This file is indexed.

/usr/share/gap/grp/basicfp.gi is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#############################################################################
##
#W  basicfp.gi                 GAP Library                   Alexander Hulpke
##
#Y  Copyright (C)  2009,  The GAP group
##
##  This file contains the methods for the construction of the basic fp group
##  types.
##


    
#############################################################################
##
#M  AbelianGroupCons( <IsFpGroup and IsFinite>, <ints> )
##
InstallMethod( AbelianGroupCons, "fp group", true,
    [ IsFpGroup and IsFinite, IsList ], 0,
function( filter, ints )
local   f,g,i,j,rels,gfam,fam;

  if Length(ints)=0 or not ForAll( ints, IsInt )  then
      Error( "<ints> must be a list of integers" );
  fi;

  f   := FreeGroup(IsSyllableWordsFamily, Length(ints));
  g   := GeneratorsOfGroup(f);
  rels:=[];
  for i in [1..Length(ints)] do
    for j in [1..i-1] do
      Add(rels,Comm(g[i],g[j]));
    od;
    if ints[i]<>0 then
      Add(rels,g[i]^ints[i]);
    fi;
  od;

  g:=f/rels;

  if ForAll(ints,IsPosInt) then
    SetSize( g, Product(ints) );
  fi;

  fam:=FamilyObj(One(f));
  gfam:=FamilyObj(One(g));
  gfam!.redorders:=ints;
  SetFpElementNFFunction(gfam,function(x)
    local u,e,i,j,n;
    u:=UnderlyingElement(x);
    e:=ExtRepOfObj(u); # syllable form

    # bring in correct order and reduction
    n:=ListWithIdenticalEntries(Length(gfam!.redorders),0);
    for i in [1,3..Length(e)-1] do
      j:=e[i];
      if gfam!.redorders[j]<infinity then
	n[j]:=n[j]+e[i+1] mod gfam!.redorders[j];
      else
	n[j]:=n[j]+e[i+1];
      fi;
    od;

    e:=[];
    for i in [1..Length(gfam!.redorders)] do
      if n[i]>0 then
	Add(e,i);
	Add(e,n[i]);
      fi;
    od;

    return ObjByExtRep(fam,e);
  end);

  SetReducedMultiplication(g);
  SetIsAbelian( g, true );

  return g;
end );

#############################################################################
##
#M  CyclicGroupCons( <IsFpGroup>, <n> )
##
InstallOtherMethod( CyclicGroupCons, "fp group", true,
    [ IsFpGroup,IsObject ], 0,
function( filter, n )
local f,g,fam,gfam;
  if n=infinity then
    return FreeGroup("a");
  elif not IsPosInt(n) then
    TryNextMethod();
  fi;
  f:=FreeGroup( IsSyllableWordsFamily, "a" );
  g:=f/[f.1^n];
  SetSize(g,n);
  fam:=FamilyObj(One(f));
  gfam:=FamilyObj(One(g));
  SetFpElementNFFunction(gfam,function(x)
    local u,e;
    u:=UnderlyingElement(x);
    e:=ExtRepOfObj(u); # syllable form
    if Length(e)=0 or (e[2]>=0 and e[2]<n) then
      return u;
    elif e[2] mod n=0 then
      return One(f);
    else
      e:=[e[1],e[2] mod n];
      return ObjByExtRep(fam,e);
    fi;
  end);

  SetReducedMultiplication(g);
  return g;
end );


#############################################################################
##
#M  DihedralGroupCons( <IsFpGroup and IsFinite>, <n> )
##
InstallMethod( DihedralGroupCons,
    "fp group",
    true,
    [ IsFpGroup and IsFinite,
      IsInt and IsPosRat ],
    0,

function( filter, n )
local f,rels,g;

  if n mod 2 = 1  then
      TryNextMethod();
  elif n = 2 then return
      CyclicGroup( IsFpGroup, 2 );
  fi;
  f   := FreeGroup( IsSyllableWordsFamily, "r", "s" );
  rels:= [f.1^(n/2),f.2^2,f.1^f.2*f.1];
  g   := f/rels;
  SetReducedMultiplication(g);
  SetSize(g,n);
  return g;

end );

#############################################################################
##
#M  QuaternionGroupCons( <IsFpGroup and IsFinite>, <n> )
##
InstallMethod( QuaternionGroupCons,
    "fp group",
    true,
    [ IsFpGroup and IsFinite,
      IsInt and IsPosRat ],
    0,
function( filter, n )
local f,rels,g;
  if 0 <> n mod 4  then
      TryNextMethod();
  elif n = 4 then return
      CyclicGroup( IsFpGroup, 4 );
  fi;
  f   := FreeGroup( IsSyllableWordsFamily, "r", "s" );
  rels:= [ f.1^2/f.2^(n/4), f.2^(n/2), f.2^f.1*f.2 ];
  g   := f/rels;
  SetSize(g,n);
  if n <= 10^4 then SetReducedMultiplication(g); fi;
  return g;
end );

#############################################################################
##
#M  ElementaryAbelianGroupCons( <IsFpGroup and IsFinite>, <n> )
##
InstallMethod( ElementaryAbelianGroupCons,
    "fp group",
    true,
    [ IsFpGroup and IsFinite,
      IsInt and IsPosRat ],
    0,

function( filter, n )
    if n = 1  then
        return CyclicGroupCons( IsFpGroup, 1 );
    elif not IsPrimePowerInt(n)  then
        Error( "<n> must be a prime power" );
    fi;
    n:= AbelianGroupCons( IsFpGroup, Factors(n) );
    SetIsElementaryAbelian( n, true );
    return n;
end );