This file is indexed.

/usr/share/gap/doc/ref/chap67.html is in gap-doc 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (ref) - Chapter 67: Algebraic extensions of fields</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap67"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap66.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap68.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap67_mj.html">[MathJax on]</a></p>
<p><a id="X85732CEF7ECFCA68" name="X85732CEF7ECFCA68"></a></p>
<div class="ChapSects"><a href="chap67.html#X85732CEF7ECFCA68">67 <span class="Heading">Algebraic extensions of fields</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap67.html#X7AD9B24E78ADC27F">67.1 <span class="Heading">Creation of Algebraic Extensions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap67.html#X7CDA90537D2BAC8A">67.1-1 AlgebraicExtension</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap67.html#X811F10217F12B3F9">67.1-2 IsAlgebraicExtension</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap67.html#X819C7E6F78817F1E">67.2 <span class="Heading">Elements in Algebraic Extensions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap67.html#X79695C887FD0AEAB">67.2-1 IsAlgebraicElement</a></span>
</div></div>
</div>

<h3>67 <span class="Heading">Algebraic extensions of fields</span></h3>

<p>If we adjoin a root <span class="SimpleMath">α</span> of an irreducible polynomial <span class="SimpleMath">f ∈ K[x]</span> to the field <span class="SimpleMath">K</span> we get an <em>algebraic extension</em> <span class="SimpleMath">K(α)</span>, which is again a field. We call <span class="SimpleMath">K</span> the <em>base field</em> of <span class="SimpleMath">K(α)</span>.</p>

<p>By Kronecker's construction, we may identify <span class="SimpleMath">K(α)</span> with the factor ring <span class="SimpleMath">K[x]/(f)</span>, an identification that also provides a method for computing in these extension fields.</p>

<p>It is important to note that different extensions of the same field are entirely different (and its elements lie in different families), even if mathematically one could be embedded in the other one.</p>

<p>Currently <strong class="pkg">GAP</strong> only allows extension fields of fields <span class="SimpleMath">K</span>, when <span class="SimpleMath">K</span> itself is not an extension field.</p>

<p><a id="X7AD9B24E78ADC27F" name="X7AD9B24E78ADC27F"></a></p>

<h4>67.1 <span class="Heading">Creation of Algebraic Extensions</span></h4>

<p><a id="X7CDA90537D2BAC8A" name="X7CDA90537D2BAC8A"></a></p>

<h5>67.1-1 AlgebraicExtension</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AlgebraicExtension</code>( <var class="Arg">K</var>, <var class="Arg">f</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>constructs an extension <var class="Arg">L</var> of the field <var class="Arg">K</var> by one root of the irreducible polynomial <var class="Arg">f</var>, using Kronecker's construction. <var class="Arg">L</var> is a field whose <code class="func">LeftActingDomain</code> (<a href="chap57.html#X86F070E0807DC34E"><span class="RefLink">57.1-11</span></a>) value is <var class="Arg">K</var>. The polynomial <var class="Arg">f</var> is the <code class="func">DefiningPolynomial</code> (<a href="chap58.html#X7ADDCBF47E2ED3D4"><span class="RefLink">58.2-7</span></a>) value of <var class="Arg">L</var> and the attribute <code class="func">RootOfDefiningPolynomial</code> (<a href="chap58.html#X8173DA4982DB1E8A"><span class="RefLink">58.2-8</span></a>) of <var class="Arg">L</var> holds a root of <var class="Arg">f</var> in <var class="Arg">L</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x:=Indeterminate(Rationals,"x");;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">p:=x^4+3*x^2+1;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">e:=AlgebraicExtension(Rationals,p);</span>
&lt;algebraic extension over the Rationals of degree 4&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsField(e);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">a:=RootOfDefiningPolynomial(e);</span>
a
</pre></div>

<p><a id="X811F10217F12B3F9" name="X811F10217F12B3F9"></a></p>

<h5>67.1-2 IsAlgebraicExtension</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsAlgebraicExtension</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>is the category of algebraic extensions of fields.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsAlgebraicExtension(e);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsAlgebraicExtension(Rationals);</span>
false
</pre></div>

<p><a id="X819C7E6F78817F1E" name="X819C7E6F78817F1E"></a></p>

<h4>67.2 <span class="Heading">Elements in Algebraic Extensions</span></h4>

<p>According to Kronecker's construction, the elements of an algebraic extension are considered to be polynomials in the primitive element. The elements of the base field are represented as polynomials of degree zero. <strong class="pkg">GAP</strong> therefore displays elements of an algebraic extension as polynomials in an indeterminate "a", which is a root of the defining polynomial of the extension. Polynomials of degree zero are displayed with a leading exclamation mark to indicate that they are different from elements of the base field.</p>

<p>The usual field operations are applicable to algebraic elements.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">a^3/(a^2+a+1);</span>
-1/2*a^3+1/2*a^2-1/2*a
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">a*(1/a);</span>
!1
</pre></div>

<p>The external representation of algebraic extension elements are the polynomial coefficients in the primitive element <code class="code">a</code>, the operations <code class="func">ExtRepOfObj</code> (<a href="chap79.html#X8542B32A8206118C"><span class="RefLink">79.15-1</span></a>) and <code class="func">ObjByExtRep</code> (<a href="chap79.html#X8542B32A8206118C"><span class="RefLink">79.15-1</span></a>) can be used for conversion.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ExtRepOfObj(One(a));</span>
[ 1, 0, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ExtRepOfObj(a^3+2*a-9);</span>
[ -9, 2, 0, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ObjByExtRep(FamilyObj(a),[3,19,-27,433]);</span>
433*a^3-27*a^2+19*a+3
</pre></div>

<p><strong class="pkg">GAP</strong> does <em>not</em> embed the base field in its algebraic extensions and therefore lists which contain elements of the base field and of the extension are not homogeneous and thus cannot be used as polynomial coefficients or to form matrices. The remedy is to multiply the list(s) with the value of the attribute <code class="func">One</code> (<a href="chap31.html#X8046262384895B2A"><span class="RefLink">31.10-2</span></a>) of the extension which will embed all entries in the extension.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m:=[[1,a],[0,1]];</span>
[ [ 1, a ], [ 0, 1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsMatrix(m);</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m:=m*One(e);</span>
[ [ !1, a ], [ !0, !1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsMatrix(m);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m^2;</span>
[ [ !1, 2*a ], [ !0, !1 ] ]
</pre></div>

<p><a id="X79695C887FD0AEAB" name="X79695C887FD0AEAB"></a></p>

<h5>67.2-1 IsAlgebraicElement</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsAlgebraicElement</code>( <var class="Arg">obj</var> )</td><td class="tdright">( category )</td></tr></table></div>
<p>is the category for elements of an algebraic extension.</p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap66.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap68.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>