/usr/share/gap/grp/basicpcg.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 | #############################################################################
##
#W basicpcg.gi GAP Library Frank Celler
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
##
## This file contains the methods for the construction of the basic pc group
## types.
##
#############################################################################
##
#M TrivialGroupCons( <IsPcGroup> )
##
InstallMethod( TrivialGroupCons,
"pc group",
[ IsPcGroup and IsFinite ],
function( filter )
filter:= CyclicGroup( IsPcGroup, 1 );
SetIsTrivial( filter, true );
return filter;
end );
#############################################################################
##
#M AbelianGroupCons( <IsPcGroup and IsFinite>, <ints> )
##
InstallMethod( AbelianGroupCons, "pc group", true,
[ IsPcGroup and IsFinite, IsList ], 0,
function( filter, ints )
local pis, f, g, r, k, pi, i, geni, j, name, ps;
if not ForAll( ints, IsInt ) then
Error( "<ints> must be a list of integers" );
fi;
if not ForAll( ints, x -> 0 < x ) then
TryNextMethod();
fi;
if ForAll(ints,i->i=1) then
# the stupid trivial group case
return CyclicGroup( IsPcGroup, 1 );
fi;
pis := List( ints, Factors );
f := FreeGroup( IsSyllableWordsFamily,
Sum( List(pis{Filtered([1..Length(pis)],i->ints[i]>1)},
Length ) ) );
g := GeneratorsOfGroup(f);
r := [];
k := 1;
geni:=[];
for pi in pis do
if pi[1]=1 then
Add(geni,0);
else
Add(geni,k);
for i in [ 1 .. Length(pi)-1 ] do
Add( r, g[k]^pi[i] / g[k+1] );
k := k + 1;
od;
Add( r, g[k]^pi[Length(pi)] );
k := k + 1;
fi;
od;
f := PolycyclicFactorGroup( f, r );
SetSize( f, Product(ints) );
SetIsAbelian( f, true );
k:=[];
g:=GeneratorsOfGroup(f);
for i in geni do
if i=0 then
Add(k,One(f));
else
Add(k,g[i]);
fi;
od;
k:=GroupWithGenerators(k,One(f));
SetSize(k,Size(f));
SetIsAbelian( k, true );
if Size(Set(Filtered(Flat(pis),p->p<>1))) = 1 then
SetIsPGroup( k, true );
SetPrimePGroup( k, First(Flat(pis),p -> p<>1) );
fi;
pis := [ ];
ps := [ ];
for i in ints do
pi := PrimePowersInt( i );
for j in [ 1, 3 .. Length( pi ) - 1 ] do
if pi[ j ] in ps then
SetIsCyclic( k, false );
fi;
AddSet( ps, pi[ j ] );
Add( pis, pi[ j ] ^ pi[ j + 1 ] );
od;
od;
if not HasIsCyclic( k ) then
SetIsCyclic( k, true );
SetNameIsomorphismClass( k, Concatenation( "c", String( Size( f ))));
return k;
fi;
Sort( pis );
SetAbelianInvariants( k, pis );
pis := Collected( pis );
name := "";
for i in pis do
Append( name, String( i[ 1 ] ) );
if i[ 2 ] > 1 then
name := Concatenation( name, "^", String( i[ 2 ] ) );
fi;
Append( name, "x" );
od;
Unbind( name[ Length( name ) ] );
SetNameIsomorphismClass( k, name );
return k;
end );
#############################################################################
##
#M AlternatingGroupCons( <IsPcGroup and IsFinite>, <deg> )
##
InstallMethod( AlternatingGroupCons,
"pc group with degree",
true,
[ IsPcGroup and IsFinite,
IsInt and IsPosRat ],
0,
function( filter, deg )
local alt;
if 4 < deg then
Error( "<deg> must be at most 4" );
fi;
alt := GroupByPcgs(Pcgs(AlternatingGroupCons(IsPermGroup,[1..deg])));
SetIsAlternatingGroup( alt, true );
return alt;
end );
#############################################################################
##
#M CyclicGroupCons( <IsPcGroup and IsFinite>, <n> )
##
InstallMethod( CyclicGroupCons,
"pc group",
true,
[ IsPcGroup and IsFinite,
IsInt and IsPosRat ],
0,
function( filter, n )
local pi, f, g, r, i;
# Catch the case n = 1.
if n = 1 then
f := GroupByRws( SingleCollector( FreeGroup( 0 ), [] ) );
SetMinimalGeneratingSet (f, []);
else
pi := Factors( n );
f := FreeGroup( IsSyllableWordsFamily, Length(pi) );
g := GeneratorsOfGroup(f);
r := [];
for i in [ 1 .. Length(g)-1 ] do
Add( r, g[i]^pi[i] / g[i+1] );
od;
Add( r, g[Length(g)] ^ pi[Length(g)] );
f := PolycyclicFactorGroup( f, r );
if Size(Set(pi)) = 1 then
SetIsPGroup( f, true );
SetPrimePGroup( f, pi[1] );
fi;
SetMinimalGeneratingSet (f, [f.1]);
fi;
SetSize( f, n );
SetIsCyclic( f, true );
SetNameIsomorphismClass( f, Concatenation( "c", String( n ) ) );
return f;
end );
#############################################################################
##
#M DihedralGroupCons( <IsPcGroup and IsFinite>, <n> )
##
InstallMethod( DihedralGroupCons,
"pc group",
true,
[ IsPcGroup and IsFinite,
IsInt and IsPosRat ],
0,
function( filter, n )
local pi, f, g, r, i;
if n mod 2 = 1 then
TryNextMethod();
elif n = 2 then return
CyclicGroup( IsPcGroup, 2 );
fi;
pi := Factors(n/2);
f := FreeGroup( IsSyllableWordsFamily, Length(pi)+1 );
g := GeneratorsOfGroup(f);
r := [];
for i in [ 2 .. Length(g)-1 ] do
Add( r, g[i]^pi[i-1] / g[i+1] );
od;
Add( r, g[Length(g)] ^ pi[Length(g)-1] );
Add( r, g[1]^2 );
for i in [ 2 .. Length(g) ] do
Add( r, g[i]^g[1] * g[i] );
od;
f := PolycyclicFactorGroup( f, r );
SetSize( f, n );
if n = 2^LogInt(n,2) then
SetIsPGroup( f, true );
SetPrimePGroup( f, 2 );
fi;
return f;
end );
#############################################################################
##
#M QuaternionGroupCons( <IsPcGroup and IsFinite>, <n> )
##
InstallMethod( QuaternionGroupCons,
"pc group",
true,
[ IsPcGroup and IsFinite,
IsInt and IsPosRat ],
0,
function( filter, n )
local k, d, relords, powers, gens, f, rels, pow;
if 0 <> n mod 4 then TryNextMethod(); fi;
# Hard to get a confluent RWS for a cyclic group on 2 independent generators
if n = 4 then return CyclicGroup( filter, n ); fi;
k := n/4;
d := Factors( k );
relords := [2];
Append(relords, d);
Add( relords, 2 );
powers := [0];
Append( powers, List( [0..Size(d)], i -> Product( d{[1..i]} ) ) );
gens := Concatenation( [ "x", "y" ], List( powers{[3..Size(powers)]}, d -> Concatenation( "y", String(d) ) ) );
f := FreeGroup( IsSyllableWordsFamily, gens );
pow := function( i )
local e, j;
i := i mod (n/2);
e := [0];
for j in [2..Size(relords)] do
e[j] := i mod relords[j];
i := Int( i / relords[j] );
od;
return Product([1..Size(e)],i->f.(i)^e[i]);
end;
rels := [ [ f.1^2, f.(Size(gens)) ], [ f.(Size(gens))^2, One(f) ] ];
Append( rels, List( [2..Size(gens)-1], i -> [ f.(i)^relords[i], f.(i+1) ] ) );
Append( rels, List( [2..Size(gens)-1], i -> [ f.(i)^f.1, pow(-powers[i]) ] ) );
Append( rels, List( Combinations( [2..Size(gens)], 2 ), ij -> [ f.(ij[2])^f.(ij[1]), f.(ij[2]) ] ) );
return PcGroupFpGroupNC( f / List( rels, rel -> rel[1]/rel[2] ) );
end );
#############################################################################
##
#M ElementaryAbelianGroupCons( <IsPcGroup and IsFinite>, <n> )
##
InstallMethod( ElementaryAbelianGroupCons,
"pc group",
true,
[ IsPcGroup and IsFinite,
IsInt and IsPosRat ],
0,
function( filter, n )
if n = 1 then
return CyclicGroupCons( IsPcGroup, 1 );
elif not IsPrimePowerInt(n) then
Error( "<n> must be a prime power" );
fi;
n:= AbelianGroupCons( IsPcGroup, Factors(n) );
SetIsElementaryAbelian( n, true );
return n;
end );
#############################################################################
##
#M ExtraspecialGroupCons( <IsPcGroup and IsFinite>, <order>, <exponent> )
##
InstallMethod( ExtraspecialGroupCons,
"pc group",
true,
[ IsPcGroup and IsFinite,
IsInt,
IsObject ],
0,
function( filters, order, exp )
local i, # loop variable
p, # divisor of group order
n, # the group has order 'p'^(2*'n'+1)
eps1, # constant to distinguish odd and even 'p'
eps2, # constant to distinguish odd and even 'p'
name, # name of generators (default is "e")
z, # central element
f, # free group
r, # relators
e; # the group generators
p := Factors(order);
if Length(p) = 1
or Length(p) mod 2 <> 1
or Length(Set(p)) <> 1
then
Error( "order of an extraspecial group is",
" a nonprime odd power of a prime" );
fi;
n := ( Length(p) - 1 ) / 2;
p := p[1];
# determine the required type of the group
if p = 2 then
if n = 1 then
eps1 := 1;
else
eps1 := 0;
fi;
# central product of 'n' dihedral groups of order 8
if exp = '+' or exp = "+" then
eps2 := 0;
# central product of 'n'-1 dihedral groups and a quaternionic group
elif exp = '-' or exp = "-" then
eps2 := 1;
# zap
else
Error( "<exp> must be '+', '-', \"+\", or \"-\"" );
fi;
else
if exp = p or exp = '+' or exp = "+" then
eps1 := 0;
elif exp = p^2 or exp = '-' or exp = "-" then
eps1 := 1;
else
Error( "<exp> must be <p>, <p>^2, '+', '-', \"+\", or \"-\"" );
fi;
eps2 := 0;
fi;
f := FreeGroup( IsSyllableWordsFamily, 2*n+1);
e := GeneratorsOfGroup(f);
z := e[ 2*n+1 ];
r := [];
# power relators
Add( r, e[1]^p / z^eps1 );
for i in [ 2 .. 2*n-2 ] do
Add( r, e[i]^p );
od;
if 1 < n then
Add( r, e[2*n-1]^p / z^eps2 );
fi;
Add( r, e[2*n]^p / z^eps2 );
Add( r, z^p );
# nontrivial commutator relators
for i in [ 1 .. n ] do
Add( r, Comm( e[2*i], e[2*i-1] ) * z );
od;
# return the pc group
f := PolycyclicFactorGroup( f, r );
SetIsPGroup( f, true );
SetPrimePGroup( f, p );
return f;
end );
#############################################################################
##
#M SymmetricGroupCons( <IsPcGroup and IsFinite>, <deg> )
##
InstallMethod( SymmetricGroupCons,
"pc group with degree",
true,
[ IsPcGroup and IsFinite,
IsInt and IsPosRat ],
0,
function( filter, deg )
if 4 < deg then
Error( "<deg> must be at most 4" );
fi;
return GroupByPcgs(Pcgs(SymmetricGroupCons(IsPermGroup,[1..deg])));
end );
#############################################################################
##
#E
|