/usr/share/gap/grp/basic.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 | #############################################################################
##
#W basic.gd GAP Library Frank Celler
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
##
## This file contains the operations for the construction of the basic group
## types.
##
#############################################################################
##
## <#GAPDoc Label="[1]{basic}">
## There are several infinite families of groups which are parametrized by
## numbers.
## &GAP; provides various functions to construct these groups.
## The functions always permit (but do not require) one to indicate
## a filter (see <Ref Sect="Filters"/>),
## for example <Ref Prop="IsPermGroup"/>, <Ref Prop="IsMatrixGroup"/> or
## <Ref Prop="IsPcGroup"/>, in which the group shall be constructed.
## There always is a default filter corresponding to a <Q>natural</Q> way
## to describe the group in question.
## Note that not every group can be constructed in every filter,
## there may be theoretical restrictions (<Ref Prop="IsPcGroup"/> only works
## for solvable groups) or methods may be available only for a few filters.
## <P/>
## Certain filters may admit additional hints.
## For example, groups constructed in <Ref Prop="IsMatrixGroup"/> may be
## constructed over a specified field, which can be given as second argument
## of the function that constructs the group;
## The default field is <Ref Var="Rationals"/>.
## <#/GAPDoc>
#############################################################################
##
#O TrivialGroupCons( <filter> )
##
## <ManSection>
## <Oper Name="TrivialGroupCons" Arg='filter'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareConstructor( "TrivialGroupCons", [ IsGroup ] );
#############################################################################
##
#F TrivialGroup( [<filter>] ) . . . . . . . . . . . . . . . . trivial group
##
## <#GAPDoc Label="TrivialGroup">
## <ManSection>
## <Func Name="TrivialGroup" Arg='[filter]'/>
##
## <Description>
## constructs a trivial group in the category given by the filter
## <A>filter</A>.
## If <A>filter</A> is not given it defaults to <Ref Func="IsPcGroup"/>.
## <P/>
## <Example><![CDATA[
## gap> TrivialGroup();
## <pc group of size 1 with 0 generators>
## gap> TrivialGroup( IsPermGroup );
## Group(())
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal( "TrivialGroup", function( arg )
if Length( arg ) = 0 then
return TrivialGroupCons( IsPcGroup );
elif IsFilter( arg[1] ) and Length( arg ) = 1 then
return TrivialGroupCons( arg[1] );
fi;
Error( "usage: TrivialGroup( [<filter>] )" );
end );
#############################################################################
##
#O AbelianGroupCons( <filter>, <ints> )
##
## <ManSection>
## <Oper Name="AbelianGroupCons" Arg='filter, ints'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareConstructor( "AbelianGroupCons", [ IsGroup, IsList ] );
#############################################################################
##
#F AbelianGroup( [<filt>, ]<ints> ) . . . . . . . . . . . . . abelian group
##
## <#GAPDoc Label="AbelianGroup">
## <ManSection>
## <Func Name="AbelianGroup" Arg='[filt, ]ints'/>
##
## <Description>
## constructs an abelian group in the category given by the filter
## <A>filt</A> which is of isomorphism type
## <M>C_{{<A>ints</A>[1]}} \times C_{{<A>ints</A>[2]}} \times \ldots
## \times C_{{<A>ints</A>[n]}}</M>,
## where <A>ints</A> must be a list of positive integers.
## If <A>filt</A> is not given it defaults to <Ref Func="IsPcGroup"/>.
## The generators of the group returned are the elements corresponding to
## the integers in <A>ints</A>.
## <P/>
## <Example><![CDATA[
## gap> AbelianGroup([1,2,3]);
## <pc group of size 6 with 3 generators>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal( "AbelianGroup", function ( arg )
if Length(arg) = 1 then
if ForAny(arg[1],x->x=0) then
return AbelianGroupCons( IsFpGroup, arg[1] );
fi;
return AbelianGroupCons( IsPcGroup, arg[1] );
elif IsOperation(arg[1]) then
if Length(arg) = 2 then
return AbelianGroupCons( arg[1], arg[2] );
elif Length(arg) = 3 then
return AbelianGroupCons( arg[1], arg[2], arg[3] );
fi;
fi;
Error( "usage: AbelianGroup( [<filter>, ]<ints> )" );
end );
#############################################################################
##
#O AlternatingGroupCons( <filter>, <deg> )
##
## <ManSection>
## <Oper Name="AlternatingGroupCons" Arg='filter, deg'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareConstructor( "AlternatingGroupCons", [ IsGroup, IsInt ] );
#############################################################################
##
#F AlternatingGroup( [<filt>, ]<deg> ) . . . . . . . . . . alternating group
#F AlternatingGroup( [<filt>, ]<dom> ) . . . . . . . . . . alternating group
##
## <#GAPDoc Label="AlternatingGroup">
## <ManSection>
## <Heading>AlternatingGroup</Heading>
## <Func Name="AlternatingGroup" Arg='[filt, ]deg' Label="for a degree"/>
## <Func Name="AlternatingGroup" Arg='[filt, ]dom' Label="for a domain"/>
##
## <Description>
## constructs the alternating group of degree <A>deg</A> in the category given
## by the filter <A>filt</A>.
## If <A>filt</A> is not given it defaults to <Ref Prop="IsPermGroup"/>.
## In the second version, the function constructs the alternating group on
## the points given in the set <A>dom</A> which must be a set of positive
## integers.
## <Example><![CDATA[
## gap> AlternatingGroup(5);
## Alt( [ 1 .. 5 ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal( "AlternatingGroup", function ( arg )
if Length(arg) = 1 then
return AlternatingGroupCons( IsPermGroup, arg[1] );
elif IsOperation(arg[1]) then
if Length(arg) = 2 then
return AlternatingGroupCons( arg[1], arg[2] );
fi;
fi;
Error( "usage: AlternatingGroup( [<filter>, ]<deg> )" );
end );
#############################################################################
##
#O CyclicGroupCons( <filter>, <n> )
##
## <ManSection>
## <Oper Name="CyclicGroupCons" Arg='filter, n'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareConstructor( "CyclicGroupCons", [ IsGroup, IsInt ] );
#############################################################################
##
#F CyclicGroup( [<filt>, ]<n> ) . . . . . . . . . . . . . . . cyclic group
##
## <#GAPDoc Label="CyclicGroup">
## <ManSection>
## <Func Name="CyclicGroup" Arg='[filt, ]n'/>
##
## <Description>
## constructs the cyclic group of size <A>n</A> in the category given by the
## filter <A>filt</A>.
## If <A>filt</A> is not given it defaults to <Ref Func="IsPcGroup"/>.
## <P/>
## <Example><![CDATA[
## gap> CyclicGroup(12);
## <pc group of size 12 with 3 generators>
## gap> CyclicGroup(IsPermGroup,12);
## Group([ (1,2,3,4,5,6,7,8,9,10,11,12) ])
## gap> matgrp1:= CyclicGroup( IsMatrixGroup, 12 );
## <matrix group of size 12 with 1 generators>
## gap> FieldOfMatrixGroup( matgrp1 );
## Rationals
## gap> matgrp2:= CyclicGroup( IsMatrixGroup, GF(2), 12 );
## <matrix group of size 12 with 1 generators>
## gap> FieldOfMatrixGroup( matgrp2 );
## GF(2)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal( "CyclicGroup", function ( arg )
if Length(arg) = 1 then
if arg[1]=infinity then
return CyclicGroupCons(IsFpGroup,arg[1]);
fi;
return CyclicGroupCons( IsPcGroup, arg[1] );
elif IsOperation(arg[1]) then
if Length(arg) = 2 then
return CyclicGroupCons( arg[1], arg[2] );
elif Length(arg) = 3 then
return CyclicGroupCons( arg[1], arg[2], arg[3] );
fi;
fi;
Error( "usage: CyclicGroup( [<filter>, ]<size> )" );
end );
#############################################################################
##
#O DihedralGroupCons( <filter>, <n> )
##
## <ManSection>
## <Oper Name="DihedralGroupCons" Arg='filter, n'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareConstructor( "DihedralGroupCons", [ IsGroup, IsInt ] );
#############################################################################
##
#F DihedralGroup( [<filt>, ]<n> ) . . . . . . . dihedral group of order <n>
##
## <#GAPDoc Label="DihedralGroup">
## <ManSection>
## <Func Name="DihedralGroup" Arg='[filt, ]n'/>
##
## <Description>
## constructs the dihedral group of size <A>n</A> in the category given by the
## filter <A>filt</A>.
## If <A>filt</A> is not given it defaults to <Ref Func="IsPcGroup"/>.
## <P/>
## <Example><![CDATA[
## gap> DihedralGroup(10);
## <pc group of size 10 with 2 generators>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal( "DihedralGroup", function ( arg )
if Length(arg) = 1 then
return DihedralGroupCons( IsPcGroup, arg[1] );
elif IsOperation(arg[1]) then
if Length(arg) = 2 then
return DihedralGroupCons( arg[1], arg[2] );
elif Length(arg) = 3 then
return DihedralGroupCons( arg[1], arg[2], arg[3] );
fi;
fi;
Error( "usage: DihedralGroup( [<filter>, ]<size> )" );
end );
#############################################################################
##
#O QuaternionGroupCons( <filter>, <n> )
##
## <ManSection>
## <Oper Name="QuaternionGroupCons" Arg='filter, n'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareConstructor( "QuaternionGroupCons", [ IsGroup, IsInt ] );
#############################################################################
##
#F QuaternionGroup( [<filt>, ]<n> ) . . . . . . . quaternion group of order <n>
##
## <#GAPDoc Label="QuaternionGroup">
## <ManSection>
## <Func Name="QuaternionGroup" Arg='[filt, ]n'/>
## <Func Name="DicyclicGroup" Arg='[filt, ]n'/>
##
## <Description>
## constructs the generalized quaternion group (or dicyclic group) of size
## <A>n</A> in the category given by the filter <A>filt</A>. Here, <A>n</A>
## is a multiple of 4.
## If <A>filt</A> is not given it defaults to <Ref Func="IsPcGroup"/>.
## Methods are also available for permutation and matrix groups (of minimal
## degree and minimal dimension in coprime characteristic).
## <P/>
## <Example><![CDATA[
## gap> QuaternionGroup(32);
## <pc group of size 32 with 5 generators>
## gap> g:=QuaternionGroup(IsMatrixGroup,CF(16),32);
## Group([ [ [ 0, 1 ], [ -1, 0 ] ], [ [ E(16), 0 ], [ 0, -E(16)^7 ] ] ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal( "QuaternionGroup", function ( arg )
if Length(arg) = 1 then
return QuaternionGroupCons( IsPcGroup, arg[1] );
elif IsOperation(arg[1]) then
if Length(arg) = 2 then
return QuaternionGroupCons( arg[1], arg[2] );
elif Length(arg) = 3 then
return QuaternionGroupCons( arg[1], arg[2], arg[3] );
fi;
fi;
Error( "usage: QuaternionGroup( [<filter>, ]<size> )" );
end );
DeclareSynonym( "DicyclicGroup", QuaternionGroup );
#############################################################################
##
#O ElementaryAbelianGroupCons( <filter>, <n> )
##
## <ManSection>
## <Oper Name="ElementaryAbelianGroupCons" Arg='filter, n'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareConstructor( "ElementaryAbelianGroupCons", [ IsGroup, IsInt ] );
#############################################################################
##
#F ElementaryAbelianGroup( [<filt>, ]<n> ) . . . . elementary abelian group
##
## <#GAPDoc Label="ElementaryAbelianGroup">
## <ManSection>
## <Func Name="ElementaryAbelianGroup" Arg='[filt, ]n'/>
##
## <Description>
## constructs the elementary abelian group of size <A>n</A> in the category
## given by the filter <A>filt</A>.
## If <A>filt</A> is not given it defaults to <Ref Func="IsPcGroup"/>.
## <P/>
## <Example><![CDATA[
## gap> ElementaryAbelianGroup(8192);
## <pc group of size 8192 with 13 generators>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal( "ElementaryAbelianGroup", function ( arg )
if Length(arg) = 1 then
return ElementaryAbelianGroupCons( IsPcGroup, arg[1] );
elif IsOperation(arg[1]) then
if Length(arg) = 2 then
return ElementaryAbelianGroupCons( arg[1], arg[2] );
elif Length(arg) = 3 then
return ElementaryAbelianGroupCons( arg[1], arg[2], arg[3] );
fi;
fi;
Error( "usage: ElementaryAbelianGroup( [<filter>, ]<size> )" );
end );
#############################################################################
##
#O ExtraspecialGroupCons( <filter>, <order>, <exponent> )
##
## <ManSection>
## <Oper Name="ExtraspecialGroupCons" Arg='filter, order, exponent'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareConstructor( "ExtraspecialGroupCons", [ IsGroup, IsInt, IsObject ] );
#############################################################################
##
#F ExtraspecialGroup( [<filt>, ]<order>, <exp> ) . . . . extraspecial group
##
## <#GAPDoc Label="ExtraspecialGroup">
## <ManSection>
## <Func Name="ExtraspecialGroup" Arg='[filt, ]order, exp'/>
##
## <Description>
## Let <A>order</A> be of the form <M>p^{{2n+1}}</M>, for a prime integer
## <M>p</M> and a positive integer <M>n</M>.
## <Ref Func="ExtraspecialGroup"/> returns the extraspecial group of order
## <A>order</A> that is determined by <A>exp</A>,
## in the category given by the filter <A>filt</A>.
## <P/>
## If <M>p</M> is odd then admissible values of <A>exp</A> are the exponent
## of the group (either <M>p</M> or <M>p^2</M>) or one of <C>'+'</C>,
## <C>"+"</C>, <C>'-'</C>, <C>"-"</C>.
## For <M>p = 2</M>, only the above plus or minus signs are admissible.
## <P/>
## If <A>filt</A> is not given it defaults to <Ref Func="IsPcGroup"/>.
## <P/>
## <Example><![CDATA[
## gap> ExtraspecialGroup( 27, 3 );
## <pc group of size 27 with 3 generators>
## gap> ExtraspecialGroup( 27, '+' );
## <pc group of size 27 with 3 generators>
## gap> ExtraspecialGroup( 8, "-" );
## <pc group of size 8 with 3 generators>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal( "ExtraspecialGroup", function ( arg )
if Length(arg) = 2 then
return ExtraspecialGroupCons( IsPcGroup, arg[1], arg[2] );
elif IsOperation(arg[1]) then
if Length(arg) = 3 then
return ExtraspecialGroupCons( arg[1], arg[2], arg[3] );
elif Length(arg) = 4 then
return ExtraspecialGroupCons( arg[1], arg[2], arg[3], arg[4] );
fi;
fi;
Error( "usage: ExtraspecialGroup( [<filter>, ]<order>, <exponent> )" );
end );
#############################################################################
##
#O MathieuGroupCons( <filter>, <degree> )
##
## <ManSection>
## <Oper Name="MathieuGroupCons" Arg='filter, degree'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareConstructor( "MathieuGroupCons", [ IsGroup, IsInt ] );
#############################################################################
##
#F MathieuGroup( [<filt>, ]<degree> ) . . . . . . . . . . . . Mathieu group
##
## <#GAPDoc Label="MathieuGroup">
## <ManSection>
## <Func Name="MathieuGroup" Arg='[filt, ]degree'/>
##
## <Description>
## constructs the Mathieu group of degree <A>degree</A> in the category
## given by the filter <A>filt</A>, where <A>degree</A> must be in the set
## <M>\{ 9, 10, 11, 12, 21, 22, 23, 24 \}</M>.
## If <A>filt</A> is not given it defaults to <Ref Prop="IsPermGroup"/>.
## <P/>
## <Example><![CDATA[
## gap> MathieuGroup( 11 );
## Group([ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal( "MathieuGroup", function( arg )
if Length( arg ) = 1 then
return MathieuGroupCons( IsPermGroup, arg[1] );
elif IsOperation( arg[1] ) then
if Length( arg ) = 2 then
return MathieuGroupCons( arg[1], arg[2] );
elif Length( arg ) = 3 then
return MathieuGroupCons( arg[1], arg[2], arg[3] );
fi;
fi;
Error( "usage: MathieuGroup( [<filter>, ]<degree> )" );
end );
#############################################################################
##
#O SymmetricGroupCons( <filter>, <deg> )
##
## <ManSection>
## <Oper Name="SymmetricGroupCons" Arg='filter, deg'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareConstructor( "SymmetricGroupCons", [ IsGroup, IsInt ] );
#############################################################################
##
#F SymmetricGroup( [<filt>, ]<deg> )
#F SymmetricGroup( [<filt>, ]<dom> )
##
## <#GAPDoc Label="SymmetricGroup">
## <ManSection>
## <Heading>SymmetricGroup</Heading>
## <Func Name="SymmetricGroup" Arg='[filt, ]deg' Label="for a degree"/>
## <Func Name="SymmetricGroup" Arg='[filt, ]dom' Label="for a domain"/>
##
## <Description>
## constructs the symmetric group of degree <A>deg</A> in the category
## given by the filter <A>filt</A>.
## If <A>filt</A> is not given it defaults to <Ref Prop="IsPermGroup"/>.
## In the second version, the function constructs the symmetric group on
## the points given in the set <A>dom</A> which must be a set of positive
## integers.
## <P/>
## <Example><![CDATA[
## gap> SymmetricGroup(10);
## Sym( [ 1 .. 10 ] )
## ]]></Example>
## <P/>
## Note that permutation groups provide special treatment of symmetric and
## alternating groups,
## see <Ref Sect="Symmetric and Alternating Groups"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal( "SymmetricGroup", function ( arg )
if Length(arg) = 1 then
return SymmetricGroupCons( IsPermGroup, arg[1] );
elif IsOperation(arg[1]) then
if Length(arg) = 2 then
return SymmetricGroupCons( arg[1], arg[2] );
fi;
fi;
Error( "usage: SymmetricGroup( [<filter>, ]<deg> )" );
end );
BIND_GLOBAL("PermConstructor",function(oper,filter,use)
local val, i;
val:=0;
# force value 0 (unless offset).
for i in filter do
# when completing, `RankFilter' is redefined. Thus we must use
# SIZE_FLAGS.
val:=val-SIZE_FLAGS(WITH_HIDDEN_IMPS_FLAGS(FLAGS_FILTER(i)));
od;
InstallOtherMethod( oper,
"convert to permgroup",
filter,
val,
function(arg)
local argc,g,h;
argc:=ShallowCopy(arg);
argc[1]:=use;
g:=CallFuncList(oper,argc);
h:=Image(IsomorphismPermGroup(g),g);
if HasName(g) then
SetName(h,Concatenation("Perm_",Name(g)));
fi;
if HasSize(g) then
SetSize(h,Size(g));
fi;
return h;
end);
end);
#############################################################################
##
#E
|