This file is indexed.

/usr/share/gap/grp/basicpcg.gi is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
#############################################################################
##
#W  basicpcg.gi                 GAP Library                      Frank Celler
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
##
##  This file contains the methods for the construction of the basic pc group
##  types.
##


#############################################################################
##
#M  TrivialGroupCons( <IsPcGroup> )
##
InstallMethod( TrivialGroupCons,
    "pc group",
    [ IsPcGroup and IsFinite ],
    function( filter )
    filter:= CyclicGroup( IsPcGroup, 1 );
    SetIsTrivial( filter, true );
    return filter;
    end );

    
#############################################################################
##
#M  AbelianGroupCons( <IsPcGroup and IsFinite>, <ints> )
##
InstallMethod( AbelianGroupCons, "pc group", true,
    [ IsPcGroup and IsFinite, IsList ], 0,
function( filter, ints )
local   pis,  f,  g,  r,  k,  pi,  i,  geni,  j,  name,  ps;

    if not ForAll( ints, IsInt )  then
        Error( "<ints> must be a list of integers" );
    fi;
    if not ForAll( ints, x -> 0 < x )  then
      TryNextMethod();
    fi;
    if ForAll(ints,i->i=1) then
      # the stupid trivial group case
      return CyclicGroup( IsPcGroup, 1 );
    fi;

    pis := List( ints, Factors );
    f   := FreeGroup( IsSyllableWordsFamily,
             Sum( List(pis{Filtered([1..Length(pis)],i->ints[i]>1)},
                  Length ) ) );
    g   := GeneratorsOfGroup(f);
    r   := [];
    k   := 1;
    geni:=[];
    for pi  in pis  do
      if pi[1]=1 then
        Add(geni,0);
      else
        Add(geni,k);
        for i  in [ 1 .. Length(pi)-1 ]  do
            Add( r, g[k]^pi[i] / g[k+1] );
            k := k + 1;
        od;
        Add( r, g[k]^pi[Length(pi)] );
        k := k + 1;
      fi;
    od;
    f := PolycyclicFactorGroup( f, r );
    SetSize( f, Product(ints) );
    SetIsAbelian( f, true );

    k:=[];
    g:=GeneratorsOfGroup(f);
    for i in geni do
      if i=0 then 
        Add(k,One(f));
      else
        Add(k,g[i]);
      fi;
    od;
    k:=GroupWithGenerators(k,One(f));
    SetSize(k,Size(f));
    SetIsAbelian( k, true );

    if Size(Set(Filtered(Flat(pis),p->p<>1))) = 1 then
        SetIsPGroup( k, true );
        SetPrimePGroup( k, First(Flat(pis),p -> p<>1) );
    fi;

    pis := [ ];
    ps := [ ];
    for i in ints do
      pi := PrimePowersInt( i );
      for j in [ 1, 3 .. Length( pi ) - 1 ] do
        if pi[ j ] in ps then
          SetIsCyclic( k, false );
        fi;
        AddSet( ps, pi[ j ] );
        Add( pis, pi[ j ] ^ pi[ j + 1 ] );
      od;
    od;
    if not HasIsCyclic( k ) then
      SetIsCyclic( k, true );
      SetNameIsomorphismClass( k, Concatenation( "c", String( Size( f ))));
      return k;
    fi;
    Sort( pis );
    SetAbelianInvariants( k, pis );
    pis := Collected( pis );
    name := "";
    for i in pis do
      Append( name, String( i[ 1 ] ) );
      if i[ 2 ] > 1 then
        name := Concatenation( name, "^", String( i[ 2 ] ) );
      fi;
      Append( name, "x" );
    od;
    Unbind( name[ Length( name ) ] );
    SetNameIsomorphismClass( k, name );
    return k;
end );


#############################################################################
##
#M  AlternatingGroupCons( <IsPcGroup and IsFinite>, <deg> )
##
InstallMethod( AlternatingGroupCons,
    "pc group with degree",
    true,
    [ IsPcGroup and IsFinite,
      IsInt and IsPosRat ],
    0,

function( filter, deg )
    local   alt;

    if 4 < deg  then
        Error( "<deg> must be at most 4" );
    fi;
    alt := GroupByPcgs(Pcgs(AlternatingGroupCons(IsPermGroup,[1..deg])));
    SetIsAlternatingGroup( alt, true );
    return alt;
end );


#############################################################################
##
#M  CyclicGroupCons( <IsPcGroup and IsFinite>, <n> )
##
InstallMethod( CyclicGroupCons,
    "pc group",
    true,
    [ IsPcGroup and IsFinite,
      IsInt and IsPosRat ],
    0,

function( filter, n )
    local   pi,  f,  g,  r,  i;

    # Catch the case n = 1.
    if n = 1 then
        f := GroupByRws( SingleCollector( FreeGroup( 0 ), [] ) );
        SetMinimalGeneratingSet (f, []);
        
    else
        pi := Factors( n );
        f  := FreeGroup( IsSyllableWordsFamily, Length(pi) );
        g  := GeneratorsOfGroup(f);
        r  := [];
        for i  in [ 1 .. Length(g)-1 ]  do
            Add( r, g[i]^pi[i] / g[i+1] );
        od;
        Add( r, g[Length(g)] ^ pi[Length(g)] );
        f := PolycyclicFactorGroup( f, r );
        if Size(Set(pi)) = 1 then
            SetIsPGroup( f, true );
            SetPrimePGroup( f, pi[1] );
        fi;
        SetMinimalGeneratingSet (f, [f.1]);
    fi;

    SetSize( f, n );
    SetIsCyclic( f, true );
    SetNameIsomorphismClass( f, Concatenation( "c", String( n ) ) );
    return f;
end );


#############################################################################
##
#M  DihedralGroupCons( <IsPcGroup and IsFinite>, <n> )
##
InstallMethod( DihedralGroupCons,
    "pc group",
    true,
    [ IsPcGroup and IsFinite,
      IsInt and IsPosRat ],
    0,

function( filter, n )
    local   pi,  f,  g,  r,  i;

    if n mod 2 = 1  then
        TryNextMethod();
    elif n = 2 then return
        CyclicGroup( IsPcGroup, 2 );
    fi;
    pi := Factors(n/2);
    f  := FreeGroup( IsSyllableWordsFamily, Length(pi)+1 );
    g  := GeneratorsOfGroup(f);
    r  := [];
    for i  in [ 2 .. Length(g)-1 ]  do
        Add( r, g[i]^pi[i-1] / g[i+1] );
    od;
    Add( r, g[Length(g)] ^ pi[Length(g)-1] );
    Add( r, g[1]^2 );
    for i  in [ 2 .. Length(g) ]  do
        Add( r, g[i]^g[1] * g[i] );
    od;
    f := PolycyclicFactorGroup( f, r );
    SetSize( f, n );
    if n = 2^LogInt(n,2) then
        SetIsPGroup( f, true );
        SetPrimePGroup( f, 2 );
    fi;
    return f;
end );


#############################################################################
##
#M  QuaternionGroupCons( <IsPcGroup and IsFinite>, <n> )
##
InstallMethod( QuaternionGroupCons,
    "pc group",
    true,
    [ IsPcGroup and IsFinite,
      IsInt and IsPosRat ],
    0,

function( filter, n )
  local k, d, relords, powers, gens, f, rels, pow;
  if 0 <> n mod 4 then TryNextMethod(); fi;
  # Hard to get a confluent RWS for a cyclic group on 2 independent generators
  if n = 4 then return CyclicGroup( filter, n ); fi;
  k := n/4;
  d := Factors( k );
  relords := [2]; 
  Append(relords, d);
  Add( relords, 2 );
  powers := [0];
  Append( powers, List( [0..Size(d)], i -> Product( d{[1..i]} ) ) );
  gens := Concatenation( [ "x", "y" ], List( powers{[3..Size(powers)]}, d -> Concatenation( "y", String(d) ) ) );
  f := FreeGroup( IsSyllableWordsFamily, gens );
  pow := function( i )
    local e, j;
    i := i mod (n/2);
    e := [0];
    for j in [2..Size(relords)] do
      e[j] := i mod relords[j];
      i := Int( i / relords[j] );
    od;
    return Product([1..Size(e)],i->f.(i)^e[i]);
  end;
  rels := [ [ f.1^2, f.(Size(gens)) ], [ f.(Size(gens))^2, One(f) ] ];
  Append( rels, List( [2..Size(gens)-1], i -> [ f.(i)^relords[i], f.(i+1) ] ) );
  Append( rels, List( [2..Size(gens)-1], i -> [ f.(i)^f.1, pow(-powers[i]) ] ) );
  Append( rels, List( Combinations( [2..Size(gens)], 2 ), ij -> [ f.(ij[2])^f.(ij[1]), f.(ij[2]) ] ) );
  return PcGroupFpGroupNC( f / List( rels, rel -> rel[1]/rel[2] ) );
end );


#############################################################################
##
#M  ElementaryAbelianGroupCons( <IsPcGroup and IsFinite>, <n> )
##
InstallMethod( ElementaryAbelianGroupCons,
    "pc group",
    true,
    [ IsPcGroup and IsFinite,
      IsInt and IsPosRat ],
    0,

function( filter, n )
    if n = 1  then
        return CyclicGroupCons( IsPcGroup, 1 );
    elif not IsPrimePowerInt(n)  then
        Error( "<n> must be a prime power" );
    fi;
    n:= AbelianGroupCons( IsPcGroup, Factors(n) );
    SetIsElementaryAbelian( n, true );
    return n;
end );


#############################################################################
##
#M  ExtraspecialGroupCons( <IsPcGroup and IsFinite>, <order>, <exponent> )
##
InstallMethod( ExtraspecialGroupCons,
    "pc group",
    true,
    [ IsPcGroup and IsFinite,
      IsInt,
      IsObject ],
    0,

function( filters, order, exp )

    local i,        # loop variable
          p,        # divisor of group order
          n,        # the group has order 'p'^(2*'n'+1)
          eps1,     # constant to distinguish odd and even 'p'
          eps2,     # constant to distinguish odd and even 'p'
          name,     # name of generators (default is "e")
          z,        # central element
          f,        # free group
          r,        # relators
          e;        # the group generators

    p := Factors(order);

    if    Length(p) = 1
       or Length(p) mod 2 <> 1
       or Length(Set(p)) <> 1
    then
        Error( "order of an extraspecial group is",
               " a nonprime odd power of a prime" );
    fi;

    n := ( Length(p) - 1 ) / 2;
    p := p[1];

    # determine the required type of the group    
    if p = 2 then
        if n = 1 then
            eps1 := 1;
        else
            eps1 := 0;
        fi;

        # central product of 'n' dihedral groups of order 8
        if exp = '+' or exp = "+" then
            eps2 := 0;

        # central product of 'n'-1 dihedral groups and a quaternionic group
        elif exp = '-' or exp = "-" then
            eps2 := 1;

        # zap
        else
            Error( "<exp> must be '+', '-', \"+\", or \"-\"" );
        fi;
    else
        if exp = p   or exp = '+' or exp = "+" then
            eps1 := 0;
        elif exp = p^2 or exp = '-' or exp = "-" then
            eps1 := 1;
        else
            Error( "<exp> must be <p>, <p>^2, '+', '-', \"+\", or \"-\"" );
        fi;
        eps2 := 0;
    fi;

    f := FreeGroup( IsSyllableWordsFamily, 2*n+1);
    e := GeneratorsOfGroup(f);
    z := e[ 2*n+1 ];
    r := [];

    # power relators
    Add( r, e[1]^p / z^eps1 );
    for i  in [ 2 .. 2*n-2 ]  do
        Add( r, e[i]^p );
    od;
    if 1 < n  then
        Add( r, e[2*n-1]^p / z^eps2 );
    fi;
    Add( r, e[2*n]^p / z^eps2 );
    Add( r, z^p );

    # nontrivial commutator relators
    for i  in [ 1 .. n ]  do
        Add( r, Comm( e[2*i], e[2*i-1] ) * z );
    od;

    # return the pc group
    f := PolycyclicFactorGroup( f, r );
    SetIsPGroup( f, true );
    SetPrimePGroup( f, p );
    return f;

end );


#############################################################################
##
#M  SymmetricGroupCons( <IsPcGroup and IsFinite>, <deg> )
##
InstallMethod( SymmetricGroupCons,
    "pc group with degree",
    true,
    [ IsPcGroup and IsFinite,
      IsInt and IsPosRat ],
    0,

function( filter, deg )
    if 4 < deg  then
        Error( "<deg> must be at most 4" );
    fi;
    return GroupByPcgs(Pcgs(SymmetricGroupCons(IsPermGroup,[1..deg])));
end );


#############################################################################
##

#E