/usr/share/gap/grp/basicfp.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | #############################################################################
##
#W basicfp.gi GAP Library Alexander Hulpke
##
#Y Copyright (C) 2009, The GAP group
##
## This file contains the methods for the construction of the basic fp group
## types.
##
#############################################################################
##
#M AbelianGroupCons( <IsFpGroup and IsFinite>, <ints> )
##
InstallMethod( AbelianGroupCons, "fp group", true,
[ IsFpGroup and IsFinite, IsList ], 0,
function( filter, ints )
local f,g,i,j,rels,gfam,fam;
if Length(ints)=0 or not ForAll( ints, IsInt ) then
Error( "<ints> must be a list of integers" );
fi;
f := FreeGroup(IsSyllableWordsFamily, Length(ints));
g := GeneratorsOfGroup(f);
rels:=[];
for i in [1..Length(ints)] do
for j in [1..i-1] do
Add(rels,Comm(g[i],g[j]));
od;
if ints[i]<>0 then
Add(rels,g[i]^ints[i]);
fi;
od;
g:=f/rels;
if ForAll(ints,IsPosInt) then
SetSize( g, Product(ints) );
fi;
fam:=FamilyObj(One(f));
gfam:=FamilyObj(One(g));
gfam!.redorders:=ints;
SetFpElementNFFunction(gfam,function(x)
local u,e,i,j,n;
u:=UnderlyingElement(x);
e:=ExtRepOfObj(u); # syllable form
# bring in correct order and reduction
n:=ListWithIdenticalEntries(Length(gfam!.redorders),0);
for i in [1,3..Length(e)-1] do
j:=e[i];
if gfam!.redorders[j]<infinity then
n[j]:=n[j]+e[i+1] mod gfam!.redorders[j];
else
n[j]:=n[j]+e[i+1];
fi;
od;
e:=[];
for i in [1..Length(gfam!.redorders)] do
if n[i]>0 then
Add(e,i);
Add(e,n[i]);
fi;
od;
return ObjByExtRep(fam,e);
end);
SetReducedMultiplication(g);
SetIsAbelian( g, true );
return g;
end );
#############################################################################
##
#M CyclicGroupCons( <IsFpGroup>, <n> )
##
InstallOtherMethod( CyclicGroupCons, "fp group", true,
[ IsFpGroup,IsObject ], 0,
function( filter, n )
local f,g,fam,gfam;
if n=infinity then
return FreeGroup("a");
elif not IsPosInt(n) then
TryNextMethod();
fi;
f:=FreeGroup( IsSyllableWordsFamily, "a" );
g:=f/[f.1^n];
SetSize(g,n);
fam:=FamilyObj(One(f));
gfam:=FamilyObj(One(g));
SetFpElementNFFunction(gfam,function(x)
local u,e;
u:=UnderlyingElement(x);
e:=ExtRepOfObj(u); # syllable form
if Length(e)=0 or (e[2]>=0 and e[2]<n) then
return u;
elif e[2] mod n=0 then
return One(f);
else
e:=[e[1],e[2] mod n];
return ObjByExtRep(fam,e);
fi;
end);
SetReducedMultiplication(g);
return g;
end );
#############################################################################
##
#M DihedralGroupCons( <IsFpGroup and IsFinite>, <n> )
##
InstallMethod( DihedralGroupCons,
"fp group",
true,
[ IsFpGroup and IsFinite,
IsInt and IsPosRat ],
0,
function( filter, n )
local f,rels,g;
if n mod 2 = 1 then
TryNextMethod();
elif n = 2 then return
CyclicGroup( IsFpGroup, 2 );
fi;
f := FreeGroup( IsSyllableWordsFamily, "r", "s" );
rels:= [f.1^(n/2),f.2^2,f.1^f.2*f.1];
g := f/rels;
SetReducedMultiplication(g);
SetSize(g,n);
return g;
end );
#############################################################################
##
#M QuaternionGroupCons( <IsFpGroup and IsFinite>, <n> )
##
InstallMethod( QuaternionGroupCons,
"fp group",
true,
[ IsFpGroup and IsFinite,
IsInt and IsPosRat ],
0,
function( filter, n )
local f,rels,g;
if 0 <> n mod 4 then
TryNextMethod();
elif n = 4 then return
CyclicGroup( IsFpGroup, 4 );
fi;
f := FreeGroup( IsSyllableWordsFamily, "r", "s" );
rels:= [ f.1^2/f.2^(n/4), f.2^(n/2), f.2^f.1*f.2 ];
g := f/rels;
SetSize(g,n);
if n <= 10^4 then SetReducedMultiplication(g); fi;
return g;
end );
#############################################################################
##
#M ElementaryAbelianGroupCons( <IsFpGroup and IsFinite>, <n> )
##
InstallMethod( ElementaryAbelianGroupCons,
"fp group",
true,
[ IsFpGroup and IsFinite,
IsInt and IsPosRat ],
0,
function( filter, n )
if n = 1 then
return CyclicGroupCons( IsFpGroup, 1 );
elif not IsPrimePowerInt(n) then
Error( "<n> must be a prime power" );
fi;
n:= AbelianGroupCons( IsFpGroup, Factors(n) );
SetIsElementaryAbelian( n, true );
return n;
end );
|