/usr/share/gap/grp/classic.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 | #############################################################################
##
#W classic.gd GAP Library Frank Celler
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
##
## This file contains the operations for the construction of the classical
## group types.
##
#############################################################################
##
## <#GAPDoc Label="[1]{classic}">
## The following functions return classical groups.
## For the linear, symplectic, and unitary groups (the latter in dimension
## at least <M>3</M>),
## the generators are taken from <Cite Key="Tay87"/>.
## For the unitary groups in dimension <M>2</M>, the isomorphism of
## SU<M>(2,q)</M> and SL<M>(2,q)</M> is used,
## see for example <Cite Key="Hup67"/>.
## The generators of the general and special orthogonal groups are taken
## from <Cite Key="IshibashiEarnest94"/> and
## <Cite Key="KleidmanLiebeck90"/>,
## except that the generators of the groups in odd dimension in even
## characteristic are constructed via the isomorphism to a symplectic group,
## see for example <Cite Key="Car72a"/>.
## The generators of the groups <M>\Omega^\epsilon(d, q)</M> are taken
## from <Cite Key="RylandsTalor98"/>,
## except that the generators of SO<M>(5, 2)</M> are taken for
## <M>\Omega(5, 2)</M>.
## The generators for the semilinear groups are constructed from the
## generators of the corresponding linear groups plus one additional
## generator that describes the action of the group of field automorphisms;
## for prime integers <M>p</M> and positive integers <M>f</M>,
## this yields the matrix groups <M>Gamma</M>L<M>(d, p^f)</M> and
## <M>Sigma</M>L<M>(d, p^f)</M> as groups of <M>d f \times df</M> matrices
## over the field with <M>p</M> elements.
## <P/>
## For symplectic and orthogonal matrix groups returned by the functions
## described below, the invariant bilinear form is stored as the value of
## the attribute <Ref Attr="InvariantBilinearForm"/>.
## Analogously, the invariant sesquilinear form defining the unitary groups
## is stored as the value of the attribute
## <Ref Attr="InvariantSesquilinearForm"/>).
## The defining quadratic form of orthogonal groups is stored as the value
## of the attribute <Ref Attr="InvariantQuadraticForm"/>.
## <P/>
## Note that due to the different sources for the generators,
## the invariant forms for the groups <M>\Omega(e,d,q)</M> are in general
## different from the forms for SO<M>(e,d,q)</M> and GO<M>(e,d,q)</M>.
## <!--
## If the <Package>Forms</Package> is loaded then compatible groups can be
## created by specifying the desired form, see the examples below.
## -->
## <#/GAPDoc>
##
#############################################################################
##
#O GeneralLinearGroupCons( <filter>, <d>, <R> )
##
## <ManSection>
## <Oper Name="GeneralLinearGroupCons" Arg='filter, d, R'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareConstructor( "GeneralLinearGroupCons", [ IsGroup, IsPosInt, IsRing ] );
#############################################################################
##
#F GeneralLinearGroup( [<filt>, ]<d>, <R> ) . . . . . general linear group
#F GL( [<filt>, ]<d>, <R> )
#F GeneralLinearGroup( [<filt>, ]<d>, <q> )
#F GL( [<filt>, ]<d>, <q> )
##
## <#GAPDoc Label="GeneralLinearGroup">
## <ManSection>
## <Heading>GeneralLinearGroup</Heading>
## <Func Name="GeneralLinearGroup" Arg='[filt, ]d, R'
## Label="for dimension and a ring"/>
## <Func Name="GL" Arg='[filt, ]d, R'
## Label="for dimension and a ring"/>
## <Func Name="GeneralLinearGroup" Arg='[filt, ]d, q'
## Label="for dimension and field size"/>
## <Func Name="GL" Arg='[filt, ]d, q'
## Label="for dimension and field size"/>
##
## <Description>
## The first two forms construct a group isomorphic to the general linear
## group GL( <A>d</A>, <A>R</A> ) of all <M><A>d</A> \times <A>d</A></M>
## matrices that are invertible over the ring <A>R</A>,
## in the category given by the filter <A>filt</A>.
## <P/>
## The third and the fourth form construct the general linear group over the
## finite field with <A>q</A> elements.
## <P/>
## If <A>filt</A> is not given it defaults to <Ref Func="IsMatrixGroup"/>,
## and the returned group is the general linear group as a matrix group in
## its natural action (see also <Ref Func="IsNaturalGL"/>,
## <Ref Func="IsNaturalGLnZ"/>).
## <P/>
## Currently supported rings <A>R</A> are finite fields,
## the ring <Ref Var="Integers"/>,
## and residue class rings <C>Integers mod <A>m</A></C>,
## see <Ref Sect="Residue Class Rings"/>.
## <P/>
## <Example><![CDATA[
## gap> GL(4,3);
## GL(4,3)
## gap> GL(2,Integers);
## GL(2,Integers)
## gap> GL(3,Integers mod 12);
## GL(3,Z/12Z)
## ]]></Example>
## <P/>
## <Index Key="OnLines" Subkey="example"><C>OnLines</C></Index>
## Using the <Ref Func="OnLines"/> operation it is possible to obtain the
## corresponding projective groups in a permutation action:
## <P/>
## <Example><![CDATA[
## gap> g:=GL(4,3);;Size(g);
## 24261120
## gap> pgl:=Action(g,Orbit(g,Z(3)^0*[1,0,0,0],OnLines),OnLines);;
## gap> Size(pgl);
## 12130560
## ]]></Example>
## <P/>
## If you are interested only in the projective group as a permutation group
## and not in the correspondence between its moved points and the points in
## the projective space, you can also use <Ref Func="PGL"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal( "GeneralLinearGroup", function ( arg )
if Length( arg ) = 2 then
if IsRing( arg[2] ) then
return GeneralLinearGroupCons( IsMatrixGroup, arg[1], arg[2] );
elif IsPrimePowerInt( arg[2] ) then
return GeneralLinearGroupCons( IsMatrixGroup, arg[1], GF( arg[2] ) );
fi;
elif Length( arg ) = 3 and IsOperation( arg[1] ) then
if IsRing( arg[3] ) then
return GeneralLinearGroupCons( arg[1], arg[2], arg[3] );
elif IsPrimePowerInt( arg[3] ) then
return GeneralLinearGroupCons( arg[1], arg[2], GF( arg[3] ) );
fi;
fi;
Error( "usage: GeneralLinearGroup( [<filter>, ]<d>, <R> )" );
end );
DeclareSynonym( "GL", GeneralLinearGroup );
#############################################################################
##
#O GeneralOrthogonalGroupCons( <filter>, <e>, <d>, <q> )
##
## <ManSection>
## <Oper Name="GeneralOrthogonalGroupCons" Arg='filter, e, d, q'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareConstructor( "GeneralOrthogonalGroupCons",
[ IsGroup, IsInt, IsPosInt, IsPosInt ] );
DeclareConstructor( "GeneralOrthogonalGroupCons",
[ IsGroup, IsInt, IsPosInt, IsRing ] );
#############################################################################
##
#F GeneralOrthogonalGroup( [<filt>, ][<e>, ]<d>, <q> ) . gen. orthog. group
#F GO( [<filt>, ][<e>, ]<d>, <q> )
##
## <#GAPDoc Label="GeneralOrthogonalGroup">
## <ManSection>
## <Func Name="GeneralOrthogonalGroup" Arg='[filt, ][e, ]d, q'/>
## <Func Name="GO" Arg='[filt, ][e, ]d, q'/>
##
## <Description>
## constructs a group isomorphic to the
## general orthogonal group GO( <A>e</A>, <A>d</A>, <A>q</A> ) of those
## <M><A>d</A> \times <A>d</A></M> matrices over the field with <A>q</A>
## elements that respect a non-singular quadratic form
## (see <Ref Func="InvariantQuadraticForm"/>) specified by <A>e</A>,
## in the category given by the filter <A>filt</A>.
## <P/>
## The value of <A>e</A> must be <M>0</M> for odd <A>d</A> (and can
## optionally be omitted in this case), respectively one of <M>1</M> or
## <M>-1</M> for even <A>d</A>.
## If <A>filt</A> is not given it defaults to <Ref Func="IsMatrixGroup"/>,
## and the returned group is the general orthogonal group itself.
## <P/>
## <!--
## If the &GAP; package <Package>Forms</Package> is loaded then one can also
## specify the desired invariant quadratic form respected by the group. -->
## Note that in <Cite Key="KleidmanLiebeck90"/>,
## GO is defined as the stabilizer
## <M>\Delta(V, F, \kappa)</M> of the quadratic form, up to scalars,
## whereas our GO is called <M>I(V, F, \kappa)</M> there.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal( "GeneralOrthogonalGroup", function ( arg )
if Length( arg ) = 2 then
return GeneralOrthogonalGroupCons( IsMatrixGroup, 0, arg[1], arg[2] );
elif Length( arg ) = 3 and IsInt(arg[1]) and IsInt(arg[2]) and
(IsInt(arg[3]) or IsRing(arg[3])) then
return GeneralOrthogonalGroupCons( IsMatrixGroup,arg[1],arg[2],arg[3] );
elif IsOperation( arg[1] ) then
if Length( arg ) = 3 then
return GeneralOrthogonalGroupCons( arg[1], 0, arg[2], arg[3] );
elif Length( arg ) = 4 then
return GeneralOrthogonalGroupCons( arg[1], arg[2], arg[3], arg[4] );
fi;
fi;
Error( "usage: GeneralOrthogonalGroup( [<filter>, ][<e>, ]<d>, <q> )" );
end );
DeclareSynonym( "GO", GeneralOrthogonalGroup );
#############################################################################
##
#O GeneralUnitaryGroupCons( <filter>, <d>, <q> )
##
## <ManSection>
## <Oper Name="GeneralUnitaryGroupCons" Arg='filter, d, q'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareConstructor( "GeneralUnitaryGroupCons",
[ IsGroup, IsPosInt, IsPosInt ] );
#############################################################################
##
#F GeneralUnitaryGroup( [<filt>, ]<d>, <q> ) . . . . . general unitary group
#F GU( [<filt>, ]<d>, <q> )
##
## <#GAPDoc Label="GeneralUnitaryGroup">
## <ManSection>
## <Func Name="GeneralUnitaryGroup" Arg='[filt, ]d, q'/>
## <Func Name="GU" Arg='[filt, ]d, q'/>
##
## <Description>
## constructs a group isomorphic to the general unitary group
## GU( <A>d</A>, <A>q</A> ) of those <M><A>d</A> \times <A>d</A></M>
## matrices over the field with <M><A>q</A>^2</M> elements
## that respect a fixed nondegenerate sesquilinear form,
## in the category given by the filter <A>filt</A>.
## <P/>
## If <A>filt</A> is not given it defaults to <Ref Func="IsMatrixGroup"/>,
## and the returned group is the general unitary group itself.
## <P/>
## <!--
## If the &GAP; package <Package>Forms</Package> is loaded then one can also
## specify the desired invariant sesquilinear form respected by the group. -->
## <Example><![CDATA[
## gap> GeneralUnitaryGroup( 3, 5 );
## GU(3,5)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal( "GeneralUnitaryGroup", function ( arg )
if Length( arg ) = 2 then
return GeneralUnitaryGroupCons( IsMatrixGroup, arg[1], arg[2] );
elif IsOperation( arg[1] ) then
if Length( arg ) = 3 then
return GeneralUnitaryGroupCons( arg[1], arg[2], arg[3] );
fi;
fi;
Error( "usage: GeneralUnitaryGroup( [<filter>, ]<d>, <q> )" );
end );
DeclareSynonym( "GU", GeneralUnitaryGroup );
#############################################################################
##
#O SpecialLinearGroupCons( <filter>, <d>, <R> )
##
## <ManSection>
## <Oper Name="SpecialLinearGroupCons" Arg='filter, d, R'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareConstructor( "SpecialLinearGroupCons", [ IsGroup, IsInt, IsRing ] );
#############################################################################
##
#F SpecialLinearGroup( [<filt>, ]<d>, <R> ) . . . . . special linear group
#F SL( [<filt>, ]<d>, <R> )
#F SpecialLinearGroup( [<filt>, ]<d>, <q> )
#F SL( [<filt>, ]<d>, <q> )
##
## <#GAPDoc Label="SpecialLinearGroup">
## <ManSection>
## <Heading>SpecialLinearGroup</Heading>
## <Func Name="SpecialLinearGroup" Arg='[filt, ]d, R'
## Label="for dimension and a ring"/>
## <Func Name="SL" Arg='[filt, ]d, R'
## Label="for dimension and a ring"/>
## <Func Name="SpecialLinearGroup" Arg='[filt, ]d, q'
## Label="for dimension and a field size"/>
## <Func Name="SL" Arg='[filt, ]d, q'
## Label="for dimension and a field size"/>
##
## <Description>
## The first two forms construct a group isomorphic to the special linear
## group SL( <A>d</A>, <A>R</A> ) of all those
## <M><A>d</A> \times <A>d</A></M> matrices over the ring <A>R</A> whose
## determinant is the identity of <A>R</A>,
## in the category given by the filter <A>filt</A>.
## <P/>
## The third and the fourth form construct the special linear group over the
## finite field with <A>q</A> elements.
## <P/>
## If <A>filt</A> is not given it defaults to <Ref Func="IsMatrixGroup"/>,
## and the returned group is the special linear group as a matrix group in
## its natural action (see also <Ref Func="IsNaturalSL"/>,
## <Ref Func="IsNaturalSLnZ"/>).
## <P/>
## Currently supported rings <A>R</A> are finite fields,
## the ring <Ref Var="Integers"/>,
## and residue class rings <C>Integers mod <A>m</A></C>,
## see <Ref Sect="Residue Class Rings"/>.
## <P/>
## <Example><![CDATA[
## gap> SpecialLinearGroup(2,2);
## SL(2,2)
## gap> SL(3,Integers);
## SL(3,Integers)
## gap> SL(4,Integers mod 4);
## SL(4,Z/4Z)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal( "SpecialLinearGroup", function ( arg )
if Length( arg ) = 2 then
if IsRing( arg[2] ) then
return SpecialLinearGroupCons( IsMatrixGroup, arg[1], arg[2] );
elif IsPrimePowerInt( arg[2] ) then
return SpecialLinearGroupCons( IsMatrixGroup, arg[1], GF( arg[2] ) );
fi;
elif Length( arg ) = 3 and IsOperation( arg[1] ) then
if IsRing( arg[3] ) then
return SpecialLinearGroupCons( arg[1], arg[2], arg[3] );
elif IsPrimePowerInt( arg[3] ) then
return SpecialLinearGroupCons( arg[1], arg[2], GF( arg[3] ) );
fi;
fi;
Error( "usage: SpecialLinearGroup( [<filter>, ]<d>, <R> )" );
end );
DeclareSynonym( "SL", SpecialLinearGroup );
#############################################################################
##
#O SpecialOrthogonalGroupCons( <filter>, <e>, <d>, <q> )
##
## <ManSection>
## <Oper Name="SpecialOrthogonalGroupCons" Arg='filter, e, d, q'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareConstructor( "SpecialOrthogonalGroupCons",
[ IsGroup, IsInt, IsPosInt, IsPosInt ] );
DeclareConstructor( "SpecialOrthogonalGroupCons",
[ IsGroup, IsInt, IsPosInt, IsRing ] );
#############################################################################
##
#F SpecialOrthogonalGroup( [<filt>, ][<e>, ]<d>, <q> ) . spec. orthog. group
#F SO( [<filt>, ][<e>, ]<d>, <q> )
##
## <#GAPDoc Label="SpecialOrthogonalGroup">
## <ManSection>
## <Func Name="SpecialOrthogonalGroup" Arg='[filt, ][e, ]d, q'/>
## <Func Name="SO" Arg='[filt, ][e, ]d, q'/>
##
## <Description>
## <Ref Func="SpecialOrthogonalGroup"/> returns a group isomorphic to the
## special orthogonal group SO( <A>e</A>, <A>d</A>, <A>q</A> ),
## which is the subgroup of all those matrices in the general orthogonal
## group (see <Ref Func="GeneralOrthogonalGroup"/>) that have
## determinant one, in the category given by the filter <A>filt</A>.
## (The index of SO( <A>e</A>, <A>d</A>, <A>q</A> ) in
## GO( <A>e</A>, <A>d</A>, <A>q</A> ) is <M>2</M> if <A>q</A> is
## odd, and <M>1</M> if <A>q</A> is even.)
## Also interesting is the group Omega( <A>e</A>, <A>d</A>, <A>q</A> ),
## see <Ref Oper="Omega" Label="construct an orthogonal group"/>,
## which is always of index <M>2</M> in SO( <A>e</A>, <A>d</A>, <A>q</A> ).
## <P/>
## If <A>filt</A> is not given it defaults to <Ref Func="IsMatrixGroup"/>,
## and the returned group is the special orthogonal group itself.
## <P/>
## <!--
## If the &GAP; package <Package>Forms</Package> is loaded then one can also
## specify the desired invariant quadratic form respected by the group. -->
## <Example><![CDATA[
## gap> GeneralOrthogonalGroup( 3, 7 );
## GO(0,3,7)
## gap> GeneralOrthogonalGroup( -1, 4, 3 );
## GO(-1,4,3)
## gap> SpecialOrthogonalGroup( 1, 4, 4 );
## GO(+1,4,4)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal( "SpecialOrthogonalGroup", function ( arg )
if Length( arg ) = 2 then
return SpecialOrthogonalGroupCons( IsMatrixGroup, 0, arg[1], arg[2] );
elif Length( arg ) = 3 and IsInt(arg[1]) and IsInt(arg[2]) and
(IsInt(arg[3]) or IsRing(arg[3])) then
return SpecialOrthogonalGroupCons( IsMatrixGroup,arg[1],arg[2],arg[3] );
elif IsOperation( arg[1] ) then
if Length( arg ) = 3 then
return SpecialOrthogonalGroupCons( arg[1], 0, arg[2], arg[3] );
elif Length( arg ) = 4 then
return SpecialOrthogonalGroupCons( arg[1], arg[2], arg[3], arg[4] );
fi;
fi;
Error( "usage: SpecialOrthogonalGroup( [<filter>, ][<e>, ]<d>, <q> )" );
end );
DeclareSynonym( "SO", SpecialOrthogonalGroup );
#############################################################################
##
#O SpecialUnitaryGroupCons( <filter>, <d>, <q> )
##
## <ManSection>
## <Oper Name="SpecialUnitaryGroupCons" Arg='filter, d, q'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareConstructor( "SpecialUnitaryGroupCons",
[ IsGroup, IsPosInt, IsPosInt ] );
#############################################################################
##
#F SpecialUnitaryGroup( [<filt>, ]<d>, <q> ) . . . . . general unitary group
#F SU( [<filt>, ]<d>, <q> )
##
## <#GAPDoc Label="SpecialUnitaryGroup">
## <ManSection>
## <Func Name="SpecialUnitaryGroup" Arg='[filt, ]d, q'/>
## <Func Name="SU" Arg='[filt, ]d, q'/>
##
## <Description>
## constructs a group isomorphic to the special unitary group
## GU(<A>d</A>, <A>q</A>) of those <M><A>d</A> \times <A>d</A></M> matrices
## over the field with <M><A>q</A>^2</M> elements
## whose determinant is the identity of the field and that respect a fixed
## nondegenerate sesquilinear form,
## in the category given by the filter <A>filt</A>.
## <P/>
## If <A>filt</A> is not given it defaults to <Ref Func="IsMatrixGroup"/>,
## and the returned group is the special unitary group itself.
## <P/>
## <!--
## If the &GAP; package <Package>Forms</Package> is loaded then one can also
## specify the desired invariant sesquilinear form respected by the group. -->
## <Example><![CDATA[
## gap> SpecialUnitaryGroup( 3, 5 );
## SU(3,5)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal( "SpecialUnitaryGroup", function ( arg )
if Length( arg ) = 2 then
return SpecialUnitaryGroupCons( IsMatrixGroup, arg[1], arg[2] );
elif IsOperation( arg[1] ) then
if Length( arg ) = 3 then
return SpecialUnitaryGroupCons( arg[1], arg[2], arg[3] );
fi;
fi;
Error( "usage: SpecialUnitaryGroup( [<filter>, ]<d>, <q> )" );
end );
DeclareSynonym( "SU", SpecialUnitaryGroup );
#############################################################################
##
#O SymplecticGroupCons( <filter>, <d>, <q> )
##
## <ManSection>
## <Oper Name="SymplecticGroupCons" Arg='filter, d, q'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareConstructor( "SymplecticGroupCons", [ IsGroup, IsPosInt, IsPosInt ] );
DeclareConstructor( "SymplecticGroupCons", [ IsGroup, IsPosInt, IsRing ] );
#############################################################################
##
#F SymplecticGroup( [<filt>, ]<d>, <q> ) . . . . . . . . . symplectic group
#F Sp( [<filt>, ]<d>, <q> )
#F SP( [<filt>, ]<d>, <q> )
##
## <#GAPDoc Label="SymplecticGroup">
## <ManSection>
## <Heading>SymplecticGroup</Heading>
## <Func Name="SymplecticGroup" Arg='[filt, ]d, q'
## Label="for dimension and field size"/>
## <Func Name="SymplecticGroup" Arg='[filt, ]d, ring'
## Label="for dimension and a ring"/>
## <Func Name="Sp" Arg='[filt, ]d, q'
## Label="for dimension and field size"/>
## <Func Name="Sp" Arg='[filt, ]d, ring'
## Label="for dimension and a ring"/>
## <Func Name="SP" Arg='[filt, ]d, q'
## Label="for dimension and field size"/>
## <Func Name="SP" Arg='[filt, ]d, ring'
## Label="for dimension and a ring"/>
##
## <Description>
## constructs a group isomorphic to the symplectic group
## Sp( <A>d</A>, <A>q</A> ) of those <M><A>d</A> \times <A>d</A></M>
## matrices over the field with <A>q</A> elements (respectively the ring
## <A>ring</A>)
## that respect a fixed nondegenerate symplectic form,
## in the category given by the filter <A>filt</A>.
## <P/>
## If <A>filt</A> is not given it defaults to <Ref Func="IsMatrixGroup"/>,
## and the returned group is the symplectic group itself.
## <P/>
## At the moment finite fields or residue class rings
## <C>Integers mod <A>q</A></C>, with <A>q</A> an odd prime power are
## supported.
## <!--
## If the &GAP; package <Package>Forms</Package> is loaded then one can also
## specify the desired invariant symplectic form respected by the group. -->
## <Example><![CDATA[
## gap> SymplecticGroup( 4, 2 );
## Sp(4,2)
## gap> g:=SymplecticGroup(6,Integers mod 9);
## Sp(6,Z/9Z)
## gap> Size(g);
## 95928796265538862080
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal( "SymplecticGroup", function ( arg )
if Length( arg ) = 2 then
return SymplecticGroupCons( IsMatrixGroup, arg[1], arg[2] );
elif IsOperation( arg[1] ) then
if Length( arg ) = 3 then
return SymplecticGroupCons( arg[1], arg[2], arg[3] );
fi;
fi;
Error( "usage: SymplecticGroup( [<filter>, ]<d>, <q> )" );
end );
DeclareSynonym( "Sp", SymplecticGroup );
DeclareSynonym( "SP", SymplecticGroup );
#############################################################################
##
#O OmegaCons( <filter>, <e>, <d>, <q> ) . . . . . . . . . orthogonal group
##
## <ManSection>
## <Oper Name="OmegaCons" Arg='filter, d, e, q'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareConstructor( "OmegaCons", [ IsGroup, IsInt, IsPosInt, IsPosInt ] );
#############################################################################
##
#O Omega( [<filt>, ][<e>, ]<d>, <q> )
##
## <#GAPDoc Label="Omega_orthogonal_groups">
## <ManSection>
## <Oper Name="Omega" Arg='[filt, ][e, ]d, q'
## Label="construct an orthogonal group"/>
##
## <Description>
## constructs a group isomorphic to the
## group <M>\Omega</M>( <A>e</A>, <A>d</A>, <A>q</A> ) of those
## <M><A>d</A> \times <A>d</A></M> matrices over the field with <A>q</A>
## elements that respect a non-singular quadratic form
## (see <Ref Func="InvariantQuadraticForm"/>) specified by <A>e</A>,
## and that have square spinor norm in odd characteristic
## or Dickson invariant <M>0</M> in even characteristic, respectively,
## in the category given by the filter <A>filt</A>.
## This group has always index two in SO( <A>e</A>, <A>d</A>, <A>q</A> ),
## see <Ref Func="SpecialOrthogonalGroup"/>.
## <P/>
## The value of <A>e</A> must be <M>0</M> for odd <A>d</A> (and can
## optionally be omitted in this case), respectively one of <M>1</M> or
## <M>-1</M> for even <A>d</A>.
## If <A>filt</A> is not given it defaults to <Ref Func="IsMatrixGroup"/>,
## and the returned group is the group
## <M>\Omega</M>( <A>e</A>, <A>d</A>, <A>q</A> ) itself.
## <P/>
## <!--
## If the &GAP; package <Package>Forms</Package> is loaded then one can also
## specify the desired invariant quadratic form respected by the group. -->
## <Example><![CDATA[
## gap> g:= Omega( 3, 5 ); StructureDescription( g );
## Omega(0,3,5)
## "A5"
## gap> g:= Omega( 1, 4, 4 ); StructureDescription( g );
## Omega(+1,4,4)
## "A5 x A5"
## gap> g:= Omega( -1, 4, 3 ); StructureDescription( g );
## Omega(-1,4,3)
## "A6"
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Omega", [ IsPosInt, IsPosInt ] );
DeclareOperation( "Omega", [ IsInt, IsPosInt, IsPosInt ] );
DeclareOperation( "Omega", [ IsFunction, IsPosInt, IsPosInt ] );
DeclareOperation( "Omega", [ IsFunction, IsInt, IsPosInt, IsPosInt ] );
#############################################################################
##
#O GeneralSemilinearGroupCons( <filter>, <d>, <q> )
##
## <ManSection>
## <Oper Name="GeneralSemilinearGroupCons" Arg='filter, d, q'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareConstructor( "GeneralSemilinearGroupCons",
[ IsGroup, IsPosInt, IsPosInt ] );
#############################################################################
##
#F GeneralSemilinearGroup( [<filt>, ]<d>, <q> ) . general semilinear group
#F GammaL( [<filt>, ]<d>, <q> )
##
## <#GAPDoc Label="GeneralSemilinearGroup">
## <ManSection>
## <Func Name="GeneralSemilinearGroup" Arg='[filt, ]d, q'/>
## <Func Name="GammaL" Arg='[filt, ]d, q'/>
##
## <Description>
## <Ref Func="GeneralSemilinearGroup"/> returns a group isomorphic to the
## general semilinear group <M>\Gamma</M>L( <A>d</A>, <A>q</A> ) of
## semilinear mappings of the vector space
## <C>GF( </C><A>q</A><C> )^</C><A>d</A>.
## <P/>
## If <A>filt</A> is not given it defaults to <Ref Func="IsMatrixGroup"/>,
## and the returned group consists of matrices of dimension
## <A>d</A> <M>f</M> over the field with <M>p</M> elements,
## where <A>q</A> <M>= p^f</M>, for a prime integer <M>p</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal( "GeneralSemilinearGroup", function( arg )
if Length( arg ) = 2 then
return GeneralSemilinearGroupCons( IsMatrixGroup, arg[1], arg[2] );
elif Length( arg ) = 3 and IsOperation( arg[1] ) then
return GeneralSemilinearGroupCons( arg[1], arg[2], arg[3] );
fi;
Error( "usage: GeneralSemilinearGroup( [<filter>, ]<d>, <q> )" );
end );
DeclareSynonym( "GammaL", GeneralSemilinearGroup );
#############################################################################
##
#O SpecialSemilinearGroupCons( <filter>, <d>, <q> )
##
## <ManSection>
## <Oper Name="SpecialSemilinearGroupCons" Arg='filter, d, q'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareConstructor( "SpecialSemilinearGroupCons",
[ IsGroup, IsPosInt, IsPosInt ] );
#############################################################################
##
#F SpecialSemilinearGroup( [<filt>, ]<d>, <q> ) . special semilinear group
#F SigmaL( [<filt>, ]<d>, <q> )
##
## <#GAPDoc Label="SpecialSemilinearGroup">
## <ManSection>
## <Func Name="SpecialSemilinearGroup" Arg='[filt, ]d, q'/>
## <Func Name="SigmaL" Arg='[filt, ]d, q'/>
##
## <Description>
## <Ref Func="SpecialSemilinearGroup"/> returns a group isomorphic to the
## special semilinear group <M>\Sigma</M>L( <A>d</A>, <A>q</A> ) of those
## semilinear mappings of the vector space
## <C>GF( </C><A>q</A><C> )^</C><A>d</A>
## (see <Ref Func="GeneralSemilinearGroup"/>)
## whose linear part has determinant one.
## <P/>
## If <A>filt</A> is not given it defaults to <Ref Func="IsMatrixGroup"/>,
## and the returned group consists of matrices of dimension
## <A>d</A> <M>f</M> over the field with <M>p</M> elements,
## where <A>q</A> <M>= p^f</M>, for a prime integer <M>p</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal( "SpecialSemilinearGroup", function( arg )
if Length( arg ) = 2 then
return SpecialSemilinearGroupCons( IsMatrixGroup, arg[1], arg[2] );
elif Length( arg ) = 3 and IsOperation( arg[1] ) then
return SpecialSemilinearGroupCons( arg[1], arg[2], arg[3] );
fi;
Error( "usage: SpecialSemilinearGroup( [<filter>, ]<d>, <q> )" );
end );
DeclareSynonym( "SigmaL", SpecialSemilinearGroup );
#############################################################################
##
#F DECLARE_PROJECTIVE_GROUPS_OPERATION( ... )
##
BindGlobal("DECLARE_PROJECTIVE_GROUPS_OPERATION",
# (<name>,<abbreviation>,<fieldextdeg>,<sizefunc-or-fail>)
function(nam,abbr,extdeg,szf)
local pnam,cons,opr;
opr:=VALUE_GLOBAL(nam);
pnam:=Concatenation("Projective",nam);
cons:=NewConstructor(Concatenation(pnam,"Cons"),[IsGroup,IsInt,IsInt]);
BindGlobal(Concatenation(pnam,"Cons"),cons);
BindGlobal(pnam,function(arg)
if Length(arg) = 2 then
return cons( IsPermGroup, arg[1], arg[2] );
elif IsOperation(arg[1]) then
if Length(arg) = 3 then
return cons( arg[1], arg[2], arg[3] );
fi;
fi;
Error( "usage: ",pnam,"( [<filter>, ]<d>, <q> )" );
end );
DeclareSynonym(Concatenation("P",abbr),VALUE_GLOBAL(pnam));
# install a method to get the permutation action on lines
InstallMethod( cons,"action on lines",
[ IsPermGroup, IsPosInt,IsPosInt ],
function(fil,n,q)
local g,f,p;
g:=opr(IsMatrixGroup,n,q);
f:=GF(q^extdeg);
p:=ProjectiveActionOnFullSpace(g,f,n);
if szf<>fail then
SetSize(p,szf(n,q,g));
fi;
return p;
end);
end);
#############################################################################
##
#F ProjectiveGeneralLinearGroup( [<filt>, ]<d>, <q> )
#F PGL( [<filt>, ]<d>, <q> )
##
## <#GAPDoc Label="ProjectiveGeneralLinearGroup">
## <ManSection>
## <Func Name="ProjectiveGeneralLinearGroup" Arg='[filt, ]d, q'/>
## <Func Name="PGL" Arg='[filt, ]d, q'/>
##
## <Description>
## constructs a group isomorphic to the projective general linear group
## PGL( <A>d</A>, <A>q</A> ) of those <M><A>d</A> \times <A>d</A></M>
## matrices over the field with <A>q</A> elements, modulo the
## centre, in the category given by the filter <A>filt</A>.
## <P/>
## If <A>filt</A> is not given it defaults to <Ref Func="IsPermGroup"/>,
## and the returned group is the action on lines of the underlying vector
## space.
## <P/>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DECLARE_PROJECTIVE_GROUPS_OPERATION("GeneralLinearGroup","GL",1,
# size function
function(n,q,g)
return Size(g)/(q-1);
end);
#############################################################################
##
#F ProjectiveSpecialLinearGroup( [<filt>, ]<d>, <q> )
#F PSL( [<filt>, ]<d>, <q> )
##
## <#GAPDoc Label="ProjectiveSpecialLinearGroup">
## <ManSection>
## <Func Name="ProjectiveSpecialLinearGroup" Arg='[filt, ]d, q'/>
## <Func Name="PSL" Arg='[filt, ]d, q'/>
##
## <Description>
## constructs a group isomorphic to the projective special linear group
## PSL( <A>d</A>, <A>q</A> ) of those <M><A>d</A> \times <A>d</A></M>
## matrices over the field with <A>q</A> elements whose determinant is the
## identity of the field, modulo the centre,
## in the category given by the filter <A>filt</A>.
## <P/>
## If <A>filt</A> is not given it defaults to <Ref Func="IsPermGroup"/>,
## and the returned group is the action on lines of the underlying vector
## space.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DECLARE_PROJECTIVE_GROUPS_OPERATION("SpecialLinearGroup","SL",1,
# size function
function(n,q,g)
return Size(g)/Gcd(n,q-1);
end);
#############################################################################
##
#F ProjectiveGeneralUnitaryGroup( [<filt>, ]<d>, <q> )
#F PGU( [<filt>, ]<d>, <q> )
##
## <#GAPDoc Label="ProjectiveGeneralUnitaryGroup">
## <ManSection>
## <Func Name="ProjectiveGeneralUnitaryGroup" Arg='[filt, ]d, q'/>
## <Func Name="PGU" Arg='[filt, ]d, q'/>
##
## <Description>
## constructs a group isomorphic to the projective general unitary group
## PGU( <A>d</A>, <A>q</A> ) of those <M><A>d</A> \times <A>d</A></M>
## matrices over the field with <M><A>q</A>^2</M> elements that respect
## a fixed nondegenerate sesquilinear form,
## modulo the centre, in the category given by the filter <A>filt</A>.
## <P/>
## If <A>filt</A> is not given it defaults to <Ref Func="IsPermGroup"/>,
## and the returned group is the action on lines of the underlying vector
## space.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DECLARE_PROJECTIVE_GROUPS_OPERATION("GeneralUnitaryGroup","GU",2,
# size function
function(n,q,g)
return Size(g)/(q+1);
end);
#############################################################################
##
#F ProjectiveSpecialUnitaryGroup( [<filt>, ]<d>, <q> )
#F PSU( [<filt>, ]<d>, <q> )
##
## <#GAPDoc Label="ProjectiveSpecialUnitaryGroup">
## <ManSection>
## <Func Name="ProjectiveSpecialUnitaryGroup" Arg='[filt, ]d, q'/>
## <Func Name="PSU" Arg='[filt, ]d, q'/>
##
## <Description>
## constructs a group isomorphic to the projective special unitary group
## PSU( <A>d</A>, <A>q</A> ) of those <M><A>d</A> \times <A>d</A></M>
## matrices over the field with <M><A>q</A>^2</M> elements that respect
## a fixed nondegenerate sesquilinear form and have determinant 1,
## modulo the centre, in the category given by the filter <A>filt</A>.
## <P/>
## If <A>filt</A> is not given it defaults to <Ref Func="IsPermGroup"/>,
## and the returned group is the action on lines of the underlying vector
## space.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DECLARE_PROJECTIVE_GROUPS_OPERATION("SpecialUnitaryGroup","SU",2,
# size function
function(n,q,g)
return Size(g)/Gcd(n,q+1);
end);
#############################################################################
##
#F ProjectiveSymplecticGroup( [<filt>, ]<d>, <q> )
#F PSP( [<filt>, ]<d>, <q> )
#F PSp( [<filt>, ]<d>, <q> )
##
## <#GAPDoc Label="ProjectiveSymplecticGroup">
## <ManSection>
## <Func Name="ProjectiveSymplecticGroup" Arg='[filt, ]d, q'/>
## <Func Name="PSP" Arg='[filt, ]d, q'/>
## <Func Name="PSp" Arg='[filt, ]d, q'/>
##
## <Description>
## constructs a group isomorphic to the projective symplectic group
## PSp(<A>d</A>,<A>q</A>) of those <M><A>d</A> \times <A>d</A></M> matrices
## over the field with <A>q</A> elements that respect a fixed nondegenerate
## symplectic form, modulo the centre,
## in the category given by the filter <A>filt</A>.
## <P/>
## If <A>filt</A> is not given it defaults to <Ref Func="IsPermGroup"/>,
## and the returned group is the action on lines of the underlying vector
## space.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DECLARE_PROJECTIVE_GROUPS_OPERATION("SymplecticGroup","SP",1,
# size function
function(n,q,g)
return Size(g)/Gcd(2,q-1);
end);
DeclareSynonym( "PSp", PSP );
#############################################################################
##
#O ProjectiveOmegaCons( <filt>, <e>, <d>, <q> )
#F ProjectiveOmega( [<filt>, ][<e>, ]<d>, <q> )
#F POmega( [<filt>, ][<e>, ]<d>, <q> )
##
## <#GAPDoc Label="ProjectiveOmega">
## <ManSection>
## <Func Name="ProjectiveOmega" Arg='[filt, ][e, ]d, q'/>
## <Func Name="POmega" Arg='[filt, ][e, ]d, q'/>
##
## <Description>
## constructs a group isomorphic to the projective group
## P<M>\Omega</M>( <A>e</A>, <A>d</A>, <A>q</A> )
## of <M>\Omega</M>( <A>e</A>, <A>d</A>, <A>q</A> ),
## modulo the centre
## (see <Ref Oper="Omega" Label="construct an orthogonal group"/>),
## in the category given by the filter <A>filt</A>.
## <P/>
## If <A>filt</A> is not given it defaults to <Ref Func="IsPermGroup"/>,
## and the returned group is the action on lines of the underlying vector
## space.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareConstructor( "ProjectiveOmegaCons", [ IsGroup, IsInt, IsInt, IsInt ] );
BindGlobal( "ProjectiveOmega", function( arg )
if Length( arg ) = 2 then
return ProjectiveOmegaCons( IsPermGroup, 0, arg[1], arg[2] );
elif Length( arg ) = 3 and IsInt( arg[1] ) then
return ProjectiveOmegaCons( IsPermGroup, arg[1], arg[2], arg[3] );
elif Length( arg ) = 3 and IsOperation( arg[1] ) then
return ProjectiveOmegaCons( arg[1], 0, arg[2], arg[3] );
elif IsOperation( arg[1] ) and Length( arg ) = 4 then
return ProjectiveOmegaCons( arg[1], arg[2], arg[3], arg[4] );
fi;
Error( "usage: ProjectiveOmega( [<filter>, ][<e>, ]<d>, <q> )" );
end );
DeclareSynonym( "POmega", ProjectiveOmega );
InstallMethod( ProjectiveOmegaCons,
"action on lines",
[ IsPermGroup, IsInt, IsPosInt, IsPosInt ],
function( filter, e, n, q )
local g, p;
g:= Omega( IsMatrixGroup, e, n, q );
p:= ProjectiveActionOnFullSpace( g, GF( q ), n );
if n mod 2 = 0 and ( q^(n/2) - e ) mod 4 = 0 then
SetSize( p, Size( g ) / 2 );
else
SetSize( p, Size( g ) );
fi;
return p;
end);
#############################################################################
##
#E
|