/usr/share/gap/doc/ref/chap66.html is in gap-doc 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 | <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (ref) - Chapter 66: Polynomials and Rational Functions</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap66" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chap41.html">41</a> <a href="chap42.html">42</a> <a href="chap43.html">43</a> <a href="chap44.html">44</a> <a href="chap45.html">45</a> <a href="chap46.html">46</a> <a href="chap47.html">47</a> <a href="chap48.html">48</a> <a href="chap49.html">49</a> <a href="chap50.html">50</a> <a href="chap51.html">51</a> <a href="chap52.html">52</a> <a href="chap53.html">53</a> <a href="chap54.html">54</a> <a href="chap55.html">55</a> <a href="chap56.html">56</a> <a href="chap57.html">57</a> <a href="chap58.html">58</a> <a href="chap59.html">59</a> <a href="chap60.html">60</a> <a href="chap61.html">61</a> <a href="chap62.html">62</a> <a href="chap63.html">63</a> <a href="chap64.html">64</a> <a href="chap65.html">65</a> <a href="chap66.html">66</a> <a href="chap67.html">67</a> <a href="chap68.html">68</a> <a href="chap69.html">69</a> <a href="chap70.html">70</a> <a href="chap71.html">71</a> <a href="chap72.html">72</a> <a href="chap73.html">73</a> <a href="chap74.html">74</a> <a href="chap75.html">75</a> <a href="chap76.html">76</a> <a href="chap77.html">77</a> <a href="chap78.html">78</a> <a href="chap79.html">79</a> <a href="chap80.html">80</a> <a href="chap81.html">81</a> <a href="chap82.html">82</a> <a href="chap83.html">83</a> <a href="chap84.html">84</a> <a href="chap85.html">85</a> <a href="chap86.html">86</a> <a href="chap87.html">87</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap65.html">[Previous Chapter]</a> <a href="chap67.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap66_mj.html">[MathJax on]</a></p>
<p><a id="X7A14A6588268810A" name="X7A14A6588268810A"></a></p>
<div class="ChapSects"><a href="chap66.html#X7A14A6588268810A">66 <span class="Heading">Polynomials and Rational Functions</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap66.html#X7A8FADCD875826DA">66.1 <span class="Heading">Indeterminates</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X79D0380D7FA39F7D">66.1-1 <span class="Heading">Indeterminate</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X816C8D797C804380">66.1-2 IndeterminateNumberOfUnivariateRationalFunction</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7A2FA46885EF403D">66.1-3 IndeterminateOfUnivariateRationalFunction</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7FD4AC807A1C8E27">66.1-4 IndeterminateName</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X791A06E67F784328">66.1-5 CIUnivPols</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap66.html#X86A68FD582F4F757">66.2 <span class="Heading">Operations for Rational Functions</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap66.html#X824B6D328643CE04">66.3 <span class="Heading">Comparison of Rational Functions</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap66.html#X7D871EA180E9486C">66.4 <span class="Heading">Properties and Attributes of Rational Functions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X86C92F677DA9347F">66.4-1 IsPolynomialFunction</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7D7D2667803D8D8A">66.4-2 NumeratorOfRationalFunction</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X78DC1B5B866ADB6C">66.4-3 DenominatorOfRationalFunction</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7974B0707C8DAB6C">66.4-4 IsPolynomial</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7914771F7C6013EF">66.4-5 AsPolynomial</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X8738F73583273FCA">66.4-6 IsUnivariateRationalFunction</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7F1F67527A35A9CE">66.4-7 CoefficientsOfUnivariateRationalFunction</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X86A2546685D0016B">66.4-8 IsUnivariatePolynomial</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X78C9524D7F2708C2">66.4-9 CoefficientsOfUnivariatePolynomial</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X79138FF28213B6EC">66.4-10 IsLaurentPolynomial</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7F2A49208341C2A8">66.4-11 IsConstantRationalFunction</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X834B54947FAADEA4">66.4-12 IsPrimitivePolynomial</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X87531E03849391C1">66.4-13 SplittingField</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap66.html#X82E2F1707FC2E553">66.5 <span class="Heading">Univariate Polynomials</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X8379F8CB7D0076BA">66.5-1 UnivariatePolynomial</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X85178A3E7B4F11E0">66.5-2 UnivariatePolynomialByCoefficients</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X78AF77C383245254">66.5-3 DegreeOfLaurentPolynomial</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7CBB760C87B04F75">66.5-4 RootsOfPolynomial</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X80CEB10D7879767F">66.5-5 RootsOfUPol</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7887FBC78149BB0C">66.5-6 QuotRemLaurpols</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7DDADF157879EFBF">66.5-7 UnivariatenessTestRationalFunction</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7A3BC96B7A50DE98">66.5-8 InfoPoly</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap66.html#X81499B5A823E6EA3">66.6 <span class="Heading">Polynomials as Univariate Polynomials in one Indeterminate</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X826B99B17ABD11BE">66.6-1 DegreeIndeterminate</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X85646FD07F9C60F5">66.6-2 PolynomialCoefficientsOfPolynomial</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X80710E9B7D8340BD">66.6-3 LeadingCoefficient</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7B3EAE41795598A5">66.6-4 LeadingMonomial</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7B57CEE2780D0E0B">66.6-5 Derivative</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7C7D790A7D6E11AD">66.6-6 Discriminant</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X857AD5587EF49029">66.6-7 Resultant</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap66.html#X85ABC4687DF05777">66.7 <span class="Heading">Multivariate Polynomials</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7A70769C7F52CD2D">66.7-1 <span class="Heading">Value</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap66.html#X7ED3E7D17C7AC732">66.8 <span class="Heading">Minimal Polynomials</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X8643915A8424DAF8">66.8-1 MinimalPolynomial</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap66.html#X837B8E55832CDFEB">66.9 <span class="Heading">Cyclotomic Polynomials</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X827FC7FE81EE4C02">66.9-1 CyclotomicPolynomial</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap66.html#X8551EF5187509D69">66.10 <span class="Heading">Polynomial Factorization</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X83511D517B544F36">66.10-1 Factors</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7F5A4ACB7AF9E329">66.10-2 FactorsSquarefree</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap66.html#X7F45E9E47EA2C18B">66.11 <span class="Heading">Polynomials over the Rationals</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7E66494B7B05A055">66.11-1 PrimitivePolynomial</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7A73A3877EB73566">66.11-2 PolynomialModP</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7AB9A6257ED694EC">66.11-3 GaloisType</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7EB610D37D156DC6">66.11-4 ProbabilityShapes</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap66.html#X7C178AB9866FDDE5">66.12 <span class="Heading">Factorization of Polynomials over the Rationals</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X8723075C81D2CCA6">66.12-1 BombieriNorm</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X856D769D878AF7AE">66.12-2 MinimizedBombieriNorm</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X8139BB0F87399F2C">66.12-3 HenselBound</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X79CC9C8D7C9F6B6A">66.12-4 OneFactorBound</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap66.html#X844B3C6C87A0E7E0">66.13 <span class="Heading">Laurent Polynomials</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X8467263B7EFA013E">66.13-1 LaurentPolynomialByCoefficients</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X86D58AB67F86469F">66.13-2 CoefficientsOfLaurentPolynomial</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X8381E1B582F38C85">66.13-3 IndeterminateNumberOfLaurentPolynomial</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap66.html#X7C1708D27F97B05F">66.14 <span class="Heading">Univariate Rational Functions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X83DD411179888783">66.14-1 UnivariateRationalFunctionByCoefficients</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap66.html#X7C59471783C3FEDC">66.15 <span class="Heading">Polynomial Rings and Function Fields</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7D2F16E480060330">66.15-1 <span class="Heading">PolynomialRing</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X80D585E1793D4552">66.15-2 IndeterminatesOfPolynomialRing</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X8235D10781BE8003">66.15-3 CoefficientsRing</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7D631ACC86C584B7">66.15-4 IsPolynomialRing</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X86F391237A76D804">66.15-5 IsFiniteFieldPolynomialRing</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X782D07F77BCF67C1">66.15-6 IsAbelianNumberFieldPolynomialRing</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7D45213A8642033B">66.15-7 IsRationalsPolynomialRing</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X812E801484E3624E">66.15-8 <span class="Heading">FunctionField</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X8090C9EC85201AAC">66.15-9 IsFunctionField</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap66.html#X85CA757B844F12AE">66.16 <span class="Heading">Univariate Polynomial Rings</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X84DC2A59797A26DE">66.16-1 <span class="Heading">UnivariatePolynomialRing</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7A43D74B812401CA">66.16-2 IsUnivariatePolynomialRing</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap66.html#X86E2ADEA784AD163">66.17 <span class="Heading">Monomial Orderings</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X79D4CBBF820EA204">66.17-1 IsMonomialOrdering</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7D052A017A73E91E">66.17-2 LeadingMonomialOfPolynomial</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7B6231137BA8B95F">66.17-3 LeadingTermOfPolynomial</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X798E707D86141087">66.17-4 LeadingCoefficientOfPolynomial</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7EDE941781BA7F8B">66.17-5 MonomialComparisonFunction</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7EDC3A457E7B591E">66.17-6 MonomialExtrepComparisonFun</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X852D7BB37ECE98E1">66.17-7 MonomialLexOrdering</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X786C866C824D2688">66.17-8 MonomialGrlexOrdering</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X8094C733808D1799">66.17-9 MonomialGrevlexOrdering</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X84AC871283A74EC0">66.17-10 EliminationOrdering</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7C99593584D478D7">66.17-11 PolynomialReduction</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7DE7D4467EBAD916">66.17-12 PolynomialReducedRemainder</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7C8239057FD4EC03">66.17-13 PolynomialDivisionAlgorithm</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7A30E10B820311D1">66.17-14 MonomialExtGrlexLess</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap66.html#X79BAB2937E6085D6">66.18 <span class="Heading">Groebner Bases</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7A43611E876B7560">66.18-1 <span class="Heading">GroebnerBasis</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7DEF286384967C9E">66.18-2 <span class="Heading">ReducedGroebnerBasis</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7FC1EFE78498C17C">66.18-3 StoredGroebnerBasis</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7C55702786D284A7">66.18-4 InfoGroebner</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap66.html#X8113DD9B781CA6C1">66.19 <span class="Heading">Rational Function Families</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X855DD73C78A90BC3">66.19-1 RationalFunctionsFamily</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X86E097307D188D3B">66.19-2 IsPolynomialFunctionsFamily</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7AADCA45826866FB">66.19-3 CoefficientsFamily</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap66.html#X7E360788785DE530">66.20 <span class="Heading">The Representations of Rational Functions</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap66.html#X7F44CF87801DB965">66.21 <span class="Heading">The Defining Attributes of Rational Functions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X791E16C67A352263">66.21-1 IsRationalFunctionDefaultRep</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7DF955C87CBFC12B">66.21-2 ExtRepNumeratorRatFun</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X8059E74D7DCABDBC">66.21-3 ExtRepDenominatorRatFun</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X84F546F87B5ECFE0">66.21-4 ZeroCoefficientRatFun</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X833CE16579AB26E0">66.21-5 IsPolynomialDefaultRep</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X8406EE2E8775FBAB">66.21-6 ExtRepPolynomialRatFun</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7E1B98CC7BADAF56">66.21-7 IsLaurentPolynomialDefaultRep</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap66.html#X791FADD278A2F32F">66.22 <span class="Heading">Creation of Rational Functions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X81297E4587A9F2A6">66.22-1 RationalFunctionByExtRep</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X79E445AF7849F48A">66.22-2 PolynomialByExtRep</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7E2A46D68472F492">66.22-3 LaurentPolynomialByExtRep</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap66.html#X809028CD7C0EA7CE">66.23 <span class="Heading">Arithmetic for External Representations of Polynomials</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X855094857A78ABF9">66.23-1 ZippedSum</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7B911136782F0F6D">66.23-2 ZippedProduct</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X87E5EB8985AF04CD">66.23-3 QuotientPolynomialsExtRep</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap66.html#X811B7D8E79E4BD46">66.24 <span class="Heading">Cancellation Tests for Rational Functions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X878A1AC87B492E3D">66.24-1 RationalFunctionByExtRepWithCancellation</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X7BFB55887A153003">66.24-2 TryGcdCancelExtRepPolynomials</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap66.html#X81CC7D9B819A9332">66.24-3 HeuristicCancelPolynomials</a></span>
</div></div>
</div>
<h3>66 <span class="Heading">Polynomials and Rational Functions</span></h3>
<p>Let <span class="SimpleMath">R</span> be a commutative ring-with-one. We call a free associative algebra <span class="SimpleMath">A</span> over <span class="SimpleMath">R</span> a <em>polynomial ring</em> over <span class="SimpleMath">R</span>. The free generators of <span class="SimpleMath">A</span> are called <em>indeterminates</em> (to avoid naming conflicts with the word <em>variables</em> which will be used to denote <strong class="pkg">GAP</strong> variables only) , they are usually denoted by <span class="SimpleMath">x_1, x_2, ...</span>. The number of indeterminates is called the <em>rank</em> of <span class="SimpleMath">A</span>. The elements of <span class="SimpleMath">A</span> are called <em>polynomials</em>. Products of indeterminates are called <em>monomials</em>, every polynomial can be expressed as a finite sum of products of monomials with ring elements in a form like <span class="SimpleMath">r_{1,0} x_1 + r_{1,1} x_1 x_2 + r_{0,1} x_2 + ⋯</span> with <span class="SimpleMath">r_{i,j} ∈ R</span>.</p>
<p>A polynomial ring of rank 1 is called an <em>univariate</em> polynomial ring, its elements are <em>univariate polynomials</em>.</p>
<p>Polynomial rings of smaller rank naturally embed in rings of higher rank; if <span class="SimpleMath">S</span> is a subring of <span class="SimpleMath">R</span> then a polynomial ring over <span class="SimpleMath">S</span> naturally embeds in a polynomial ring over <span class="SimpleMath">R</span> of the same rank. Note however that <strong class="pkg">GAP</strong> does not consider <span class="SimpleMath">R</span> as a subset of a polynomial ring over <span class="SimpleMath">R</span>; for example the zero of <span class="SimpleMath">R</span> (<span class="SimpleMath">0</span>) and the zero of the polynomial ring (<span class="SimpleMath">0x^0</span>) are different objects.</p>
<p>Internally, indeterminates are represented by positive integers, but it is possible to give names to them to have them printed in a nicer way. Beware, however that there is not necessarily any relation between the way an indeterminate is called and the way it is printed. See section <a href="chap66.html#X7A8FADCD875826DA"><span class="RefLink">66.1</span></a> for details.</p>
<p>If <span class="SimpleMath">R</span> is an integral domain, the polynomial ring <span class="SimpleMath">A</span> over <span class="SimpleMath">R</span> is an integral domain as well and one can therefore form its quotient field <span class="SimpleMath">Q</span>. This field is called a <em>field of rational functions</em>. Again <span class="SimpleMath">A</span> embeds naturally into <span class="SimpleMath">Q</span> and <strong class="pkg">GAP</strong> will perform this embedding implicitly. (In fact it implements the ring of rational functions over <span class="SimpleMath">R</span>.) To avoid problems with leading coefficients, however, <span class="SimpleMath">R</span> must be a unique factorization domain.</p>
<p><a id="X7A8FADCD875826DA" name="X7A8FADCD875826DA"></a></p>
<h4>66.1 <span class="Heading">Indeterminates</span></h4>
<p>Internally, indeterminates are created for a <em>family</em> of objects (for example all elements of finite fields in characteristic <span class="SimpleMath">3</span> are in one family). Thus a variable "x" over the rationals is also an "x" over the integers, while an "x" over <code class="code">GF(3)</code> is different.</p>
<p>Within one family, every indeterminate has a number <var class="Arg">nr</var> and as long as no other names have been assigned, this indeterminate will be displayed as "<code class="code">x_<var class="Arg">nr</var></code>". Indeterminate numbers can be arbitrary nonnegative integers.</p>
<p>It is possible to assign names to indeterminates; these names are strings and only provide a means for printing the indeterminates in a nice way. Indeterminates that have not been assigned a name will be printed as "<code class="code">x_<var class="Arg">nr</var></code>".</p>
<p>(Because of this printing convention, the name <code class="code">x_<var class="Arg">nr</var></code> is interpreted specially to always denote the variable with internal number <var class="Arg">nr</var>.)</p>
<p>The indeterminate names have not necessarily any relations to variable names: this means that an indeterminate whose name is, say, "<code class="code">x</code>" cannot be accessed using the variable <code class="code">x</code>, unless <code class="code">x</code> was defined to be that indeterminate.</p>
<p>When asking for indeterminates with certain names, <strong class="pkg">GAP</strong> usually will take the first (with respect to the internal numbering) indeterminates that are not yet named, name these accordingly and return them. Thus when asking for named indeterminates, no relation between names and indeterminate numbers can be guaranteed. The attribute <code class="code">IndeterminateNumberOfLaurentPolynomial(<var class="Arg">indet</var>)</code> will return the number of the indeterminate <var class="Arg">indet</var>.</p>
<p>When asked to create an indeterminate with a name that exists already for the family, <strong class="pkg">GAP</strong> will by default return this existing indeterminate. If you explicitly want a <em>new</em> indeterminate, distinct from the already existing one with the <em>same</em> name, you can add the <code class="code">new</code> option to the function call. (This is in most cases not a good idea.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=PolynomialRing(GF(3),["x","y","z"]);</span>
GF(3)[x,y,z]
<span class="GAPprompt">gap></span> <span class="GAPinput">List(IndeterminatesOfPolynomialRing(R),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IndeterminateNumberOfLaurentPolynomial);</span>
[ 1, 2, 3 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=PolynomialRing(GF(3),["z"]);</span>
GF(3)[z]
<span class="GAPprompt">gap></span> <span class="GAPinput">List(IndeterminatesOfPolynomialRing(R),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IndeterminateNumberOfLaurentPolynomial);</span>
[ 3 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=PolynomialRing(GF(3),["x","y","z"]:new);</span>
GF(3)[x,y,z]
<span class="GAPprompt">gap></span> <span class="GAPinput">List(IndeterminatesOfPolynomialRing(R),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IndeterminateNumberOfLaurentPolynomial);</span>
[ 4, 5, 6 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=PolynomialRing(GF(3),["z"]);</span>
GF(3)[z]
<span class="GAPprompt">gap></span> <span class="GAPinput">List(IndeterminatesOfPolynomialRing(R),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> IndeterminateNumberOfLaurentPolynomial);</span>
[ 3 ]
</pre></div>
<p><a id="X79D0380D7FA39F7D" name="X79D0380D7FA39F7D"></a></p>
<h5>66.1-1 <span class="Heading">Indeterminate</span></h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Indeterminate</code>( <var class="Arg">R</var>[, <var class="Arg">nr</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Indeterminate</code>( <var class="Arg">R</var>[, <var class="Arg">name</var>][, <var class="Arg">avoid</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Indeterminate</code>( <var class="Arg">fam</var>, <var class="Arg">nr</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ X</code>( <var class="Arg">R</var>[, <var class="Arg">nr</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ X</code>( <var class="Arg">R</var>[, <var class="Arg">name</var>][, <var class="Arg">avoid</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ X</code>( <var class="Arg">fam</var>, <var class="Arg">nr</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the indeterminate number <var class="Arg">nr</var> over the ring <var class="Arg">R</var>. If <var class="Arg">nr</var> is not given it defaults to 1. If the number is not specified a list <var class="Arg">avoid</var> of indeterminates may be given. The function will return an indeterminate that is guaranteed to be different from all the indeterminates in the list <var class="Arg">avoid</var>. The third usage returns an indeterminate called <var class="Arg">name</var> (also avoiding the indeterminates in <var class="Arg">avoid</var> if given).</p>
<p><code class="func">X</code> is simply a synonym for <code class="func">Indeterminate</code>. However, we do not recommend to use this synonym which is supported only for the backwards compatibility.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:=Indeterminate(GF(3),"x");</span>
x
<span class="GAPprompt">gap></span> <span class="GAPinput">y:=X(GF(3),"y");z:=X(GF(3),"X");</span>
y
X
<span class="GAPprompt">gap></span> <span class="GAPinput">X(GF(3),2);</span>
y
<span class="GAPprompt">gap></span> <span class="GAPinput">X(GF(3),"x_3");</span>
X
<span class="GAPprompt">gap></span> <span class="GAPinput">X(GF(3),[y,z]);</span>
x
</pre></div>
<p><a id="X816C8D797C804380" name="X816C8D797C804380"></a></p>
<h5>66.1-2 IndeterminateNumberOfUnivariateRationalFunction</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IndeterminateNumberOfUnivariateRationalFunction</code>( <var class="Arg">rfun</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the number of the indeterminate in which the univariate rational function <var class="Arg">rfun</var> is expressed. (This also provides a way to obtain the number of a given indeterminate.)</p>
<p>A constant rational function might not possess an indeterminate number. In this case <code class="func">IndeterminateNumberOfUnivariateRationalFunction</code> will default to a value of 1. Therefore two univariate polynomials may be considered to be in the same univariate polynomial ring if their indeterminates have the same number or one if of them is constant. (see also <code class="func">CIUnivPols</code> (<a href="chap66.html#X791A06E67F784328"><span class="RefLink">66.1-5</span></a>) and <code class="func">IsLaurentPolynomialDefaultRep</code> (<a href="chap66.html#X7E1B98CC7BADAF56"><span class="RefLink">66.21-7</span></a>)).</p>
<p><a id="X7A2FA46885EF403D" name="X7A2FA46885EF403D"></a></p>
<h5>66.1-3 IndeterminateOfUnivariateRationalFunction</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IndeterminateOfUnivariateRationalFunction</code>( <var class="Arg">rfun</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the indeterminate in which the univariate rational function <var class="Arg">rfun</var> is expressed. (cf. <code class="func">IndeterminateNumberOfUnivariateRationalFunction</code> (<a href="chap66.html#X816C8D797C804380"><span class="RefLink">66.1-2</span></a>).)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IndeterminateNumberOfUnivariateRationalFunction(z);</span>
3
<span class="GAPprompt">gap></span> <span class="GAPinput">IndeterminateOfUnivariateRationalFunction(z^5+z);</span>
X
</pre></div>
<p><a id="X7FD4AC807A1C8E27" name="X7FD4AC807A1C8E27"></a></p>
<h5>66.1-4 IndeterminateName</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IndeterminateName</code>( <var class="Arg">fam</var>, <var class="Arg">nr</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ HasIndeterminateName</code>( <var class="Arg">fam</var>, <var class="Arg">nr</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SetIndeterminateName</code>( <var class="Arg">fam</var>, <var class="Arg">nr</var>, <var class="Arg">name</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">SetIndeterminateName</code> assigns the name <var class="Arg">name</var> to indeterminate <var class="Arg">nr</var> in the rational functions family <var class="Arg">fam</var>. It issues an error if the indeterminate was already named.</p>
<p><code class="func">IndeterminateName</code> returns the name of the <var class="Arg">nr</var>-th indeterminate (and returns <code class="keyw">fail</code> if no name has been assigned).</p>
<p><code class="func">HasIndeterminateName</code> tests whether indeterminate <var class="Arg">nr</var> has already been assigned a name.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IndeterminateName(FamilyObj(x),2);</span>
"y"
<span class="GAPprompt">gap></span> <span class="GAPinput">HasIndeterminateName(FamilyObj(x),4);</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">SetIndeterminateName(FamilyObj(x),10,"bla");</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Indeterminate(GF(3),10);</span>
bla
</pre></div>
<p>As a convenience there is a special method installed for <code class="code">SetName</code> that will assign a name to an indeterminate.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">a:=Indeterminate(GF(3),5);</span>
x_5
<span class="GAPprompt">gap></span> <span class="GAPinput">SetName(a,"ah");</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">a^5+a;</span>
ah^5+ah
</pre></div>
<p><a id="X791A06E67F784328" name="X791A06E67F784328"></a></p>
<h5>66.1-5 CIUnivPols</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CIUnivPols</code>( <var class="Arg">upol1</var>, <var class="Arg">upol2</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function (whose name stands for "common indeterminate of univariate polynomials") takes two univariate polynomials as arguments. If both polynomials are given in the same indeterminate number <var class="Arg">indnum</var> (in this case they are "compatible" as univariate polynomials) it returns <var class="Arg">indnum</var>. In all other cases it returns <code class="keyw">fail</code>. <code class="func">CIUnivPols</code> also accepts if either polynomial is constant but formally expressed in another indeterminate, in this situation the indeterminate of the other polynomial is selected.</p>
<p><a id="X86A68FD582F4F757" name="X86A68FD582F4F757"></a></p>
<h4>66.2 <span class="Heading">Operations for Rational Functions</span></h4>
<p>The rational functions form a field, therefore all arithmetic operations are applicable to rational functions.</p>
<p><code class="code"><var class="Arg">f</var> + <var class="Arg">g</var></code></p>
<p><code class="code"><var class="Arg">f</var> - <var class="Arg">g</var></code></p>
<p><code class="code"><var class="Arg">f</var> * <var class="Arg">g</var></code></p>
<p><code class="code"><var class="Arg">f</var> / <var class="Arg">g</var></code></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:=Indeterminate(Rationals,1);;y:=Indeterminate(Rationals,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=3+x*y+x^5;;g:=5+x^2*y+x*y^2;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">a:=g/f;</span>
(x_1^2*x_2+x_1*x_2^2+5)/(x_1^5+x_1*x_2+3)
</pre></div>
<p>Note that the quotient <code class="code"><var class="Arg">f</var>/<var class="Arg">g</var></code> of two polynomials might be represented as a rational function again. If <var class="Arg">g</var> is known to divide <var class="Arg">f</var> the call <code class="code">Quotient(<var class="Arg">f</var>,<var class="Arg">g</var>)</code> (see <code class="func">Quotient</code> (<a href="chap56.html#X8350500B8576F833"><span class="RefLink">56.1-9</span></a>)) should be used instead.</p>
<p><code class="code"><var class="Arg">f</var> mod <var class="Arg">g</var></code></p>
<p>For two Laurent polynomials <var class="Arg">f</var> and <var class="Arg">g</var>, <code class="code"><var class="Arg">f</var> mod <var class="Arg">g</var></code> is the Euclidean remainder (see <code class="func">EuclideanRemainder</code> (<a href="chap56.html#X7B5E9639865E91BA"><span class="RefLink">56.6-4</span></a>)) of <var class="Arg">f</var> modulo <var class="Arg">g</var>.</p>
<p>As calculating a multivariate Gcd can be expensive, it is not guaranteed that rational functions will always be represented as a quotient of coprime polynomials. In certain unfortunate situations this might lead to a degree explosion. To ensure cancellation you can use <code class="func">Gcd</code> (<a href="chap56.html#X7DE207718456F98F"><span class="RefLink">56.7-1</span></a>) on the <code class="func">NumeratorOfRationalFunction</code> (<a href="chap66.html#X7D7D2667803D8D8A"><span class="RefLink">66.4-2</span></a>) and <code class="func">DenominatorOfRationalFunction</code> (<a href="chap66.html#X78DC1B5B866ADB6C"><span class="RefLink">66.4-3</span></a>) values of a given rational function.</p>
<p>All polynomials as well as all the univariate polynomials in the same indeterminate form subrings of this field. If two rational functions are known to be in the same subring, the result will be expressed as element in this subring.</p>
<p><a id="X824B6D328643CE04" name="X824B6D328643CE04"></a></p>
<h4>66.3 <span class="Heading">Comparison of Rational Functions</span></h4>
<p><code class="code"><var class="Arg">f</var> = <var class="Arg">g</var></code></p>
<p>Two rational functions <var class="Arg">f</var> and <var class="Arg">g</var> are equal if the product <code class="code">Numerator(<var class="Arg">f</var>) * Denominator(<var class="Arg">g</var>)</code> equals <code class="code">Numerator(<var class="Arg">g</var>) * Denominator(<var class="Arg">f</var>)</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:=Indeterminate(Rationals,"x");;y:=Indeterminate(Rationals,"y");;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=3+x*y+x^5;;g:=5+x^2*y+x*y^2;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">a:=g/f;</span>
(x^2*y+x*y^2+5)/(x^5+x*y+3)
<span class="GAPprompt">gap></span> <span class="GAPinput">b:=(g*f)/(f^2);</span>
(x^7*y+x^6*y^2+5*x^5+x^3*y^2+x^2*y^3+3*x^2*y+3*x*y^2+5*x*y+15)/(x^10+2\
*x^6*y+6*x^5+x^2*y^2+6*x*y+9)
<span class="GAPprompt">gap></span> <span class="GAPinput">a=b;</span>
true
</pre></div>
<p><code class="code"><var class="Arg">f</var> < <var class="Arg">g</var></code></p>
<p>The ordering of rational functions is defined in several steps. Monomials (products of indeterminates) are sorted first by degree, then lexicographically (with <span class="SimpleMath">x_1>x_2</span>) (see <code class="func">MonomialGrlexOrdering</code> (<a href="chap66.html#X786C866C824D2688"><span class="RefLink">66.17-8</span></a>)). Products of monomials with ring elements ("terms") are compared first by their monomials and then by their coefficients.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">x>y;</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">x^2*y<x*y^2;</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">x*y<x^2*y;</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">x^2*y < 5* y*x^2;</span>
true
</pre></div>
<p>Polynomials are compared by comparing the largest terms in turn until they differ.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">x+y<y;</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">x<x+1;</span>
true
</pre></div>
<p>Rational functions are compared by comparing the polynomial <code class="code">Numerator(<var class="Arg">f</var>) * Denominator(<var class="Arg">g</var>)</code> with the polynomial <code class="code">Numerator(<var class="Arg">g</var>) * Denominator(<var class="Arg">f</var>)</code>. (As the ordering of monomials used by <strong class="pkg">GAP</strong> is invariant under multiplication this is independent of common factors in numerator and denominator.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">f/g<g/f;</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">f/g<(g*g)/(f*g);</span>
false
</pre></div>
<p>For univariate polynomials this reduces to an ordering first by total degree and then lexicographically on the coefficients.</p>
<p><a id="X7D871EA180E9486C" name="X7D871EA180E9486C"></a></p>
<h4>66.4 <span class="Heading">Properties and Attributes of Rational Functions</span></h4>
<p>All these tests are applicable to <em>every</em> rational function. Depending on the internal representation of the rational function, however some of these tests (in particular, univariateness) might be expensive in some cases.</p>
<p>For reasons of performance within algorithms it can be useful to use other attributes, which give a slightly more technical representation. See section <a href="chap66.html#X7E360788785DE530"><span class="RefLink">66.20</span></a> for details.</p>
<p><a id="X86C92F677DA9347F" name="X86C92F677DA9347F"></a></p>
<h5>66.4-1 IsPolynomialFunction</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsPolynomialFunction</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsRationalFunction</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>A rational function is an element of the quotient field of a polynomial ring over an UFD. It is represented as a quotient of two polynomials, its numerator (see <code class="func">NumeratorOfRationalFunction</code> (<a href="chap66.html#X7D7D2667803D8D8A"><span class="RefLink">66.4-2</span></a>)) and its denominator (see <code class="func">DenominatorOfRationalFunction</code> (<a href="chap66.html#X78DC1B5B866ADB6C"><span class="RefLink">66.4-3</span></a>))</p>
<p>A polynomial function is an element of a polynomial ring (not necessarily an UFD), or a rational function.</p>
<p><strong class="pkg">GAP</strong> considers <code class="func">IsRationalFunction</code> as a subcategory of <code class="func">IsPolynomialFunction</code>.</p>
<p><a id="X7D7D2667803D8D8A" name="X7D7D2667803D8D8A"></a></p>
<h5>66.4-2 NumeratorOfRationalFunction</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ NumeratorOfRationalFunction</code>( <var class="Arg">ratfun</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the numerator of the rational function <var class="Arg">ratfun</var>.</p>
<p>As no proper multivariate gcd has been implemented yet, numerators and denominators are not guaranteed to be reduced!</p>
<p><a id="X78DC1B5B866ADB6C" name="X78DC1B5B866ADB6C"></a></p>
<h5>66.4-3 DenominatorOfRationalFunction</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DenominatorOfRationalFunction</code>( <var class="Arg">ratfun</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the denominator of the rational function <var class="Arg">ratfun</var>.</p>
<p>As no proper multivariate gcd has been implemented yet, numerators and denominators are not guaranteed to be reduced!</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:=Indeterminate(Rationals,1);;y:=Indeterminate(Rationals,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">DenominatorOfRationalFunction((x*y+x^2)/y);</span>
y
<span class="GAPprompt">gap></span> <span class="GAPinput">NumeratorOfRationalFunction((x*y+x^2)/y);</span>
x^2+x*y
</pre></div>
<p><a id="X7974B0707C8DAB6C" name="X7974B0707C8DAB6C"></a></p>
<h5>66.4-4 IsPolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsPolynomial</code>( <var class="Arg">ratfun</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A polynomial is a rational function whose denominator is one. (If the coefficients family forms a field this is equivalent to the denominator being constant.)</p>
<p>If the base family is not a field, it may be impossible to represent the quotient of a polynomial by a ring element as a polynomial again, but it will have to be represented as a rational function.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsPolynomial((x*y+x^2*y^3)/y);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">IsPolynomial((x*y+x^2)/y);</span>
false
</pre></div>
<p><a id="X7914771F7C6013EF" name="X7914771F7C6013EF"></a></p>
<h5>66.4-5 AsPolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AsPolynomial</code>( <var class="Arg">poly</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>If <var class="Arg">poly</var> is a rational function that is a polynomial this attribute returns an equal rational function <span class="SimpleMath">p</span> such that <span class="SimpleMath">p</span> is equal to its numerator and the denominator of <span class="SimpleMath">p</span> is one.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">AsPolynomial((x*y+x^2*y^3)/y);</span>
x^2*y^2+x
</pre></div>
<p><a id="X8738F73583273FCA" name="X8738F73583273FCA"></a></p>
<h5>66.4-6 IsUnivariateRationalFunction</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsUnivariateRationalFunction</code>( <var class="Arg">ratfun</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A rational function is univariate if its numerator and its denominator are both polynomials in the same one indeterminate. The attribute <code class="func">IndeterminateNumberOfUnivariateRationalFunction</code> (<a href="chap66.html#X816C8D797C804380"><span class="RefLink">66.1-2</span></a>) can be used to obtain the number of this common indeterminate.</p>
<p><a id="X7F1F67527A35A9CE" name="X7F1F67527A35A9CE"></a></p>
<h5>66.4-7 CoefficientsOfUnivariateRationalFunction</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CoefficientsOfUnivariateRationalFunction</code>( <var class="Arg">rfun</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>if <var class="Arg">rfun</var> is a univariate rational function, this attribute returns a list <code class="code">[ <var class="Arg">ncof</var>, <var class="Arg">dcof</var>, <var class="Arg">val</var> ]</code> where <var class="Arg">ncof</var> and <var class="Arg">dcof</var> are coefficient lists of univariate polynomials <var class="Arg">n</var> and <var class="Arg">d</var> and a valuation <var class="Arg">val</var> such that <span class="SimpleMath"><var class="Arg">rfun</var> = x^<var class="Arg">val</var> ⋅ <var class="Arg">n</var> / <var class="Arg">d</var></span> where <span class="SimpleMath">x</span> is the variable with the number given by <code class="func">IndeterminateNumberOfUnivariateRationalFunction</code> (<a href="chap66.html#X816C8D797C804380"><span class="RefLink">66.1-2</span></a>). Numerator and denominator are guaranteed to be cancelled.</p>
<p><a id="X86A2546685D0016B" name="X86A2546685D0016B"></a></p>
<h5>66.4-8 IsUnivariatePolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsUnivariatePolynomial</code>( <var class="Arg">ratfun</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A univariate polynomial is a polynomial in only one indeterminate.</p>
<p><a id="X78C9524D7F2708C2" name="X78C9524D7F2708C2"></a></p>
<h5>66.4-9 CoefficientsOfUnivariatePolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CoefficientsOfUnivariatePolynomial</code>( <var class="Arg">pol</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p><code class="func">CoefficientsOfUnivariatePolynomial</code> returns the coefficient list of the polynomial <var class="Arg">pol</var>, sorted in ascending order. (It returns the empty list if <var class="Arg">pol</var> is 0.)</p>
<p><a id="X79138FF28213B6EC" name="X79138FF28213B6EC"></a></p>
<h5>66.4-10 IsLaurentPolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsLaurentPolynomial</code>( <var class="Arg">ratfun</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A Laurent polynomial is a univariate rational function whose denominator is a monomial. Therefore every univariate polynomial is a Laurent polynomial.</p>
<p>The attribute <code class="func">CoefficientsOfLaurentPolynomial</code> (<a href="chap66.html#X86D58AB67F86469F"><span class="RefLink">66.13-2</span></a>) gives a compact representation as Laurent polynomial.</p>
<p><a id="X7F2A49208341C2A8" name="X7F2A49208341C2A8"></a></p>
<h5>66.4-11 IsConstantRationalFunction</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsConstantRationalFunction</code>( <var class="Arg">ratfun</var> )</td><td class="tdright">( property )</td></tr></table></div>
<p>A constant rational function is a function whose numerator and denominator are polynomials of degree 0.</p>
<p><a id="X834B54947FAADEA4" name="X834B54947FAADEA4"></a></p>
<h5>66.4-12 IsPrimitivePolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsPrimitivePolynomial</code>( <var class="Arg">F</var>, <var class="Arg">pol</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>For a univariate polynomial <var class="Arg">pol</var> of degree <span class="SimpleMath">d</span> in the indeterminate <span class="SimpleMath">X</span>, with coefficients in a finite field <var class="Arg">F</var> with <span class="SimpleMath">q</span> elements, say, <code class="func">IsPrimitivePolynomial</code> returns <code class="keyw">true</code> if</p>
<ol>
<li><p><var class="Arg">pol</var> divides <span class="SimpleMath">X^{q^d-1} - 1</span>, and</p>
</li>
<li><p>for each prime divisor <span class="SimpleMath">p</span> of <span class="SimpleMath">q^d - 1</span>, <var class="Arg">pol</var> does not divide <span class="SimpleMath">X^{(q^d-1)/p} - 1</span>,</p>
</li>
</ol>
<p>and <code class="keyw">false</code> otherwise.</p>
<p><a id="X87531E03849391C1" name="X87531E03849391C1"></a></p>
<h5>66.4-13 SplittingField</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SplittingField</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the smallest field which contains the coefficients of <var class="Arg">f</var> and the roots of <var class="Arg">f</var>.</p>
<p><a id="X82E2F1707FC2E553" name="X82E2F1707FC2E553"></a></p>
<h4>66.5 <span class="Heading">Univariate Polynomials</span></h4>
<p>Some of the operations are actually defined on the larger domain of Laurent polynomials (see <a href="chap66.html#X844B3C6C87A0E7E0"><span class="RefLink">66.13</span></a>). For this section you can simply ignore the word "Laurent" if it occurs in a description.</p>
<p><a id="X8379F8CB7D0076BA" name="X8379F8CB7D0076BA"></a></p>
<h5>66.5-1 UnivariatePolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ UnivariatePolynomial</code>( <var class="Arg">ring</var>, <var class="Arg">cofs</var>[, <var class="Arg">ind</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>constructs an univariate polynomial over the ring <var class="Arg">ring</var> in the indeterminate <var class="Arg">ind</var> with the coefficients given by <var class="Arg">coefs</var>.</p>
<p><a id="X85178A3E7B4F11E0" name="X85178A3E7B4F11E0"></a></p>
<h5>66.5-2 UnivariatePolynomialByCoefficients</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ UnivariatePolynomialByCoefficients</code>( <var class="Arg">fam</var>, <var class="Arg">cofs</var>, <var class="Arg">ind</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>constructs an univariate polynomial over the coefficients family <var class="Arg">fam</var> and in the indeterminate <var class="Arg">ind</var> with the coefficients given by <var class="Arg">coefs</var>. This function should be used in algorithms to create polynomials as it avoids overhead associated with <code class="func">UnivariatePolynomial</code> (<a href="chap66.html#X8379F8CB7D0076BA"><span class="RefLink">66.5-1</span></a>).</p>
<p><a id="X78AF77C383245254" name="X78AF77C383245254"></a></p>
<h5>66.5-3 DegreeOfLaurentPolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DegreeOfLaurentPolynomial</code>( <var class="Arg">pol</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>The degree of a univariate (Laurent) polynomial <var class="Arg">pol</var> is the largest exponent <span class="SimpleMath">n</span> of a monomial <span class="SimpleMath">x^n</span> of <var class="Arg">pol</var>. The degree of a zero polynomial is defined to be <code class="code">-infinity</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">p:=UnivariatePolynomial(Rationals,[1,2,3,4],1);</span>
4*x^3+3*x^2+2*x+1
<span class="GAPprompt">gap></span> <span class="GAPinput">UnivariatePolynomialByCoefficients(FamilyObj(1),[9,2,3,4],73);</span>
4*x_73^3+3*x_73^2+2*x_73+9
<span class="GAPprompt">gap></span> <span class="GAPinput">CoefficientsOfUnivariatePolynomial(p);</span>
[ 1, 2, 3, 4 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">DegreeOfLaurentPolynomial(p);</span>
3
<span class="GAPprompt">gap></span> <span class="GAPinput">DegreeOfLaurentPolynomial(Zero(p));</span>
-infinity
<span class="GAPprompt">gap></span> <span class="GAPinput">IndeterminateNumberOfLaurentPolynomial(p);</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">IndeterminateOfLaurentPolynomial(p);</span>
x
</pre></div>
<p><a id="X7CBB760C87B04F75" name="X7CBB760C87B04F75"></a></p>
<h5>66.5-4 RootsOfPolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RootsOfPolynomial</code>( [<var class="Arg">R</var>, ]<var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>For a univariate polynomial <var class="Arg">p</var>, this function returns all roots of <var class="Arg">p</var> over the ring <var class="Arg">R</var>. If the ring is not specified, it defaults to the ring specified by the coefficients of <var class="Arg">p</var> via <code class="func">DefaultRing</code> (<a href="chap56.html#X83AFFCC77DE6ABDA"><span class="RefLink">56.1-3</span></a>)).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:=X(Rationals,"x");;p:=x^4-1; </span>
x^4-1
<span class="GAPprompt">gap></span> <span class="GAPinput">RootsOfPolynomial(p);</span>
[ 1, -1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">RootsOfPolynomial(CF(4),p);</span>
[ 1, -1, E(4), -E(4) ]
</pre></div>
<p><a id="X80CEB10D7879767F" name="X80CEB10D7879767F"></a></p>
<h5>66.5-5 RootsOfUPol</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RootsOfUPol</code>( [<var class="Arg">field</var>, ]<var class="Arg">upol</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function returns a list of all roots of the univariate polynomial <var class="Arg">upol</var> in its default domain. If the optional argument <var class="Arg">field</var> is a field then the roots in this field are computed. If <var class="Arg">field</var> is the string <code class="code">"split"</code> then the splitting field of the polynomial is taken.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">RootsOfUPol(50-45*x-6*x^2+x^3);</span>
[ 10, 1, -5 ]
</pre></div>
<p><a id="X7887FBC78149BB0C" name="X7887FBC78149BB0C"></a></p>
<h5>66.5-6 QuotRemLaurpols</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ QuotRemLaurpols</code>( <var class="Arg">left</var>, <var class="Arg">right</var>, <var class="Arg">mode</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This internal function for euclidean division of polynomials takes two polynomials <var class="Arg">left</var> and <var class="Arg">right</var> and computes their quotient. No test is performed whether the arguments indeed are polynomials. Depending on the integer variable <var class="Arg">mode</var>, which may take values in a range from 1 to 4, it returns respectively:</p>
<ol>
<li><p>the quotient (there might be some remainder),</p>
</li>
<li><p>the remainder,</p>
</li>
<li><p>a list <code class="code">[<var class="Arg">q</var>,<var class="Arg">r</var>]</code> of quotient and remainder,</p>
</li>
<li><p>the quotient if there is no remainder and <code class="keyw">fail</code> otherwise.</p>
</li>
</ol>
<p><a id="X7DDADF157879EFBF" name="X7DDADF157879EFBF"></a></p>
<h5>66.5-7 UnivariatenessTestRationalFunction</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ UnivariatenessTestRationalFunction</code>( <var class="Arg">f</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>takes a rational function <var class="Arg">f</var> and tests whether it is univariate rational function (or even a Laurent polynomial). It returns a list <code class="code">[isunivariate, indet, islaurent, cofs]</code>.</p>
<p>If <var class="Arg">f</var> is a univariate rational function then <code class="code">isunivariate</code> is <code class="keyw">true</code> and <code class="code">indet</code> is the number of the appropriate indeterminate.</p>
<p>Furthermore, if <var class="Arg">f</var> is a Laurent polynomial, then <code class="code">islaurent</code> is also <code class="keyw">true</code>. In this case the fourth entry, <code class="code">cofs</code>, is the value of the attribute <code class="func">CoefficientsOfLaurentPolynomial</code> (<a href="chap66.html#X86D58AB67F86469F"><span class="RefLink">66.13-2</span></a>) for <var class="Arg">f</var>.</p>
<p>If <code class="code">isunivariate</code> is <code class="keyw">true</code> but <code class="code">islaurent</code> is <code class="keyw">false</code>, then <code class="code">cofs</code> is the value of the attribute <code class="func">CoefficientsOfUnivariateRationalFunction</code> (<a href="chap66.html#X7F1F67527A35A9CE"><span class="RefLink">66.4-7</span></a>) for <var class="Arg">f</var>.</p>
<p>Otherwise, each entry of the returned list is equal to <code class="keyw">fail</code>. As there is no proper multivariate gcd, this may also happen for the rational function which may be reduced to univariate (see example).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">UnivariatenessTestRationalFunction( 50-45*x-6*x^2+x^3 );</span>
[ true, 1, true, [ [ 50, -45, -6, 1 ], 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">UnivariatenessTestRationalFunction( (-6*y^2+y^3) / (y+1) );</span>
[ true, 2, false, [ [ -6, 1 ], [ 1, 1 ], 2 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">UnivariatenessTestRationalFunction( (-6*y^2+y^3) / (x+1));</span>
[ fail, fail, fail, fail ]
<span class="GAPprompt">gap></span> <span class="GAPinput">UnivariatenessTestRationalFunction( ((y+2)*(x+1)) / ((y-1)*(x+1)) );</span>
[ fail, fail, fail, fail ]
</pre></div>
<p><a id="X7A3BC96B7A50DE98" name="X7A3BC96B7A50DE98"></a></p>
<h5>66.5-8 InfoPoly</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ InfoPoly</code></td><td class="tdright">( info class )</td></tr></table></div>
<p>is the info class for univariate polynomials.</p>
<p>We remark that some functions for multivariate polynomials (which will be defined in the following sections) permit a different syntax for univariate polynomials which drops the requirement to specify the indeterminate. Examples are <code class="func">Value</code> (<a href="chap66.html#X7A70769C7F52CD2D"><span class="RefLink">66.7-1</span></a>), <code class="func">Discriminant</code> (<a href="chap66.html#X7C7D790A7D6E11AD"><span class="RefLink">66.6-6</span></a>), <code class="func">Derivative</code> (<a href="chap66.html#X7B57CEE2780D0E0B"><span class="RefLink">66.6-5</span></a>), <code class="func">LeadingCoefficient</code> (<a href="chap66.html#X80710E9B7D8340BD"><span class="RefLink">66.6-3</span></a>) and <code class="func">LeadingMonomial</code> (<a href="chap66.html#X7B3EAE41795598A5"><span class="RefLink">66.6-4</span></a>):</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">p:=UnivariatePolynomial(Rationals,[1,2,3,4],1);</span>
4*x^3+3*x^2+2*x+1
<span class="GAPprompt">gap></span> <span class="GAPinput">Value(p,Z(5));</span>
Z(5)^2
<span class="GAPprompt">gap></span> <span class="GAPinput">LeadingCoefficient(p);</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">Derivative(p);</span>
12*x^2+6*x+2
</pre></div>
<p><a id="X81499B5A823E6EA3" name="X81499B5A823E6EA3"></a></p>
<h4>66.6 <span class="Heading">Polynomials as Univariate Polynomials in one Indeterminate</span></h4>
<p><a id="X826B99B17ABD11BE" name="X826B99B17ABD11BE"></a></p>
<h5>66.6-1 DegreeIndeterminate</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DegreeIndeterminate</code>( <var class="Arg">pol</var>, <var class="Arg">ind</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the degree of the polynomial <var class="Arg">pol</var> in the indeterminate (or indeterminate number) <var class="Arg">ind</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=x^5+3*x*y+9*y^7+4*y^5*x+3*y+2;</span>
9*y^7+4*x*y^5+x^5+3*x*y+3*y+2
<span class="GAPprompt">gap></span> <span class="GAPinput">DegreeIndeterminate(f,1);</span>
5
<span class="GAPprompt">gap></span> <span class="GAPinput">DegreeIndeterminate(f,y);</span>
7
</pre></div>
<p><a id="X85646FD07F9C60F5" name="X85646FD07F9C60F5"></a></p>
<h5>66.6-2 PolynomialCoefficientsOfPolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PolynomialCoefficientsOfPolynomial</code>( <var class="Arg">pol</var>, <var class="Arg">ind</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p><code class="func">PolynomialCoefficientsOfPolynomial</code> returns the coefficient list (whose entries are polynomials not involving the indeterminate <var class="Arg">ind</var>) describing the polynomial <var class="Arg">pol</var> viewed as a polynomial in <var class="Arg">ind</var>. Instead of the indeterminate, <var class="Arg">ind</var> can also be an indeterminate number.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PolynomialCoefficientsOfPolynomial(f,2);</span>
[ x^5+2, 3*x+3, 0, 0, 0, 4*x, 0, 9 ]
</pre></div>
<p><a id="X80710E9B7D8340BD" name="X80710E9B7D8340BD"></a></p>
<h5>66.6-3 LeadingCoefficient</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LeadingCoefficient</code>( <var class="Arg">pol</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the leading coefficient (that is the coefficient of the leading monomial, see <code class="func">LeadingMonomial</code> (<a href="chap66.html#X7B3EAE41795598A5"><span class="RefLink">66.6-4</span></a>)) of the polynomial <var class="Arg">pol</var>.</p>
<p><a id="X7B3EAE41795598A5" name="X7B3EAE41795598A5"></a></p>
<h5>66.6-4 LeadingMonomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LeadingMonomial</code>( <var class="Arg">pol</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the leading monomial (with respect to the ordering given by <code class="func">MonomialExtGrlexLess</code> (<a href="chap66.html#X7A30E10B820311D1"><span class="RefLink">66.17-14</span></a>)) of the polynomial <var class="Arg">pol</var> as a list containing indeterminate numbers and exponents.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">LeadingCoefficient(f,1);</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">LeadingCoefficient(f,2);</span>
9
<span class="GAPprompt">gap></span> <span class="GAPinput">LeadingMonomial(f);</span>
[ 2, 7 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">LeadingCoefficient(f);</span>
9
</pre></div>
<p><a id="X7B57CEE2780D0E0B" name="X7B57CEE2780D0E0B"></a></p>
<h5>66.6-5 Derivative</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Derivative</code>( <var class="Arg">ratfun</var>[, <var class="Arg">ind</var>] )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>If <var class="Arg">ratfun</var> is a univariate rational function then <code class="func">Derivative</code> returns the <em>derivative</em> of <var class="Arg">ufun</var> by its indeterminate. For a rational function <var class="Arg">ratfun</var>, the derivative by the indeterminate <var class="Arg">ind</var> is returned, regarding <var class="Arg">ratfun</var> as univariate in <var class="Arg">ind</var>. Instead of the desired indeterminate, also the number of this indeterminate can be given as <var class="Arg">ind</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Derivative(f,2);</span>
63*y^6+20*x*y^4+3*x+3
</pre></div>
<p><a id="X7C7D790A7D6E11AD" name="X7C7D790A7D6E11AD"></a></p>
<h5>66.6-6 Discriminant</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Discriminant</code>( <var class="Arg">pol</var>[, <var class="Arg">ind</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>If <var class="Arg">pol</var> is a univariate polynomial then <code class="func">Discriminant</code> returns the <em>discriminant</em> of <var class="Arg">pol</var> by its indeterminate. The two-argument form returns the discriminant of a polynomial <var class="Arg">pol</var> by the indeterminate number <var class="Arg">ind</var>, regarding <var class="Arg">pol</var> as univariate in this indeterminate. Instead of the indeterminate number, the indeterminate itself can also be given as <var class="Arg">ind</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Discriminant(f,1);</span>
20503125*y^28+262144*y^25+27337500*y^22+19208040*y^21+1474560*y^17+136\
68750*y^16+18225000*y^15+6075000*y^14+1105920*y^13+3037500*y^10+648972\
0*y^9+4050000*y^8+900000*y^7+62208*y^5+253125*y^4+675000*y^3+675000*y^\
2+300000*y+50000
<span class="GAPprompt">gap></span> <span class="GAPinput">Discriminant(f,1) = Discriminant(f,x);</span>
true
</pre></div>
<p><a id="X857AD5587EF49029" name="X857AD5587EF49029"></a></p>
<h5>66.6-7 Resultant</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Resultant</code>( <var class="Arg">pol1</var>, <var class="Arg">pol2</var>, <var class="Arg">ind</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>computes the resultant of the polynomials <var class="Arg">pol1</var> and <var class="Arg">pol2</var> with respect to the indeterminate <var class="Arg">ind</var>, or indeterminate number <var class="Arg">ind</var>. The resultant considers <var class="Arg">pol1</var> and <var class="Arg">pol2</var> as univariate in <var class="Arg">ind</var> and returns an element of the corresponding base ring (which might be a polynomial ring).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Resultant(x^4+y,y^4+x,1);</span>
y^16+y
<span class="GAPprompt">gap></span> <span class="GAPinput">Resultant(x^4+y,y^4+x,2);</span>
x^16+x
</pre></div>
<p><a id="X85ABC4687DF05777" name="X85ABC4687DF05777"></a></p>
<h4>66.7 <span class="Heading">Multivariate Polynomials</span></h4>
<p><a id="X7A70769C7F52CD2D" name="X7A70769C7F52CD2D"></a></p>
<h5>66.7-1 <span class="Heading">Value</span></h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Value</code>( <var class="Arg">ratfun</var>, <var class="Arg">indets</var>, <var class="Arg">vals</var>[, <var class="Arg">one</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Value</code>( <var class="Arg">upol</var>, <var class="Arg">value</var>[, <var class="Arg">one</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>The first variant takes a rational function <var class="Arg">ratfun</var> and specializes the indeterminates given in <var class="Arg">indets</var> to the values given in <var class="Arg">vals</var>, replacing the <span class="SimpleMath">i</span>-th entry in <var class="Arg">indets</var> by the <span class="SimpleMath">i</span>-th entry in <var class="Arg">vals</var>. If this specialization results in a constant polynomial, an element of the coefficient ring is returned. If the specialization would specialize the denominator of <var class="Arg">ratfun</var> to zero, an error is raised.</p>
<p>A variation is the evaluation at elements of another ring <span class="SimpleMath">R</span>, for which a multiplication with elements of the coefficient ring of <var class="Arg">ratfun</var> are defined. In this situation the identity element of <span class="SimpleMath">R</span> may be given by a further argument <var class="Arg">one</var> which will be used for <span class="SimpleMath">x^0</span> for any specialized indeterminate <span class="SimpleMath">x</span>.</p>
<p>The second version takes an univariate rational function and specializes the value of its indeterminate to <var class="Arg">val</var>. Again, an optional argument <var class="Arg">one</var> may be given.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Value(x*y+y+x^7,[x,y],[5,7]);</span>
78167
</pre></div>
<p>Note that the default values for <var class="Arg">one</var> can lead to different results than one would expect: For example for a matrix <span class="SimpleMath">M</span>, the values <span class="SimpleMath">M+M^0</span> and <span class="SimpleMath">M+1</span> are <em>different</em>. As <code class="func">Value</code> defaults to the one of the coefficient ring, when evaluating matrices in polynomials always the correct <var class="Arg">one</var> should be given!</p>
<p><a id="X7ED3E7D17C7AC732" name="X7ED3E7D17C7AC732"></a></p>
<h4>66.8 <span class="Heading">Minimal Polynomials</span></h4>
<p><a id="X8643915A8424DAF8" name="X8643915A8424DAF8"></a></p>
<h5>66.8-1 MinimalPolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MinimalPolynomial</code>( <var class="Arg">R</var>, <var class="Arg">elm</var>[, <var class="Arg">ind</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the <em>minimal polynomial</em> of <var class="Arg">elm</var> over the ring <var class="Arg">R</var>, expressed in the indeterminate number <var class="Arg">ind</var>. If <var class="Arg">ind</var> is not given, it defaults to 1.</p>
<p>The minimal polynomial is the monic polynomial of smallest degree with coefficients in <var class="Arg">R</var> that has value zero at <var class="Arg">elm</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">MinimalPolynomial(Rationals,[[2,0],[0,2]]);</span>
x-2
</pre></div>
<p><a id="X837B8E55832CDFEB" name="X837B8E55832CDFEB"></a></p>
<h4>66.9 <span class="Heading">Cyclotomic Polynomials</span></h4>
<p><a id="X827FC7FE81EE4C02" name="X827FC7FE81EE4C02"></a></p>
<h5>66.9-1 CyclotomicPolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CyclotomicPolynomial</code>( <var class="Arg">F</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>is the <var class="Arg">n</var>-th cyclotomic polynomial over the ring <var class="Arg">F</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CyclotomicPolynomial(Rationals,5);</span>
x^4+x^3+x^2+x+1
</pre></div>
<p><a id="X8551EF5187509D69" name="X8551EF5187509D69"></a></p>
<h4>66.10 <span class="Heading">Polynomial Factorization</span></h4>
<p>At the moment <strong class="pkg">GAP</strong> provides only methods to factorize polynomials over finite fields (see Chapter <a href="chap59.html#X7893ABF67A028802"><span class="RefLink">59</span></a>), over subfields of cyclotomic fields (see Chapter <a href="chap60.html#X80510B5880521FDC"><span class="RefLink">60</span></a>), and over algebraic extensions of these (see Chapter <a href="chap67.html#X85732CEF7ECFCA68"><span class="RefLink">67</span></a>).</p>
<p><a id="X83511D517B544F36" name="X83511D517B544F36"></a></p>
<h5>66.10-1 Factors</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Factors</code>( [<var class="Arg">R</var>, ]<var class="Arg">poly</var>[, <var class="Arg">opt</var>] )</td><td class="tdright">( method )</td></tr></table></div>
<p>returns a list of the irreducible factors of the polynomial <var class="Arg">poly</var> in the polynomial ring <var class="Arg">R</var>. (That is factors over the <code class="func">CoefficientsRing</code> (<a href="chap66.html#X8235D10781BE8003"><span class="RefLink">66.15-3</span></a>) value of <var class="Arg">R</var>.)</p>
<p>For univariate factorizations, it is possible to pass a record <var class="Arg">opt</var> as a third argument. This record can contain the following components:</p>
<dl>
<dt><strong class="Mark"><code class="code">onlydegs</code></strong></dt>
<dd><p>is a set of positive integers. The factorization assumes that all irreducible factors have a degree in this set.</p>
</dd>
<dt><strong class="Mark"><code class="code">stopdegs</code></strong></dt>
<dd><p>is a set of positive integers. The factorization will stop once a factor of degree in <code class="code">stopdegs</code> has been found and will return the factorization found so far.</p>
</dd>
</dl>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:= CyclotomicPolynomial( GF(2), 7 );</span>
x_1^6+x_1^5+x_1^4+x_1^3+x_1^2+x_1+Z(2)^0
<span class="GAPprompt">gap></span> <span class="GAPinput">Factors( f );</span>
[ x_1^3+x_1+Z(2)^0, x_1^3+x_1^2+Z(2)^0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Factors( PolynomialRing( GF(8) ), f );</span>
[ x_1+Z(2^3), x_1+Z(2^3)^2, x_1+Z(2^3)^3, x_1+Z(2^3)^4, x_1+Z(2^3)^5,
x_1+Z(2^3)^6 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">f:= MinimalPolynomial( Rationals, E(4) );</span>
x^2+1
<span class="GAPprompt">gap></span> <span class="GAPinput">Factors( f );</span>
[ x^2+1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Factors( PolynomialRing( Rationals ), f );</span>
[ x^2+1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Factors( PolynomialRing( CF(4) ), f );</span>
[ x+(-E(4)), x+E(4) ]
</pre></div>
<p><a id="X7F5A4ACB7AF9E329" name="X7F5A4ACB7AF9E329"></a></p>
<h5>66.10-2 FactorsSquarefree</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FactorsSquarefree</code>( <var class="Arg">pring</var>, <var class="Arg">upol</var>, <var class="Arg">opt</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns a factorization of the squarefree, monic, univariate polynomial <var class="Arg">upol</var> in the polynomial ring <var class="Arg">pring</var>; <var class="Arg">opt</var> must be a (possibly empty) record of options. <var class="Arg">upol</var> must not have zero as a root. This function is used by the factoring algorithms.</p>
<p>The current method for multivariate factorization reduces to univariate factorization by use of a reduction homomorphism of the form <span class="SimpleMath">f(x_1,x_2,x_3) ↦ f(x,x^p,x^{p^2})</span>. It can be very time intensive for larger degrees.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Factors(x^10-y^10);</span>
[ x-y, x+y, x^4-x^3*y+x^2*y^2-x*y^3+y^4, x^4+x^3*y+x^2*y^2+x*y^3+y^4 ]
</pre></div>
<p><a id="X7F45E9E47EA2C18B" name="X7F45E9E47EA2C18B"></a></p>
<h4>66.11 <span class="Heading">Polynomials over the Rationals</span></h4>
<p>The following functions are only available to polynomials with rational coefficients:</p>
<p><a id="X7E66494B7B05A055" name="X7E66494B7B05A055"></a></p>
<h5>66.11-1 PrimitivePolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PrimitivePolynomial</code>( <var class="Arg">f</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>takes a polynomial <var class="Arg">f</var> with rational coefficients and computes a new polynomial with integral coefficients, obtained by multiplying with the Lcm of the denominators of the coefficients and casting out the content (the Gcd of the coefficients). The operation returns a list [<var class="Arg">newpol</var>,<var class="Arg">coeff</var>] with rational <var class="Arg">coeff</var> such that <code class="code"><var class="Arg">coeff</var>*<var class="Arg">newpol</var>=<var class="Arg">f</var></code>.</p>
<p><a id="X7A73A3877EB73566" name="X7A73A3877EB73566"></a></p>
<h5>66.11-2 PolynomialModP</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PolynomialModP</code>( <var class="Arg">pol</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>for a rational polynomial <var class="Arg">pol</var> this function returns a polynomial over the field with <var class="Arg">p</var> elements, obtained by reducing the coefficients modulo <var class="Arg">p</var>.</p>
<p><a id="X7AB9A6257ED694EC" name="X7AB9A6257ED694EC"></a></p>
<h5>66.11-3 GaloisType</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GaloisType</code>( <var class="Arg">f</var>[, <var class="Arg">cand</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>Let <var class="Arg">f</var> be an irreducible polynomial with rational coefficients. This function returns the type of Gal(<var class="Arg">f</var>) (considered as a transitive permutation group of the roots of <var class="Arg">f</var>). It returns a number <var class="Arg">i</var> if Gal(<var class="Arg">f</var>) is permutation isomorphic to <code class="code">TransitiveGroup(<var class="Arg">n</var>,<var class="Arg">i</var>)</code> where <var class="Arg">n</var> is the degree of <var class="Arg">f</var>.</p>
<p>Identification is performed by factoring appropriate Galois resolvents as proposed in <a href="chapBib.html#biBMS85">[SM85]</a>. This function is provided for rational polynomials of degree up to 15. However, in some cases the required calculations become unfeasibly large.</p>
<p>For a few polynomials of degree 14, a complete discrimination is not yet possible, as it would require computations, that are not feasible with current factoring methods.</p>
<p>This function requires the transitive groups library to be installed (see <a href="chap50.html#X7FBB970F7D110FDB"><span class="RefLink">50.6</span></a>).</p>
<p><a id="X7EB610D37D156DC6" name="X7EB610D37D156DC6"></a></p>
<h5>66.11-4 ProbabilityShapes</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ProbabilityShapes</code>( <var class="Arg">f</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Let <var class="Arg">f</var> be an irreducible polynomial with rational coefficients. This function returns a list of the most likely type(s) of Gal(<var class="Arg">f</var>) (see <code class="func">GaloisType</code> (<a href="chap66.html#X7AB9A6257ED694EC"><span class="RefLink">66.11-3</span></a>)), based on factorization modulo a set of primes. It is very fast, but the result is only probabilistic.</p>
<p>This function requires the transitive groups library to be installed (see <a href="chap50.html#X7FBB970F7D110FDB"><span class="RefLink">50.6</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=x^9-9*x^7+27*x^5-39*x^3+36*x-8;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">GaloisType(f);</span>
25
<span class="GAPprompt">gap></span> <span class="GAPinput">TransitiveGroup(9,25);</span>
[1/2.S(3)^3]3
<span class="GAPprompt">gap></span> <span class="GAPinput">ProbabilityShapes(f);</span>
[ 25 ]
</pre></div>
<p><a id="X7C178AB9866FDDE5" name="X7C178AB9866FDDE5"></a></p>
<h4>66.12 <span class="Heading">Factorization of Polynomials over the Rationals</span></h4>
<p>The following operations are used by <strong class="pkg">GAP</strong> inside the factorization algorithm but might be of interest also in other contexts.</p>
<p><a id="X8723075C81D2CCA6" name="X8723075C81D2CCA6"></a></p>
<h5>66.12-1 BombieriNorm</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ BombieriNorm</code>( <var class="Arg">pol</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>computes weighted Norm [<var class="Arg">pol</var>]<span class="SimpleMath">_2</span> of <var class="Arg">pol</var> which is a good measure for factor coefficients (see <a href="chapBib.html#biBBTW93">[BTW93]</a>).</p>
<p><a id="X856D769D878AF7AE" name="X856D769D878AF7AE"></a></p>
<h5>66.12-2 MinimizedBombieriNorm</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MinimizedBombieriNorm</code>( <var class="Arg">f</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>This function applies linear Tschirnhaus transformations (<span class="SimpleMath">x ↦ x + i</span>) to the polynomial <var class="Arg">f</var>, trying to get the Bombieri norm of <var class="Arg">f</var> small. It returns a list <code class="code">[<var class="Arg">new_polynomial</var>, <var class="Arg">i_of_transformation</var>]</code>.</p>
<p><a id="X8139BB0F87399F2C" name="X8139BB0F87399F2C"></a></p>
<h5>66.12-3 HenselBound</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ HenselBound</code>( <var class="Arg">pol</var>[, <var class="Arg">minpol</var>, <var class="Arg">den</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the Hensel bound of the polynomial <var class="Arg">pol</var>. If the computation takes place over an algebraic extension, then the minimal polynomial <var class="Arg">minpol</var> and denominator <var class="Arg">den</var> must be given.</p>
<p><a id="X79CC9C8D7C9F6B6A" name="X79CC9C8D7C9F6B6A"></a></p>
<h5>66.12-4 OneFactorBound</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ OneFactorBound</code>( <var class="Arg">pol</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the coefficient bound for a single factor of the rational polynomial <var class="Arg">pol</var>.</p>
<p><a id="X844B3C6C87A0E7E0" name="X844B3C6C87A0E7E0"></a></p>
<h4>66.13 <span class="Heading">Laurent Polynomials</span></h4>
<p>A univariate polynomial can be written in the form <span class="SimpleMath">r_0 + r_1 x + ⋯ + r_n x^n</span>, with <span class="SimpleMath">r_i ∈ R</span>. Formally, there is no reason to start with 0, if <span class="SimpleMath">m</span> is an integer, we can consider objects of the form <span class="SimpleMath">r_m x^m + r_{m+1} x^{m+1} + ⋯ + r_n x^n</span>. We call these <em>Laurent polynomials</em>. Laurent polynomials also can be considered as quotients of a univariate polynomial by a power of the indeterminate. The addition and multiplication of univariate polynomials extends to Laurent polynomials (though it might be impossible to interpret a Laurent polynomial as a function) and many functions for univariate polynomials extend to Laurent polynomials (or extended versions for Laurent polynomials exist).</p>
<p><a id="X8467263B7EFA013E" name="X8467263B7EFA013E"></a></p>
<h5>66.13-1 LaurentPolynomialByCoefficients</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LaurentPolynomialByCoefficients</code>( <var class="Arg">fam</var>, <var class="Arg">cofs</var>, <var class="Arg">val</var>[, <var class="Arg">ind</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>constructs a Laurent polynomial over the coefficients family <var class="Arg">fam</var> and in the indeterminate <var class="Arg">ind</var> (defaulting to 1) with the coefficients given by <var class="Arg">coefs</var> and valuation <var class="Arg">val</var>.</p>
<p><a id="X86D58AB67F86469F" name="X86D58AB67F86469F"></a></p>
<h5>66.13-2 CoefficientsOfLaurentPolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CoefficientsOfLaurentPolynomial</code>( <var class="Arg">laurent</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>For a Laurent polynomial <var class="Arg">laurent</var>, this function returns a pair <code class="code">[<var class="Arg">cof</var>, <var class="Arg">val</var>]</code>, consisting of the coefficient list (in ascending order) <var class="Arg">cof</var> and the valuation <var class="Arg">val</var> of <var class="Arg">laurent</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">p:=LaurentPolynomialByCoefficients(FamilyObj(1),</span>
<span class="GAPprompt">></span> <span class="GAPinput">[1,2,3,4,5],-2);</span>
5*x^2+4*x+3+2*x^-1+x^-2
<span class="GAPprompt">gap></span> <span class="GAPinput">NumeratorOfRationalFunction(p);DenominatorOfRationalFunction(p);</span>
5*x^4+4*x^3+3*x^2+2*x+1
x^2
<span class="GAPprompt">gap></span> <span class="GAPinput">CoefficientsOfLaurentPolynomial(p*p);</span>
[ [ 1, 4, 10, 20, 35, 44, 46, 40, 25 ], -4 ]
</pre></div>
<p><a id="X8381E1B582F38C85" name="X8381E1B582F38C85"></a></p>
<h5>66.13-3 IndeterminateNumberOfLaurentPolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IndeterminateNumberOfLaurentPolynomial</code>( <var class="Arg">pol</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Is a synonym for <code class="func">IndeterminateNumberOfUnivariateRationalFunction</code> (<a href="chap66.html#X816C8D797C804380"><span class="RefLink">66.1-2</span></a>).</p>
<p><a id="X7C1708D27F97B05F" name="X7C1708D27F97B05F"></a></p>
<h4>66.14 <span class="Heading">Univariate Rational Functions</span></h4>
<p><a id="X83DD411179888783" name="X83DD411179888783"></a></p>
<h5>66.14-1 UnivariateRationalFunctionByCoefficients</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ UnivariateRationalFunctionByCoefficients</code>( <var class="Arg">fam</var>, <var class="Arg">ncof</var>, <var class="Arg">dcof</var>, <var class="Arg">val</var>[, <var class="Arg">ind</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>constructs a univariate rational function over the coefficients family <var class="Arg">fam</var> and in the indeterminate <var class="Arg">ind</var> (defaulting to 1) with numerator and denominator coefficients given by <var class="Arg">ncof</var> and <var class="Arg">dcof</var> and valuation <var class="Arg">val</var>.</p>
<p><a id="X7C59471783C3FEDC" name="X7C59471783C3FEDC"></a></p>
<h4>66.15 <span class="Heading">Polynomial Rings and Function Fields</span></h4>
<p>While polynomials depend only on the family of the coefficients, polynomial rings <span class="SimpleMath">A</span> are defined over a base ring <span class="SimpleMath">R</span>. A polynomial is an element of <span class="SimpleMath">A</span> if and only if all its coefficients are contained in <span class="SimpleMath">R</span>. Besides providing domains and an easy way to create polynomials, polynomial rings can affect the behavior of operations like factorization into irreducibles.</p>
<p>If you need to work with a polynomial ring and its indeterminates the following two approaches will produce a ring that contains given variables (see section <a href="chap66.html#X7A8FADCD875826DA"><span class="RefLink">66.1</span></a> for details about the internal numbering): Either, first create the ring and then get the indeterminates with <code class="func">IndeterminatesOfPolynomialRing</code> (<a href="chap66.html#X80D585E1793D4552"><span class="RefLink">66.15-2</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">r := PolynomialRing(Rationals,["a","b"]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">indets := IndeterminatesOfPolynomialRing(r);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">a := indets[1]; a := indets[2];</span>
a
b
</pre></div>
<p>Alternatively, first create the indeterminates and then create the ring including these indeterminates.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">a:=Indeterminate(Rationals,"a":old);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:=Indeterminate(Rationals,"b":old);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PolynomialRing(Rationals,[a,b]);;</span>
</pre></div>
<p>As a convenient shortcut, intended mainly for interactive working, the <span class="SimpleMath">i</span>-th indeterminate of a polynomial ring <span class="SimpleMath">R</span> can be accessed as <span class="SimpleMath">R.i</span>, which corresponds exactly to <code class="code">IndeterminatesOfPolynomialRing</code><span class="SimpleMath">( R )[i]</span> or, if it has the name <code class="code">nam</code>, as <span class="SimpleMath">R</span><code class="code">.nam</code>. <em>Note</em> that the number <span class="SimpleMath">i</span> is in general <em>not</em> the indeterminate number, but simply an index into the indeterminates list of <span class="SimpleMath">R</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">r := PolynomialRing(Rationals, ["a", "b"]:old );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">r.1; r.2; r.a; r.b;</span>
a
b
a
b
<span class="GAPprompt">gap></span> <span class="GAPinput">IndeterminateNumberOfLaurentPolynomial(r.1);</span>
3
</pre></div>
<p>Polynomials as <strong class="pkg">GAP</strong> objects can exist without a polynomial ring being defined and polynomials cannot be associated to a particular polynomial ring. (For example dividing a polynomial which is in a polynomial ring over the integers by another integer will result in a polynomial over the rationals, not in a rational function over the integers.)</p>
<p><a id="X7D2F16E480060330" name="X7D2F16E480060330"></a></p>
<h5>66.15-1 <span class="Heading">PolynomialRing</span></h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PolynomialRing</code>( <var class="Arg">R</var>, <var class="Arg">rank</var>[, <var class="Arg">avoid</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PolynomialRing</code>( <var class="Arg">R</var>, <var class="Arg">names</var>[, <var class="Arg">avoid</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PolynomialRing</code>( <var class="Arg">R</var>, <var class="Arg">indets</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PolynomialRing</code>( <var class="Arg">R</var>, <var class="Arg">indetnums</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>creates a polynomial ring over the ring <var class="Arg">R</var>. If a positive integer <var class="Arg">rank</var> is given, this creates the polynomial ring in <var class="Arg">rank</var> indeterminates. These indeterminates will have the internal index numbers 1 to <var class="Arg">rank</var>. The second usage takes a list <var class="Arg">names</var> of strings and returns a polynomial ring in indeterminates labelled by <var class="Arg">names</var>. These indeterminates have "new" internal index numbers as if they had been created by calls to <code class="func">Indeterminate</code> (<a href="chap66.html#X79D0380D7FA39F7D"><span class="RefLink">66.1-1</span></a>). (If the argument <var class="Arg">avoid</var> is given it contains indeterminates that should be avoided, in this case internal index numbers are incremented to skip these variables.) In the third version, a list of indeterminates <var class="Arg">indets</var> is given. This creates the polynomial ring in the indeterminates <var class="Arg">indets</var>. Finally, the fourth version specifies indeterminates by their index numbers.</p>
<p>To get the indeterminates of a polynomial ring use <code class="func">IndeterminatesOfPolynomialRing</code> (<a href="chap66.html#X80D585E1793D4552"><span class="RefLink">66.15-2</span></a>). (Indeterminates created independently with <code class="func">Indeterminate</code> (<a href="chap66.html#X79D0380D7FA39F7D"><span class="RefLink">66.1-1</span></a>) will usually differ, though they might be given the same name and display identically, see Section <a href="chap66.html#X7A8FADCD875826DA"><span class="RefLink">66.1</span></a>.)</p>
<p><a id="X80D585E1793D4552" name="X80D585E1793D4552"></a></p>
<h5>66.15-2 IndeterminatesOfPolynomialRing</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IndeterminatesOfPolynomialRing</code>( <var class="Arg">pring</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IndeterminatesOfFunctionField</code>( <var class="Arg">ffield</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns a list of the indeterminates of the polynomial ring <var class="Arg">pring</var>, respectively the function field <var class="Arg">ffield</var>.</p>
<p><a id="X8235D10781BE8003" name="X8235D10781BE8003"></a></p>
<h5>66.15-3 CoefficientsRing</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CoefficientsRing</code>( <var class="Arg">pring</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the ring of coefficients of the polynomial ring <var class="Arg">pring</var>, that is the ring over which <var class="Arg">pring</var> was defined.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">r:=PolynomialRing(GF(7));</span>
GF(7)[x_1]
<span class="GAPprompt">gap></span> <span class="GAPinput">r:=PolynomialRing(GF(7),3);</span>
GF(7)[x_1,x_2,x_3]
<span class="GAPprompt">gap></span> <span class="GAPinput">IndeterminatesOfPolynomialRing(r);</span>
[ x_1, x_2, x_3 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">r2:=PolynomialRing(GF(7),[5,7,12]);</span>
GF(7)[x_5,x_7,x_12]
<span class="GAPprompt">gap></span> <span class="GAPinput">CoefficientsRing(r);</span>
GF(7)
<span class="GAPprompt">gap></span> <span class="GAPinput">r:=PolynomialRing(GF(7),3);</span>
GF(7)[x_1,x_2,x_3]
<span class="GAPprompt">gap></span> <span class="GAPinput">r2:=PolynomialRing(GF(7),3,IndeterminatesOfPolynomialRing(r));</span>
GF(7)[x_4,x_5,x_6]
<span class="GAPprompt">gap></span> <span class="GAPinput">r:=PolynomialRing(GF(7),["x","y","z","z2"]);</span>
GF(7)[x,y,z,z2]
</pre></div>
<p><a id="X7D631ACC86C584B7" name="X7D631ACC86C584B7"></a></p>
<h5>66.15-4 IsPolynomialRing</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsPolynomialRing</code>( <var class="Arg">pring</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>is the category of polynomial rings</p>
<p><a id="X86F391237A76D804" name="X86F391237A76D804"></a></p>
<h5>66.15-5 IsFiniteFieldPolynomialRing</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsFiniteFieldPolynomialRing</code>( <var class="Arg">pring</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>is the category of polynomial rings over a finite field (see Chapter <a href="chap59.html#X7893ABF67A028802"><span class="RefLink">59</span></a>).</p>
<p><a id="X782D07F77BCF67C1" name="X782D07F77BCF67C1"></a></p>
<h5>66.15-6 IsAbelianNumberFieldPolynomialRing</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsAbelianNumberFieldPolynomialRing</code>( <var class="Arg">pring</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>is the category of polynomial rings over a field of cyclotomics (see the chapters <a href="chap18.html#X7DFC03C187DE4841"><span class="RefLink">18</span></a> and <a href="chap60.html#X80510B5880521FDC"><span class="RefLink">60</span></a>).</p>
<p><a id="X7D45213A8642033B" name="X7D45213A8642033B"></a></p>
<h5>66.15-7 IsRationalsPolynomialRing</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsRationalsPolynomialRing</code>( <var class="Arg">pring</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>is the category of polynomial rings over the rationals (see Chapter <a href="chap17.html#X87003045878E74DF"><span class="RefLink">17</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">r := PolynomialRing(Rationals, ["a", "b"] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsPolynomialRing(r);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">IsFiniteFieldPolynomialRing(r);</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRationalsPolynomialRing(r);</span>
true
</pre></div>
<p><a id="X812E801484E3624E" name="X812E801484E3624E"></a></p>
<h5>66.15-8 <span class="Heading">FunctionField</span></h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FunctionField</code>( <var class="Arg">R</var>, <var class="Arg">rank</var>[, <var class="Arg">avoid</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FunctionField</code>( <var class="Arg">R</var>, <var class="Arg">names</var>[, <var class="Arg">avoid</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FunctionField</code>( <var class="Arg">R</var>, <var class="Arg">indets</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FunctionField</code>( <var class="Arg">R</var>, <var class="Arg">indetnums</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>creates a function field over the integral ring <var class="Arg">R</var>. If a positive integer <var class="Arg">rank</var> is given, this creates the function field in <var class="Arg">rank</var> indeterminates. These indeterminates will have the internal index numbers 1 to <var class="Arg">rank</var>. The second usage takes a list <var class="Arg">names</var> of strings and returns a function field in indeterminates labelled by <var class="Arg">names</var>. These indeterminates have "new" internal index numbers as if they had been created by calls to <code class="func">Indeterminate</code> (<a href="chap66.html#X79D0380D7FA39F7D"><span class="RefLink">66.1-1</span></a>). (If the argument <var class="Arg">avoid</var> is given it contains indeterminates that should be avoided, in this case internal index numbers are incremented to skip these variables.) In the third version, a list of indeterminates <var class="Arg">indets</var> is given. This creates the function field in the indeterminates <var class="Arg">indets</var>. Finally, the fourth version specifies indeterminates by their index number.</p>
<p>To get the indeterminates of a function field use <code class="func">IndeterminatesOfFunctionField</code> (<a href="chap66.html#X80D585E1793D4552"><span class="RefLink">66.15-2</span></a>). (Indeterminates created independently with <code class="func">Indeterminate</code> (<a href="chap66.html#X79D0380D7FA39F7D"><span class="RefLink">66.1-1</span></a>) will usually differ, though they might be given the same name and display identically, see Section <a href="chap66.html#X7A8FADCD875826DA"><span class="RefLink">66.1</span></a>.)</p>
<p><a id="X8090C9EC85201AAC" name="X8090C9EC85201AAC"></a></p>
<h5>66.15-9 IsFunctionField</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsFunctionField</code>( <var class="Arg">ffield</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>is the category of function fields</p>
<p><a id="X85CA757B844F12AE" name="X85CA757B844F12AE"></a></p>
<h4>66.16 <span class="Heading">Univariate Polynomial Rings</span></h4>
<p><a id="X84DC2A59797A26DE" name="X84DC2A59797A26DE"></a></p>
<h5>66.16-1 <span class="Heading">UnivariatePolynomialRing</span></h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ UnivariatePolynomialRing</code>( <var class="Arg">R</var>[, <var class="Arg">nr</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ UnivariatePolynomialRing</code>( <var class="Arg">R</var>[, <var class="Arg">name</var>][, <var class="Arg">avoid</var>] )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns a univariate polynomial ring in the indeterminate <var class="Arg">nr</var> over the base ring <var class="Arg">R</var>. If <var class="Arg">nr</var> is not given it defaults to 1.</p>
<p>If the number is not specified a list <var class="Arg">avoid</var> of indeterminates may be given. Then the function will return a ring in an indeterminate that is guaranteed to be different from all the indeterminates in <var class="Arg">avoid</var>.</p>
<p>Also a string <var class="Arg">name</var> can be prescribed as the name of the indeterminate chosen (also avoiding the indeterminates in the list <var class="Arg">avoid</var> if given).</p>
<p><a id="X7A43D74B812401CA" name="X7A43D74B812401CA"></a></p>
<h5>66.16-2 IsUnivariatePolynomialRing</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsUnivariatePolynomialRing</code>( <var class="Arg">pring</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>is the category of polynomial rings with one indeterminate.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">r:=UnivariatePolynomialRing(Rationals,"p");</span>
Rationals[p]
<span class="GAPprompt">gap></span> <span class="GAPinput">r2:=PolynomialRing(Rationals,["q"]);</span>
Rationals[q]
<span class="GAPprompt">gap></span> <span class="GAPinput">IsUnivariatePolynomialRing(r);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">IsUnivariatePolynomialRing(r2);</span>
true
</pre></div>
<p><a id="X86E2ADEA784AD163" name="X86E2ADEA784AD163"></a></p>
<h4>66.17 <span class="Heading">Monomial Orderings</span></h4>
<p>It is often desirable to consider the monomials within a polynomial to be arranged with respect to a certain ordering. Such an ordering is called a <em>monomial ordering</em> if it is total, invariant under multiplication with other monomials and admits no infinite descending chains. For details on monomial orderings see <a href="chapBib.html#biBcoxlittleoshea">[CLO97]</a>.</p>
<p>In <strong class="pkg">GAP</strong>, monomial orderings are represented by objects that provide a way to compare monomials (as polynomials as well as –for efficiency purposes within algorithms– in the internal representation as lists).</p>
<p>Normally the ordering chosen should be <em>admissible</em>, i.e. it must be compatible with products: If <span class="SimpleMath">a < b</span> then <span class="SimpleMath">ca < cb</span> for all monomials <span class="SimpleMath">a, b</span> and <span class="SimpleMath">c</span>.</p>
<p>Each monomial ordering provides the two functions <code class="func">MonomialComparisonFunction</code> (<a href="chap66.html#X7EDE941781BA7F8B"><span class="RefLink">66.17-5</span></a>) and <code class="func">MonomialExtrepComparisonFun</code> (<a href="chap66.html#X7EDC3A457E7B591E"><span class="RefLink">66.17-6</span></a>) to compare monomials. These functions work as "is less than", i.e. they return <code class="keyw">true</code> if and only if the left argument is smaller.</p>
<p><a id="X79D4CBBF820EA204" name="X79D4CBBF820EA204"></a></p>
<h5>66.17-1 IsMonomialOrdering</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsMonomialOrdering</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>A monomial ordering is an object representing a monomial ordering. Its attributes <code class="func">MonomialComparisonFunction</code> (<a href="chap66.html#X7EDE941781BA7F8B"><span class="RefLink">66.17-5</span></a>) and <code class="func">MonomialExtrepComparisonFun</code> (<a href="chap66.html#X7EDC3A457E7B591E"><span class="RefLink">66.17-6</span></a>) are actual comparison functions.</p>
<p><a id="X7D052A017A73E91E" name="X7D052A017A73E91E"></a></p>
<h5>66.17-2 LeadingMonomialOfPolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LeadingMonomialOfPolynomial</code>( <var class="Arg">pol</var>, <var class="Arg">ord</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the leading monomial (with respect to the ordering <var class="Arg">ord</var>) of the polynomial <var class="Arg">pol</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:=Indeterminate(Rationals,"x");;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">y:=Indeterminate(Rationals,"y");;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">z:=Indeterminate(Rationals,"z");;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">lexord:=MonomialLexOrdering();grlexord:=MonomialGrlexOrdering();</span>
MonomialLexOrdering()
MonomialGrlexOrdering()
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=2*x+3*y+4*z+5*x^2-6*z^2+7*y^3; </span>
7*y^3+5*x^2-6*z^2+2*x+3*y+4*z
<span class="GAPprompt">gap></span> <span class="GAPinput">LeadingMonomialOfPolynomial(f,lexord);</span>
x^2
<span class="GAPprompt">gap></span> <span class="GAPinput">LeadingMonomialOfPolynomial(f,grlexord);</span>
y^3
</pre></div>
<p><a id="X7B6231137BA8B95F" name="X7B6231137BA8B95F"></a></p>
<h5>66.17-3 LeadingTermOfPolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LeadingTermOfPolynomial</code>( <var class="Arg">pol</var>, <var class="Arg">ord</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>returns the leading term (with respect to the ordering <var class="Arg">ord</var>) of the polynomial <var class="Arg">pol</var>, i.e. the product of leading coefficient and leading monomial.</p>
<p><a id="X798E707D86141087" name="X798E707D86141087"></a></p>
<h5>66.17-4 LeadingCoefficientOfPolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LeadingCoefficientOfPolynomial</code>( <var class="Arg">pol</var>, <var class="Arg">ord</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the leading coefficient (that is the coefficient of the leading monomial, see <code class="func">LeadingMonomialOfPolynomial</code> (<a href="chap66.html#X7D052A017A73E91E"><span class="RefLink">66.17-2</span></a>)) of the polynomial <var class="Arg">pol</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">LeadingTermOfPolynomial(f,lexord);</span>
5*x^2
<span class="GAPprompt">gap></span> <span class="GAPinput">LeadingTermOfPolynomial(f,grlexord);</span>
7*y^3
<span class="GAPprompt">gap></span> <span class="GAPinput">LeadingCoefficientOfPolynomial(f,lexord);</span>
5
</pre></div>
<p><a id="X7EDE941781BA7F8B" name="X7EDE941781BA7F8B"></a></p>
<h5>66.17-5 MonomialComparisonFunction</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MonomialComparisonFunction</code>( <var class="Arg">O</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>If <var class="Arg">O</var> is an object representing a monomial ordering, this attribute returns a <em>function</em> that can be used to compare or sort monomials (and polynomials which will be compared by their monomials in decreasing order) in this order.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">MonomialComparisonFunction(lexord);</span>
function( a, b ) ... end
<span class="GAPprompt">gap></span> <span class="GAPinput">l:=[f,Derivative(f,x),Derivative(f,y),Derivative(f,z)];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Sort(l,MonomialComparisonFunction(lexord));l;</span>
[ -12*z+4, 21*y^2+3, 10*x+2, 7*y^3+5*x^2-6*z^2+2*x+3*y+4*z ]
</pre></div>
<p><a id="X7EDC3A457E7B591E" name="X7EDC3A457E7B591E"></a></p>
<h5>66.17-6 MonomialExtrepComparisonFun</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MonomialExtrepComparisonFun</code>( <var class="Arg">O</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>If <var class="Arg">O</var> is an object representing a monomial ordering, this attribute returns a <em>function</em> that can be used to compare or sort monomials <em>in their external representation</em> (as lists). This comparison variant is used inside algorithms that manipulate the external representation.</p>
<p><a id="X852D7BB37ECE98E1" name="X852D7BB37ECE98E1"></a></p>
<h5>66.17-7 MonomialLexOrdering</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MonomialLexOrdering</code>( [<var class="Arg">vari</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function creates a lexicographic ordering for monomials. Monomials are compared first by the exponents of the largest variable, then the exponents of the second largest variable and so on.</p>
<p>The variables are ordered according to their (internal) index, i.e., <span class="SimpleMath">x_1</span> is larger than <span class="SimpleMath">x_2</span> and so on. If <var class="Arg">vari</var> is given, and is a list of variables or variable indices, instead this arrangement of variables (in descending order; i.e. the first variable is larger than the second) is used as the underlying order of variables.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">l:=List(Tuples([1..3],3),i->x^(i[1]-1)*y^(i[2]-1)*z^(i[3]-1));</span>
[ 1, z, z^2, y, y*z, y*z^2, y^2, y^2*z, y^2*z^2, x, x*z, x*z^2, x*y,
x*y*z, x*y*z^2, x*y^2, x*y^2*z, x*y^2*z^2, x^2, x^2*z, x^2*z^2,
x^2*y, x^2*y*z, x^2*y*z^2, x^2*y^2, x^2*y^2*z, x^2*y^2*z^2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Sort(l,MonomialComparisonFunction(MonomialLexOrdering()));l;</span>
[ 1, z, z^2, y, y*z, y*z^2, y^2, y^2*z, y^2*z^2, x, x*z, x*z^2, x*y,
x*y*z, x*y*z^2, x*y^2, x*y^2*z, x*y^2*z^2, x^2, x^2*z, x^2*z^2,
x^2*y, x^2*y*z, x^2*y*z^2, x^2*y^2, x^2*y^2*z, x^2*y^2*z^2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Sort(l,MonomialComparisonFunction(MonomialLexOrdering([y,z,x])));l;</span>
[ 1, x, x^2, z, x*z, x^2*z, z^2, x*z^2, x^2*z^2, y, x*y, x^2*y, y*z,
x*y*z, x^2*y*z, y*z^2, x*y*z^2, x^2*y*z^2, y^2, x*y^2, x^2*y^2,
y^2*z, x*y^2*z, x^2*y^2*z, y^2*z^2, x*y^2*z^2, x^2*y^2*z^2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Sort(l,MonomialComparisonFunction(MonomialLexOrdering([z,x,y])));l;</span>
[ 1, y, y^2, x, x*y, x*y^2, x^2, x^2*y, x^2*y^2, z, y*z, y^2*z, x*z,
x*y*z, x*y^2*z, x^2*z, x^2*y*z, x^2*y^2*z, z^2, y*z^2, y^2*z^2,
x*z^2, x*y*z^2, x*y^2*z^2, x^2*z^2, x^2*y*z^2, x^2*y^2*z^2 ]
</pre></div>
<p><a id="X786C866C824D2688" name="X786C866C824D2688"></a></p>
<h5>66.17-8 MonomialGrlexOrdering</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MonomialGrlexOrdering</code>( [<var class="Arg">vari</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function creates a degree/lexicographic ordering. In this ordering monomials are compared first by their total degree, then lexicographically (see <code class="func">MonomialLexOrdering</code> (<a href="chap66.html#X852D7BB37ECE98E1"><span class="RefLink">66.17-7</span></a>)).</p>
<p>The variables are ordered according to their (internal) index, i.e., <span class="SimpleMath">x_1</span> is larger than <span class="SimpleMath">x_2</span> and so on. If <var class="Arg">vari</var> is given, and is a list of variables or variable indices, instead this arrangement of variables (in descending order; i.e. the first variable is larger than the second) is used as the underlying order of variables.</p>
<p><a id="X8094C733808D1799" name="X8094C733808D1799"></a></p>
<h5>66.17-9 MonomialGrevlexOrdering</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MonomialGrevlexOrdering</code>( [<var class="Arg">vari</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function creates a "grevlex" ordering. In this ordering monomials are compared first by total degree and then backwards lexicographically. (This is different than "grlex" ordering with variables reversed.)</p>
<p>The variables are ordered according to their (internal) index, i.e., <span class="SimpleMath">x_1</span> is larger than <span class="SimpleMath">x_2</span> and so on. If <var class="Arg">vari</var> is given, and is a list of variables or variable indices, instead this arrangement of variables (in descending order; i.e. the first variable is larger than the second) is used as the underlying order of variables.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Sort(l,MonomialComparisonFunction(MonomialGrlexOrdering()));l;</span>
[ 1, z, y, x, z^2, y*z, y^2, x*z, x*y, x^2, y*z^2, y^2*z, x*z^2,
x*y*z, x*y^2, x^2*z, x^2*y, y^2*z^2, x*y*z^2, x*y^2*z, x^2*z^2,
x^2*y*z, x^2*y^2, x*y^2*z^2, x^2*y*z^2, x^2*y^2*z, x^2*y^2*z^2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Sort(l,MonomialComparisonFunction(MonomialGrevlexOrdering()));l;</span>
[ 1, z, y, x, z^2, y*z, x*z, y^2, x*y, x^2, y*z^2, x*z^2, y^2*z,
x*y*z, x^2*z, x*y^2, x^2*y, y^2*z^2, x*y*z^2, x^2*z^2, x*y^2*z,
x^2*y*z, x^2*y^2, x*y^2*z^2, x^2*y*z^2, x^2*y^2*z, x^2*y^2*z^2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Sort(l,MonomialComparisonFunction(MonomialGrlexOrdering([z,y,x])));l;</span>
[ 1, x, y, z, x^2, x*y, y^2, x*z, y*z, z^2, x^2*y, x*y^2, x^2*z,
x*y*z, y^2*z, x*z^2, y*z^2, x^2*y^2, x^2*y*z, x*y^2*z, x^2*z^2,
x*y*z^2, y^2*z^2, x^2*y^2*z, x^2*y*z^2, x*y^2*z^2, x^2*y^2*z^2 ]
</pre></div>
<p><a id="X84AC871283A74EC0" name="X84AC871283A74EC0"></a></p>
<h5>66.17-10 EliminationOrdering</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ EliminationOrdering</code>( <var class="Arg">elim</var>[, <var class="Arg">rest</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function creates an elimination ordering for eliminating the variables in <var class="Arg">elim</var>. Two monomials are compared first by the exponent vectors for the variables listed in <var class="Arg">elim</var> (a lexicographic comparison with respect to the ordering indicated in <var class="Arg">elim</var>). If these submonomial are equal, the submonomials given by the other variables are compared by a graded lexicographic ordering (with respect to the variable order given in <var class="Arg">rest</var>, if called with two parameters).</p>
<p>Both <var class="Arg">elim</var> and <var class="Arg">rest</var> may be a list of variables or a list of variable indices.</p>
<p><a id="X7C99593584D478D7" name="X7C99593584D478D7"></a></p>
<h5>66.17-11 PolynomialReduction</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PolynomialReduction</code>( <var class="Arg">poly</var>, <var class="Arg">gens</var>, <var class="Arg">order</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>reduces the polynomial <var class="Arg">poly</var> by the ideal generated by the polynomials in <var class="Arg">gens</var>, using the order <var class="Arg">order</var> of monomials. Unless <var class="Arg">gens</var> is a Gröbner basis the result is not guaranteed to be unique.</p>
<p>The operation returns a list of length two, the first entry is the remainder after the reduction. The second entry is a list of quotients corresponding to <var class="Arg">gens</var>.</p>
<p>Note that the strategy used by <code class="func">PolynomialReduction</code> differs from the standard textbook reduction algorithm, which is provided by <code class="func">PolynomialDivisionAlgorithm</code> (<a href="chap66.html#X7C8239057FD4EC03"><span class="RefLink">66.17-13</span></a>).</p>
<p><a id="X7DE7D4467EBAD916" name="X7DE7D4467EBAD916"></a></p>
<h5>66.17-12 PolynomialReducedRemainder</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PolynomialReducedRemainder</code>( <var class="Arg">poly</var>, <var class="Arg">gens</var>, <var class="Arg">order</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>this operation does the same way as <code class="func">PolynomialReduction</code> (<a href="chap66.html#X7C99593584D478D7"><span class="RefLink">66.17-11</span></a>) but does not keep track of the actual quotients and returns only the remainder (it is therefore slightly faster).</p>
<p><a id="X7C8239057FD4EC03" name="X7C8239057FD4EC03"></a></p>
<h5>66.17-13 PolynomialDivisionAlgorithm</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PolynomialDivisionAlgorithm</code>( <var class="Arg">poly</var>, <var class="Arg">gens</var>, <var class="Arg">order</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function implements the division algorithm for multivariate polynomials as given in <a href="chapBib.html#biBcoxlittleoshea">[CLO97, Theorem 3 in Chapter 2]</a>. (It might be slower than <code class="func">PolynomialReduction</code> (<a href="chap66.html#X7C99593584D478D7"><span class="RefLink">66.17-11</span></a>) but the remainders are guaranteed to agree with the textbook.)</p>
<p>The operation returns a list of length two, the first entry is the remainder after the reduction. The second entry is a list of quotients corresponding to <var class="Arg">gens</var>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">bas:=[x^3*y*z,x*y^2*z,z*y*z^3+x];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pol:=x^7*z*bas[1]+y^5*bas[3]+x*z;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PolynomialReduction(pol,bas,MonomialLexOrdering()); </span>
[ -y*z^5, [ x^7*z, 0, y^5+z ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PolynomialReducedRemainder(pol,bas,MonomialLexOrdering());</span>
-y*z^5
<span class="GAPprompt">gap></span> <span class="GAPinput">PolynomialDivisionAlgorithm(pol,bas,MonomialLexOrdering());</span>
[ -y*z^5, [ x^7*z, 0, y^5+z ] ]
</pre></div>
<p><a id="X7A30E10B820311D1" name="X7A30E10B820311D1"></a></p>
<h5>66.17-14 MonomialExtGrlexLess</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MonomialExtGrlexLess</code>( <var class="Arg">a</var>, <var class="Arg">b</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>implements comparison of monomial in their external representation by a "grlex" order with <span class="SimpleMath">x_1>x_2</span> (This is exactly the same as the ordering by <code class="func">MonomialGrlexOrdering</code> (<a href="chap66.html#X786C866C824D2688"><span class="RefLink">66.17-8</span></a>), see <a href="chap66.html#X86E2ADEA784AD163"><span class="RefLink">66.17</span></a>). The function takes two monomials <var class="Arg">a</var> and <var class="Arg">b</var> in expanded form and returns whether the first is smaller than the second. (This ordering is also used by <strong class="pkg">GAP</strong> internally for representing polynomials as a linear combination of monomials.)</p>
<p>See section <a href="chap66.html#X7F44CF87801DB965"><span class="RefLink">66.21</span></a> for details on the expanded form of monomials.</p>
<p><a id="X79BAB2937E6085D6" name="X79BAB2937E6085D6"></a></p>
<h4>66.18 <span class="Heading">Groebner Bases</span></h4>
<p>A <em>Groebner Basis</em> of an ideal <span class="SimpleMath">I</span>i, in a polynomial ring <span class="SimpleMath">R</span>, with respect to a monomial ordering, is a set of ideal generators <var class="Arg">G</var> such that the ideal generated by the leading monomials of all polynomials in <var class="Arg">G</var> is equal to the ideal generated by the leading monomials of all polynomials in <var class="Arg">I</var>.</p>
<p>For more details on Groebner bases see <a href="chapBib.html#biBcoxlittleoshea">[CLO97]</a>.</p>
<p><a id="X7A43611E876B7560" name="X7A43611E876B7560"></a></p>
<h5>66.18-1 <span class="Heading">GroebnerBasis</span></h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GroebnerBasis</code>( <var class="Arg">L</var>, <var class="Arg">O</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GroebnerBasis</code>( <var class="Arg">I</var>, <var class="Arg">O</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GroebnerBasisNC</code>( <var class="Arg">L</var>, <var class="Arg">O</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Let <var class="Arg">O</var> be a monomial ordering and <var class="Arg">L</var> be a list of polynomials that generate an ideal <var class="Arg">I</var>. This operation returns a Groebner basis of <var class="Arg">I</var> with respect to the ordering <var class="Arg">O</var>.</p>
<p><code class="func">GroebnerBasisNC</code> works like <code class="func">GroebnerBasis</code> with the only distinction that the first argument has to be a list of polynomials and that no test is performed to check whether the ordering is defined for all occuring variables.</p>
<p>Note that <strong class="pkg">GAP</strong> at the moment only includes a naïve implementation of Buchberger's algorithm (which is mainly intended as a teaching tool). It might not be sufficient for serious problems.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">l:=[x^2+y^2+z^2-1,x^2+z^2-y,x-y];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">GroebnerBasis(l,MonomialLexOrdering());</span>
[ x^2+y^2+z^2-1, x^2+z^2-y, x-y, -y^2-y+1, -z^2+2*y-1,
1/2*z^4+2*z^2-1/2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GroebnerBasis(l,MonomialLexOrdering([z,x,y]));</span>
[ x^2+y^2+z^2-1, x^2+z^2-y, x-y, -y^2-y+1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GroebnerBasis(l,MonomialGrlexOrdering());</span>
[ x^2+y^2+z^2-1, x^2+z^2-y, x-y, -y^2-y+1, -z^2+2*y-1 ]
</pre></div>
<p><a id="X7DEF286384967C9E" name="X7DEF286384967C9E"></a></p>
<h5>66.18-2 <span class="Heading">ReducedGroebnerBasis</span></h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ReducedGroebnerBasis</code>( <var class="Arg">L</var>, <var class="Arg">O</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ReducedGroebnerBasis</code>( <var class="Arg">I</var>, <var class="Arg">O</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>a Groebner basis <span class="SimpleMath">B</span> (see <code class="func">GroebnerBasis</code> (<a href="chap66.html#X7A43611E876B7560"><span class="RefLink">66.18-1</span></a>)) is <em>reduced</em> if no monomial in a polynomial in <var class="Arg">B</var> is divisible by the leading monomial of another polynomial in <span class="SimpleMath">B</span>. This operation computes a Groebner basis with respect to the monomial ordering <var class="Arg">O</var> and then reduces it.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ReducedGroebnerBasis(l,MonomialGrlexOrdering());</span>
[ x-y, z^2-2*y+1, y^2+y-1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ReducedGroebnerBasis(l,MonomialLexOrdering()); </span>
[ z^4+4*z^2-1, -1/2*z^2+y-1/2, -1/2*z^2+x-1/2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ReducedGroebnerBasis(l,MonomialLexOrdering([y,z,x]));</span>
[ x^2+x-1, z^2-2*x+1, -x+y ]
</pre></div>
<p>For performance reasons it can be advantageous to define monomial orderings once and then to reuse them:</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ord:=MonomialGrlexOrdering();;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">GroebnerBasis(l,ord);</span>
[ x^2+y^2+z^2-1, x^2+z^2-y, x-y, -y^2-y+1, -z^2+2*y-1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ReducedGroebnerBasis(l,ord);</span>
[ x-y, z^2-2*y+1, y^2+y-1 ]
</pre></div>
<p><a id="X7FC1EFE78498C17C" name="X7FC1EFE78498C17C"></a></p>
<h5>66.18-3 StoredGroebnerBasis</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ StoredGroebnerBasis</code>( <var class="Arg">I</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>For an ideal <var class="Arg">I</var> in a polynomial ring, this attribute holds a list <span class="SimpleMath">[ B, O ]</span> where <span class="SimpleMath">B</span> is a Groebner basis for the monomial ordering <span class="SimpleMath">O</span>. this can be used to test membership or canonical coset representatives.</p>
<p><a id="X7C55702786D284A7" name="X7C55702786D284A7"></a></p>
<h5>66.18-4 InfoGroebner</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ InfoGroebner</code></td><td class="tdright">( info class )</td></tr></table></div>
<p>This info class gives information about Groebner basis calculations.</p>
<p><a id="X8113DD9B781CA6C1" name="X8113DD9B781CA6C1"></a></p>
<h4>66.19 <span class="Heading">Rational Function Families</span></h4>
<p>All rational functions defined over a ring lie in the same family, the rational functions family over this ring.</p>
<p>In <strong class="pkg">GAP</strong> therefore the family of a polynomial depends only on the family of the coefficients, all polynomials whose coefficients lie in the same family are "compatible".</p>
<p><a id="X855DD73C78A90BC3" name="X855DD73C78A90BC3"></a></p>
<h5>66.19-1 RationalFunctionsFamily</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RationalFunctionsFamily</code>( <var class="Arg">fam</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>creates a family containing rational functions with coefficients in <var class="Arg">fam</var>. All elements of the <code class="func">RationalFunctionsFamily</code> are rational functions (see <code class="func">IsRationalFunction</code> (<a href="chap66.html#X86C92F677DA9347F"><span class="RefLink">66.4-1</span></a>)).</p>
<p><a id="X86E097307D188D3B" name="X86E097307D188D3B"></a></p>
<h5>66.19-2 IsPolynomialFunctionsFamily</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsPolynomialFunctionsFamily</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsRationalFunctionsFamily</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p><code class="func">IsPolynomialFunctionsFamily</code> is the category of a family of polynomials. For families over an UFD, the category becomes <code class="func">IsRationalFunctionsFamily</code> (as rational functions and quotients are only provided for families over an UFD.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">fam:=RationalFunctionsFamily(FamilyObj(1));</span>
NewFamily( "RationalFunctionsFamily(...)", [ 618, 620 ],
[ 82, 85, 89, 93, 97, 100, 103, 107, 111, 618, 620 ] )
</pre></div>
<p><a id="X7AADCA45826866FB" name="X7AADCA45826866FB"></a></p>
<h5>66.19-3 CoefficientsFamily</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CoefficientsFamily</code>( <var class="Arg">rffam</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>If <var class="Arg">rffam</var> has been created as <code class="code">RationalFunctionsFamily(<var class="Arg">cfam</var>)</code> this attribute holds the coefficients family <var class="Arg">cfam</var>.</p>
<p><strong class="pkg">GAP</strong> does <em>not</em> embed the base ring in the polynomial ring. While multiplication and addition of base ring elements to rational functions return the expected results, polynomials and rational functions are not equal.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">1=Indeterminate(Rationals)^0;</span>
false
</pre></div>
<p><a id="X7E360788785DE530" name="X7E360788785DE530"></a></p>
<h4>66.20 <span class="Heading">The Representations of Rational Functions</span></h4>
<p><strong class="pkg">GAP</strong> uses four representations of rational functions: Rational functions given by numerator and denominator, polynomials, univariate rational functions (given by coefficient lists for numerator and denominator and valuation) and Laurent polynomials (given by coefficient list and valuation).</p>
<p>These representations do not necessarily reflect mathematical properties: While an object in the Laurent polynomials representation must be a Laurent polynomial it might turn out that a rational function given by numerator and denominator is actually a Laurent polynomial and the property tests in section <a href="chap66.html#X7D871EA180E9486C"><span class="RefLink">66.4</span></a> will find this out.</p>
<p>Each representation is associated one or several "defining attributes" that give an "external" representation (see <a href="chap66.html#X7F44CF87801DB965"><span class="RefLink">66.21</span></a>) of the representation in the form of lists and are the defining information that tells a rational function what it is.</p>
<p><strong class="pkg">GAP</strong> also implements methods to compute these attributes for rational functions in <em>other</em> representations, provided it would be possible to express an <em>mathematically equal</em> rational function in the representation associated with the attribute. (That is one can always get a numerator/denominator representation of a polynomial while an arbitrary function of course can compute a polynomial representation only if it is a polynomial.)</p>
<p>Therefore these attributes can be thought of as "conceptual" representations that allow us –as far as possible– to consider an object as a rational function, a polynomial or a Laurent polynomial, regardless of the way it is represented in the computer.</p>
<p>Functions thus usually do not need to care about the representation of a rational function. Depending on its (known in the context or determined) properties, they can access the attribute representing the rational function in the desired way.</p>
<p>Consequentially, methods for rational functions are installed for properties and not for representations.</p>
<p>When <em>creating</em> new rational functions however they must be created in one of the three representations. In most cases this will be the representation for which the "conceptual" representation in which the calculation was done is the defining attribute.</p>
<p>Iterated operations (like forming the product over a list) therefore will tend to stay in the most suitable representation and the calculation of another conceptual representation (which may be comparatively expensive in certain circumstances) is not necessary.</p>
<p><a id="X7F44CF87801DB965" name="X7F44CF87801DB965"></a></p>
<h4>66.21 <span class="Heading">The Defining Attributes of Rational Functions</span></h4>
<p>In general, rational functions are given in terms of monomials. They are represented by lists, using numbers (see <a href="chap66.html#X7A8FADCD875826DA"><span class="RefLink">66.1</span></a>) for the indeterminates.</p>
<p>A monomial is a product of powers of indeterminates. A monomial is stored as a list (we call this the <em>expanded form</em> of the monomial) of the form <code class="code">[<var class="Arg">inum</var>,<var class="Arg">exp</var>,<var class="Arg">inum</var>,<var class="Arg">exp</var>,...]</code> where each <var class="Arg">inum</var> is the number of an indeterminate and <var class="Arg">exp</var> the corresponding exponent. The list must be sorted according to the numbers of the indeterminates. Thus for example, if <span class="SimpleMath">x</span>, <span class="SimpleMath">y</span> and <span class="SimpleMath">z</span> are the first three indeterminates, the expanded form of the monomial <span class="SimpleMath">x^5 z^8 = z^8 x^5</span> is <code class="code">[ 1, 5, 3, 8 ]</code>. The representation of a polynomials is a list of the form <code class="code">[<var class="Arg">mon</var>,<var class="Arg">coeff</var>,<var class="Arg">mon</var>,<var class="Arg">coeff</var>,...]</code> where <var class="Arg">mon</var> is a monomial in expanded form (that is given as list) and <var class="Arg">coeff</var> its coefficient. The monomials must be sorted according to the total degree/lexicographic order (This is the same as given by the "grlex" monomial ordering, see <code class="func">MonomialGrlexOrdering</code> (<a href="chap66.html#X786C866C824D2688"><span class="RefLink">66.17-8</span></a>)). We call this the <em>external representation</em> of a polynomial. (The reason for ordering is that addition of polynomials becomes linear in the number of monomials instead of quadratic; the reason for the particular ordering chose is that it is compatible with multiplication and thus gives acceptable performance for quotient calculations.)</p>
<p>The attributes that give a representation of a a rational function as a Laurent polynomial are <code class="func">CoefficientsOfLaurentPolynomial</code> (<a href="chap66.html#X86D58AB67F86469F"><span class="RefLink">66.13-2</span></a>) and <code class="func">IndeterminateNumberOfUnivariateRationalFunction</code> (<a href="chap66.html#X816C8D797C804380"><span class="RefLink">66.1-2</span></a>).</p>
<p>Algorithms should use only the attributes <code class="func">ExtRepNumeratorRatFun</code> (<a href="chap66.html#X7DF955C87CBFC12B"><span class="RefLink">66.21-2</span></a>), <code class="func">ExtRepDenominatorRatFun</code> (<a href="chap66.html#X8059E74D7DCABDBC"><span class="RefLink">66.21-3</span></a>), <code class="func">ExtRepPolynomialRatFun</code> (<a href="chap66.html#X8406EE2E8775FBAB"><span class="RefLink">66.21-6</span></a>), <code class="func">CoefficientsOfLaurentPolynomial</code> (<a href="chap66.html#X86D58AB67F86469F"><span class="RefLink">66.13-2</span></a>) and –if the univariate function is not constant– <code class="func">IndeterminateNumberOfUnivariateRationalFunction</code> (<a href="chap66.html#X816C8D797C804380"><span class="RefLink">66.1-2</span></a>) as the low-level interface to work with a polynomial. They should not refer to the actual representation used.</p>
<p><a id="X791E16C67A352263" name="X791E16C67A352263"></a></p>
<h5>66.21-1 IsRationalFunctionDefaultRep</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsRationalFunctionDefaultRep</code>( <var class="Arg">obj</var> )</td><td class="tdright">( representation )</td></tr></table></div>
<p>is the default representation of rational functions. A rational function in this representation is defined by the attributes <code class="func">ExtRepNumeratorRatFun</code> (<a href="chap66.html#X7DF955C87CBFC12B"><span class="RefLink">66.21-2</span></a>) and <code class="func">ExtRepDenominatorRatFun</code> (<a href="chap66.html#X8059E74D7DCABDBC"><span class="RefLink">66.21-3</span></a>), the values of which are external representations of polynomials.</p>
<p><a id="X7DF955C87CBFC12B" name="X7DF955C87CBFC12B"></a></p>
<h5>66.21-2 ExtRepNumeratorRatFun</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ExtRepNumeratorRatFun</code>( <var class="Arg">ratfun</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the external representation of the numerator polynomial of the rational function <var class="Arg">ratfun</var>. Numerator and denominator are not guaranteed to be cancelled against each other.</p>
<p><a id="X8059E74D7DCABDBC" name="X8059E74D7DCABDBC"></a></p>
<h5>66.21-3 ExtRepDenominatorRatFun</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ExtRepDenominatorRatFun</code>( <var class="Arg">ratfun</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the external representation of the denominator polynomial of the rational function <var class="Arg">ratfun</var>. Numerator and denominator are not guaranteed to be cancelled against each other.</p>
<p><a id="X84F546F87B5ECFE0" name="X84F546F87B5ECFE0"></a></p>
<h5>66.21-4 ZeroCoefficientRatFun</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ZeroCoefficientRatFun</code>( <var class="Arg">ratfun</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>returns the zero of the coefficient ring. This might be needed to represent the zero polynomial for which the external representation of the numerator is the empty list.</p>
<p><a id="X833CE16579AB26E0" name="X833CE16579AB26E0"></a></p>
<h5>66.21-5 IsPolynomialDefaultRep</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsPolynomialDefaultRep</code>( <var class="Arg">obj</var> )</td><td class="tdright">( representation )</td></tr></table></div>
<p>is the default representation of polynomials. A polynomial in this representation is defined by the components and <code class="func">ExtRepNumeratorRatFun</code> (<a href="chap66.html#X7DF955C87CBFC12B"><span class="RefLink">66.21-2</span></a>) where <code class="func">ExtRepNumeratorRatFun</code> (<a href="chap66.html#X7DF955C87CBFC12B"><span class="RefLink">66.21-2</span></a>) is the external representation of the polynomial.</p>
<p><a id="X8406EE2E8775FBAB" name="X8406EE2E8775FBAB"></a></p>
<h5>66.21-6 ExtRepPolynomialRatFun</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ExtRepPolynomialRatFun</code>( <var class="Arg">polynomial</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>returns the external representation of a polynomial. The difference to <code class="func">ExtRepNumeratorRatFun</code> (<a href="chap66.html#X7DF955C87CBFC12B"><span class="RefLink">66.21-2</span></a>) is that rational functions might know to be a polynomial but can still have a non-vanishing denominator. In this case <code class="func">ExtRepPolynomialRatFun</code> has to call a quotient routine.</p>
<p><a id="X7E1B98CC7BADAF56" name="X7E1B98CC7BADAF56"></a></p>
<h5>66.21-7 IsLaurentPolynomialDefaultRep</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsLaurentPolynomialDefaultRep</code>( <var class="Arg">obj</var> )</td><td class="tdright">( representation )</td></tr></table></div>
<p>This representation is used for Laurent polynomials and univariate polynomials. It represents a Laurent polynomial via the attributes <code class="func">CoefficientsOfLaurentPolynomial</code> (<a href="chap66.html#X86D58AB67F86469F"><span class="RefLink">66.13-2</span></a>) and <code class="func">IndeterminateNumberOfLaurentPolynomial</code> (<a href="chap66.html#X8381E1B582F38C85"><span class="RefLink">66.13-3</span></a>).</p>
<p><a id="X791FADD278A2F32F" name="X791FADD278A2F32F"></a></p>
<h4>66.22 <span class="Heading">Creation of Rational Functions</span></h4>
<p>The operations <code class="func">LaurentPolynomialByCoefficients</code> (<a href="chap66.html#X8467263B7EFA013E"><span class="RefLink">66.13-1</span></a>), <code class="func">PolynomialByExtRep</code> (<a href="chap66.html#X79E445AF7849F48A"><span class="RefLink">66.22-2</span></a>) and <code class="func">RationalFunctionByExtRep</code> (<a href="chap66.html#X81297E4587A9F2A6"><span class="RefLink">66.22-1</span></a>) are used to construct objects in the three basic representations for rational functions.</p>
<p><a id="X81297E4587A9F2A6" name="X81297E4587A9F2A6"></a></p>
<h5>66.22-1 RationalFunctionByExtRep</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RationalFunctionByExtRep</code>( <var class="Arg">rfam</var>, <var class="Arg">num</var>, <var class="Arg">den</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RationalFunctionByExtRepNC</code>( <var class="Arg">rfam</var>, <var class="Arg">num</var>, <var class="Arg">den</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>constructs a rational function (in the representation <code class="func">IsRationalFunctionDefaultRep</code> (<a href="chap66.html#X791E16C67A352263"><span class="RefLink">66.21-1</span></a>)) in the rational function family <var class="Arg">rfam</var>, the rational function itself is given by the external representations <var class="Arg">num</var> and <var class="Arg">den</var> for numerator and denominator. No cancellation takes place.</p>
<p>The variant <code class="func">RationalFunctionByExtRepNC</code> does not perform any test of the arguments and thus potentially can create illegal objects. It only should be used if speed is required and the arguments are known to be in correct form.</p>
<p><a id="X79E445AF7849F48A" name="X79E445AF7849F48A"></a></p>
<h5>66.22-2 PolynomialByExtRep</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PolynomialByExtRep</code>( <var class="Arg">rfam</var>, <var class="Arg">extrep</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PolynomialByExtRepNC</code>( <var class="Arg">rfam</var>, <var class="Arg">extrep</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>constructs a polynomial (in the representation <code class="func">IsPolynomialDefaultRep</code> (<a href="chap66.html#X833CE16579AB26E0"><span class="RefLink">66.21-5</span></a>)) in the rational function family <var class="Arg">rfam</var>, the polynomial itself is given by the external representation <var class="Arg">extrep</var>.</p>
<p>The variant <code class="func">PolynomialByExtRepNC</code> does not perform any test of the arguments and thus potentially can create invalid objects. It only should be used if speed is required and the arguments are known to be in correct form.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">fam:=RationalFunctionsFamily(FamilyObj(1));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">p:=PolynomialByExtRep(fam,[[1,2],1,[2,1,15,7],3]);</span>
3*y*x_15^7+x^2
<span class="GAPprompt">gap></span> <span class="GAPinput">q:=p/(p+1);</span>
(3*y*x_15^7+x^2)/(3*y*x_15^7+x^2+1)
<span class="GAPprompt">gap></span> <span class="GAPinput">ExtRepNumeratorRatFun(q);</span>
[ [ 1, 2 ], 1, [ 2, 1, 15, 7 ], 3 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ExtRepDenominatorRatFun(q);</span>
[ [ ], 1, [ 1, 2 ], 1, [ 2, 1, 15, 7 ], 3 ]
</pre></div>
<p><a id="X7E2A46D68472F492" name="X7E2A46D68472F492"></a></p>
<h5>66.22-3 LaurentPolynomialByExtRep</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LaurentPolynomialByExtRep</code>( <var class="Arg">fam</var>, <var class="Arg">cofs</var>, <var class="Arg">val</var>, <var class="Arg">ind</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LaurentPolynomialByExtRepNC</code>( <var class="Arg">fam</var>, <var class="Arg">cofs</var>, <var class="Arg">val</var>, <var class="Arg">ind</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>creates a Laurent polynomial in the family <var class="Arg">fam</var> with [<var class="Arg">cofs</var>,<var class="Arg">val</var>] as value of <code class="func">CoefficientsOfLaurentPolynomial</code> (<a href="chap66.html#X86D58AB67F86469F"><span class="RefLink">66.13-2</span></a>). No coefficient shifting is performed. This is the lowest level function to create a Laurent polynomial but will rely on the coefficients being shifted properly and will not perform any tests. Unless this is guaranteed for the parameters, <code class="func">LaurentPolynomialByCoefficients</code> (<a href="chap66.html#X8467263B7EFA013E"><span class="RefLink">66.13-1</span></a>) should be used.</p>
<p><a id="X809028CD7C0EA7CE" name="X809028CD7C0EA7CE"></a></p>
<h4>66.23 <span class="Heading">Arithmetic for External Representations of Polynomials</span></h4>
<p>The following operations are used internally to perform the arithmetic for polynomials in their "external" representation (see <a href="chap66.html#X7F44CF87801DB965"><span class="RefLink">66.21</span></a>) as lists.</p>
<p>Functions to perform arithmetic with the coefficient lists of Laurent polynomials are described in Section <a href="chap23.html#X85C68AED805E4B9C"><span class="RefLink">23.4</span></a>.</p>
<p><a id="X855094857A78ABF9" name="X855094857A78ABF9"></a></p>
<h5>66.23-1 ZippedSum</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ZippedSum</code>( <var class="Arg">z1</var>, <var class="Arg">z2</var>, <var class="Arg">czero</var>, <var class="Arg">funcs</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>computes the sum of two external representations of polynomials <var class="Arg">z1</var> and <var class="Arg">z2</var>. <var class="Arg">czero</var> is the appropriate coefficient zero and <var class="Arg">funcs</var> a list [ <var class="Arg">monomial_less</var>, <var class="Arg">coefficient_sum</var> ] containing a monomial comparison and a coefficient addition function. This list can be found in the component <var class="Arg">fam</var><code class="code">!.zippedSum</code> of the rational functions family.</p>
<p>Note that <var class="Arg">coefficient_sum</var> must be a proper "summation" function, not a function computing differences.</p>
<p><a id="X7B911136782F0F6D" name="X7B911136782F0F6D"></a></p>
<h5>66.23-2 ZippedProduct</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ZippedProduct</code>( <var class="Arg">z1</var>, <var class="Arg">z2</var>, <var class="Arg">czero</var>, <var class="Arg">funcs</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>computes the product of two external representations of polynomials <var class="Arg">z1</var> and <var class="Arg">z2</var>. <var class="Arg">czero</var> is the appropriate coefficient zero and <var class="Arg">funcs</var> a list [ <var class="Arg">monomial_prod</var>, <var class="Arg">monomial_less</var>, <var class="Arg">coefficient_sum</var>, <var class="Arg">coefficient_prod</var>] containing functions to multiply and compare monomials, to add and to multiply coefficients. This list can be found in the component <code class="code"><var class="Arg">fam</var>!.zippedProduct</code> of the rational functions family.</p>
<p><a id="X87E5EB8985AF04CD" name="X87E5EB8985AF04CD"></a></p>
<h5>66.23-3 QuotientPolynomialsExtRep</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ QuotientPolynomialsExtRep</code>( <var class="Arg">fam</var>, <var class="Arg">a</var>, <var class="Arg">b</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Let <var class="Arg">a</var> and <var class="Arg">b</var> the external representations of two polynomials in the rational functions family <var class="Arg">fam</var>. This function computes the external representation of the quotient of both polynomials, it returns <code class="keyw">fail</code> if the polynomial described by <var class="Arg">b</var> does not divide the polynomial described by <var class="Arg">a</var>.</p>
<p><a id="X811B7D8E79E4BD46" name="X811B7D8E79E4BD46"></a></p>
<h4>66.24 <span class="Heading">Cancellation Tests for Rational Functions</span></h4>
<p>The operation <code class="func">Gcd</code> (<a href="chap56.html#X7DE207718456F98F"><span class="RefLink">56.7-1</span></a>) can be used to test for common factors of two polynomials. This however would be too expensive to be done in the arithmetic, thus uses the following operations internally to try to keep the denominators as small as possible</p>
<p><a id="X878A1AC87B492E3D" name="X878A1AC87B492E3D"></a></p>
<h5>66.24-1 RationalFunctionByExtRepWithCancellation</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RationalFunctionByExtRepWithCancellation</code>( <var class="Arg">rfam</var>, <var class="Arg">num</var>, <var class="Arg">den</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>constructs a rational function as <code class="func">RationalFunctionByExtRep</code> (<a href="chap66.html#X81297E4587A9F2A6"><span class="RefLink">66.22-1</span></a>) does but tries to cancel out common factors of numerator and denominator, calling <code class="func">TryGcdCancelExtRepPolynomials</code> (<a href="chap66.html#X7BFB55887A153003"><span class="RefLink">66.24-2</span></a>).</p>
<p><a id="X7BFB55887A153003" name="X7BFB55887A153003"></a></p>
<h5>66.24-2 TryGcdCancelExtRepPolynomials</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ TryGcdCancelExtRepPolynomials</code>( <var class="Arg">fam</var>, <var class="Arg">a</var>, <var class="Arg">b</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Let <var class="Arg">a</var> and <var class="Arg">b</var> be the external representations of two polynomials. This function tries to cancel common factors between the corresponding polynomials and returns a list <span class="SimpleMath">[ a', b' ]</span> of external representations of cancelled polynomials. As there is no proper multivariate GCD cancellation is not guaranteed to be optimal.</p>
<p><a id="X81CC7D9B819A9332" name="X81CC7D9B819A9332"></a></p>
<h5>66.24-3 HeuristicCancelPolynomials</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ HeuristicCancelPolynomials</code>( <var class="Arg">fam</var>, <var class="Arg">ext1</var>, <var class="Arg">ext2</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>is called by <code class="func">TryGcdCancelExtRepPolynomials</code> (<a href="chap66.html#X7BFB55887A153003"><span class="RefLink">66.24-2</span></a>) to perform the actual work. It will return either <code class="keyw">fail</code> or a new list of of external representations of cancelled polynomials. The cancellation performed is not necessarily optimal.</p>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap65.html">[Previous Chapter]</a> <a href="chap67.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chap41.html">41</a> <a href="chap42.html">42</a> <a href="chap43.html">43</a> <a href="chap44.html">44</a> <a href="chap45.html">45</a> <a href="chap46.html">46</a> <a href="chap47.html">47</a> <a href="chap48.html">48</a> <a href="chap49.html">49</a> <a href="chap50.html">50</a> <a href="chap51.html">51</a> <a href="chap52.html">52</a> <a href="chap53.html">53</a> <a href="chap54.html">54</a> <a href="chap55.html">55</a> <a href="chap56.html">56</a> <a href="chap57.html">57</a> <a href="chap58.html">58</a> <a href="chap59.html">59</a> <a href="chap60.html">60</a> <a href="chap61.html">61</a> <a href="chap62.html">62</a> <a href="chap63.html">63</a> <a href="chap64.html">64</a> <a href="chap65.html">65</a> <a href="chap66.html">66</a> <a href="chap67.html">67</a> <a href="chap68.html">68</a> <a href="chap69.html">69</a> <a href="chap70.html">70</a> <a href="chap71.html">71</a> <a href="chap72.html">72</a> <a href="chap73.html">73</a> <a href="chap74.html">74</a> <a href="chap75.html">75</a> <a href="chap76.html">76</a> <a href="chap77.html">77</a> <a href="chap78.html">78</a> <a href="chap79.html">79</a> <a href="chap80.html">80</a> <a href="chap81.html">81</a> <a href="chap82.html">82</a> <a href="chap83.html">83</a> <a href="chap84.html">84</a> <a href="chap85.html">85</a> <a href="chap86.html">86</a> <a href="chap87.html">87</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|