GAPbrkprompt">brk&gt;</span> <span class="GAPinput">quit;</span>
</pre></div>

<p><a id="X83DBA2A18719EFA8" name="X83DBA2A18719EFA8"></a></p>

<h5>54.1-14 PermLeftQuoTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PermLeftQuoTransformation</code>( <var class="Arg">tr1</var>, <var class="Arg">tr2</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Given transformations <var class="Arg">tr1</var> and <var class="Arg">tr2</var> with equal kernel and image, we compute the permutation induced by (<var class="Arg">tr1</var>)<span class="SimpleMath">^{-1} *</span> <var class="Arg">tr2</var> on the set of images of <var class="Arg">tr1</var>. If the kernels and images are not equal, an error is signaled.</p>

<p><a id="X7CCD27327CC84626" name="X7CCD27327CC84626"></a></p>

<h5>54.1-15 BinaryRelationTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BinaryRelationTransformation</code>( <var class="Arg">trans</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns <var class="Arg">trans</var> when considered as a binary relation.</p>

<p><a id="X7BF5FA5C8068EB3B" name="X7BF5FA5C8068EB3B"></a></p>

<h5>54.1-16 TransformationRelation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransformationRelation</code>( <var class="Arg">R</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the binary relation <var class="Arg">R</var> when considered as a transformation. Only makes sense for injective binary relations over <code class="code">[1..n]</code>. An error is signalled if the relation is not over <code class="code">[1..n]</code>, and <code class="keyw">fail</code> if it is not injective.</p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap53.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap55.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>