/usr/share/gap/grp/imf.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 | #############################################################################
##
#W imf.gi GAP group library Volkmar Felsch
##
##
#Y Copyright (C) 1995, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
##
## This file contains the library functions for the GAP library of
## irreducible maximal finite integral matrix groups.
##
#############################################################################
##
#F BaseShortVectors( <orbit> ) . . . . . . . . . . . . . . . . . . . . . . .
##
InstallGlobalFunction( "BaseShortVectors", function ( orbit )
local base, count, dim, i, j, nums, vector;
dim := Length( orbit[1] );
base := ListWithIdenticalEntries( dim, 0 );
nums := ListWithIdenticalEntries( dim, 0 );
count := 0;
i := 0;
while count < dim do
i := i + 1;
vector := orbit[i];
j := 0;
while j < dim do
j := j + 1;
if vector[j] <> 0 then
if nums[j] <> 0 then
vector := vector - vector[j] * base[j];
else
base[j] := vector / vector[j];
nums[j] := i;
count := count + 1;
j := dim;
fi;
fi;
od;
od;
base := List( nums, i -> orbit[i] );
return [ nums, base^-1 ];
end );
#############################################################################
##
#F DisplayImfInvariants( <dim>, <q> ) . . . . . . . . . . . . . . . . . . .
#F DisplayImfInvariants( <dim>, <q>, <z> ) . . . . . . . . . . . . . . . . .
##
InstallGlobalFunction( "DisplayImfInvariants", function ( arg )
local dim, dims, hyphens, linelength, q, qq, z;
# load the imf main list if it is not yet available
if not IsBound( IMFList ) then
IMFLoad( 0 );
fi;
# get the arguments
dim := arg[1];
q := arg[2];
if Length( arg ) > 2 then
z := arg[3];
else
z := 1;
fi;
# get the range of dimensions to be handled
if dim = 0 then
dims := [ 1 .. IMFRec.maximalDimension ];
else
# check the given dimension for being in range
if dim < 0 or IMFRec.maximalDimension < dim then
Error( "dimension out of range" );
fi;
dims := [ dim ];
fi;
# loop over all dimensions in that range
for dim in dims do
# handle the cases q = 0 and q > 0 differently
if q = 0 then
linelength := Minimum( SizeScreen()[1], 76 );
hyphens := Concatenation( List( [ 1 .. linelength - 5 ],
i -> "-" ) );
# loop over the Q-classes of dimension dim
for qq in [ 1 .. IMFRec.numberQClasses[dim] ] do
# print a line of separators
Print( "#I ", hyphens, "\n" );
# check the Z-class number for being in range
if z < 0 or Length( IMFRec.bNumbers[dim][qq] ) < z then
Error( "Z-class number out of range" );
fi;
# display the specified Z-classes in the Q-class
DisplayImfReps( dim, qq, z );
od;
# print a line of separators
Print( "#I ", hyphens, "\n" );
else
# check the given Q-class number for being in range
if q < 1 or IMFRec.numberQClasses[dim] < q then
Error( "Q-class number out of range" );
fi;
# check the Z-class number for being in range
if z < 0 or Length( IMFRec.bNumbers[dim][q] ) < z then
Error( "Z-class number out of range" );
fi;
# display the specified Z-classes in the Q-class
DisplayImfReps( dim, q, z );
fi;
od;
end );
#############################################################################
##
#F DisplayImfReps( <dim>, <q>, <z> ) . . . . . . . . . . . . . . . . . . . .
##
InstallGlobalFunction( "DisplayImfReps", function ( dim, q, z )
local bound, degree, degs, eldivs, i, leng, mult, n, norm, qmax, size,
solvable, type, znums;
# get the position numbers of the groups to be handled
znums := IMFRec.bNumbers[dim][q];
if z = 0 then
z := 1;
bound := Length( znums );
else
bound := z;
fi;
# loop over the classes to be displayed
while z <= bound do
n := znums[z];
type := IMFList[dim].isomorphismType[n];
size := IMFList[dim].size[n];
solvable := IMFList[dim].isSolvable[n];
eldivs := IMFList[dim].elementaryDivisors[n];
degs := IMFList[dim].degrees[n];
norm := IMFList[dim].minimalNorm[n];
# print a class number
if IMFRec.repsAreZReps[dim] then
Print( "#I Z-class ", dim, ".", q, ".", z );
else
Print( "#I Q-class ", dim, ".", q );
fi;
# print solvability and group size
if solvable then
Print( ": Solvable, size = " );
else
Print( ": Size = " );
fi;
PrintFactorsInt( size );
Print( "\n" );
# print the isomorphism type
Print( "#I isomorphism type = " );
Print( type, "\n" );
# print the elementary divisors
Print( "#I elementary divisors = " );
Print( eldivs[1] );
if eldivs[2] > 1 then
Print( "^", eldivs[2] );
fi;
leng := Length( eldivs );
i := 3;
while i < leng do
Print( "*", eldivs[i] );
if eldivs[i+1] > 1 then
Print( "^", eldivs[i+1] );
fi;
i := i + 2;
od;
Print( "\n" );
# print the orbit size
Print( "#I orbit size = " );
if IsInt( degs ) then
Print( degs );
leng := 1;
else
leng := Length( degs );
i := 0;
while i < leng do
i := i + 1;
degree := degs[i];
mult := 1;
while i < leng and degs[i+1] = degree do
mult := mult + 1;
i := i + 1;
od;
if mult > 1 then Print( mult, "*" ); fi;
Print( degree );
if i < leng then Print( " + " ); fi;
od;
fi;
# print the minimal norm
Print( ", minimal norm = ", norm, "\n" );
# print a message if the group is not imf in Q
qmax := IMFRec.maximalQClasses[dim][q];
if qmax <> q then
Print( "#I not maximal finite in GL(", dim,
",Q), rational imf class is ", dim, ".", qmax, "\n" );
fi;
z := z + 1;
od;
end );
#############################################################################
##
#F ImfInvariants( <dim>, <q> ) . . . . . . . . . . . . . . . . . . . . . . .
#F ImfInvariants( <dim>, <q>, <z> ) . . . . . . . . . . . . . . . . . . . .
##
InstallGlobalFunction( "ImfInvariants", function ( arg )
local dim, eldivs, flat, i, infrec, j, leng, n, q, qmax, sizes;
# check the arguments and get the position number of the class to be
# handled
n := ImfPositionNumber( arg );
dim := arg[1];
q := arg[2];
# get the size of the orbits of short vectors
sizes := IMFList[dim].degrees[n];
if IsInt( sizes ) then
sizes := [ sizes ];
fi;
# get the elementary divisors
flat := IMFList[dim].elementaryDivisors[n];
leng := Length( flat );
eldivs := [ ];
i := 1;
while i < leng do
for j in [ 1 .. flat[i+1] ] do
Add( eldivs, flat[i] );
od;
i := i + 2;
od;
# get the Q-class number of the corresponding rational imf class
qmax := IMFRec.maximalQClasses[dim][q];
# create the information record and return it
infrec := rec(
size := IMFList[dim].size[n],
isSolvable := IMFList[dim].isSolvable[n],
isomorphismType := IMFList[dim].isomorphismType[n],
elementaryDivisors := eldivs,
minimalNorm := IMFList[dim].minimalNorm[n],
sizesOrbitsShortVectors := sizes );
if qmax <> q then
infrec.maximalQClass := qmax;
fi;
return infrec;
end );
#############################################################################
##
#F IMFLoad( <dim> ) . . . . . . . . load a secondary file of the imf library
##
InstallGlobalFunction( "IMFLoad", function ( dim )
local d, maxdim, name;
# initialize the imf main list if it is not yet available
if not IsBound( IMFList ) then
name := "imf.grp";
Info( InfoImf, 2, "loading secondary file ", name );
if not ReadGrp( name, "imf" ) then
Error( "cannot load secondary file ", name );
fi;
fi;
# check whether we actually need to load a matrix file
if dim > 0 and not IsBound( IMFList[dim].matrices ) then
# load the file
if dim < 10 then
name := "imf1to9.grp";
else
name := Concatenation( "imf", String( dim ), ".grp" );
fi;
Info( InfoImf, 2, "loading secondary file ", name );
if not ReadGrp( name, "imf" ) then
Error( "cannot load secondary file ", name );
fi;
fi;
return;
end );
#############################################################################
##
#F ImfMatrixGroup( <dim>, <q> ) . . . . . . . . . . . . . . . . . . . . . .
#F ImfMatrixGroup( <dim>, <q>, <z> ) . . . . . . . . . . . . . . . . . . . .
##
InstallGlobalFunction( "ImfMatrixGroup", function ( arg )
local degrees, dim, form, gens, i, imfM, j, M, mats, n, name, q, qmax,
reps, z;
# check the arguments and get the position number of the class to be
# handled
n := ImfPositionNumber( arg );
# get dimension, Q-class number, and Z-class number
dim := arg[1];
q := arg[2];
z := arg[3];
# load the appropriate imf matrix file if it is not yet available
if not IsBound( IMFList[dim].matrices ) then
IMFLoad( dim );
fi;
# construct the matrix group
mats := IMFList[dim].matrices[n];
gens := mats[2];
M := Group( gens, gens[1] * gens[1]^-1 );
# construct the group name
if IMFRec.repsAreZReps[dim] then
name := Concatenation( "ImfMatrixGroup(", String( dim ), ",",
String( q ), ",", String( z ), ")" );
else
name := Concatenation( "ImfMatrixGroup(", String( dim ), ",",
String( q ), ")" );
fi;
# get the associated Gram matrix
form := List( mats[1], ShallowCopy );
for i in [ 1 .. dim - 1 ] do
for j in [ i + 1 .. dim ] do
form[i][j] := form[j][i];
od;
od;
# get the representatives and sizes of the orbits of short vectors
reps := IMFList[dim].orbitReps[n];
degrees := IMFList[dim].degrees[n];
if IsInt( degrees ) then
degrees := [ degrees ];
reps := [ reps ];
fi;
# get the Q-class number of the corresponding rational imf class
qmax := IMFRec.maximalQClasses[dim][q];
# define an approriate imf record
imfM := rec( );
imfM.isomorphismType := IMFList[dim].isomorphismType[n];
imfM.elementaryDivisors := ElementaryDivisorsMat( form );
imfM.form := form;
imfM.minimalNorm := IMFList[dim].minimalNorm[n];
imfM.repsOrbitsShortVectors := reps;
imfM.sizesOrbitsShortVectors := degrees;
if qmax <> q then
imfM.maximalQClass := qmax;
fi;
# define some approriate group attributes
SetFilterObj( M, IsImfMatrixGroup );
SetName( M, name );
SetSize( M, IMFList[dim].size[n] );
SetIsSolvableGroup( M, IMFList[dim].isSolvable[n] );
SetImfRecord( M, imfM );
return M;
end );
#############################################################################
##
#F ImfNumberQClasses( <dim> ) . . . . . . . . . . . . . . . . . . . . . . .
##
InstallGlobalFunction( "ImfNumberQClasses", function ( dim )
# load the imf main list if it is not yet available
if not IsBound( IMFList ) then
IMFLoad( 0 );
fi;
# check the given dimension for being in range
if dim < 0 or IMFRec.maximalDimension < dim then
Error( "dimension out of range" );
fi;
return IMFRec.numberQClasses[dim];
end );
#############################################################################
##
#F ImfNumberQQClasses( <dim> ) . . . . . . . . . . . . . . . . . . . . . . .
##
InstallGlobalFunction( "ImfNumberQQClasses", function ( dim )
# load the imf main list if it is not yet available
if not IsBound( IMFList ) then
IMFLoad( 0 );
fi;
# check the given dimension for being in range
if dim < 0 or IMFRec.maximalDimension < dim then
Error( "dimension out of range" );
fi;
return IMFRec.numberQQClasses[dim];
end );
#############################################################################
##
#F ImfNumberZClasses( <dim>, <q> ) . . . . . . . . . . . . . . . . . . . . .
##
InstallGlobalFunction( "ImfNumberZClasses", function ( dim, q )
local num;
# load the imf main list if it is not yet available
if not IsBound( IMFList ) then
IMFLoad( 0 );
fi;
# check the dimension for being in range
if dim < 1 or IMFRec.maximalDimension < dim then
Error( "dimension out of range" );
fi;
# check the Q-class number for being in range
if q < 1 or IMFRec.numberQClasses[dim] < q then
Error( "Q-class number out of range" );
fi;
# return the number of class representatives in the given Q-class
return Length( IMFRec.bNumbers[dim][q] );
end );
#############################################################################
##
#F ImfPositionNumber( [ <dim>, <q> ] ) . . . . . . . . . . . . . . . . . . .
#F ImfPositionNumber( [ <dim>, <q>, <z> ] ) . . . . . . . . . . . . . . . .
##
InstallGlobalFunction( "ImfPositionNumber", function ( args )
local dim, n, q, z, znums;
# load the imf main list if it is not yet available
if not IsBound( IMFList ) then
IMFLoad( 0 );
fi;
# check the dimension for being in range
dim := args[1];
if dim < 1 or IMFRec.maximalDimension < dim then
Error( "dimension out of range" );
fi;
# check the Q-class number for being in range
q := args[2];
if q < 1 or IMFRec.numberQClasses[dim] < q then
Error( "Q-class number out of range" );
fi;
znums := IMFRec.bNumbers[dim][q];
# get the Z-class number and check it for being in range
if Length( args ) = 2 then
z := 1;
args[3] := 1;
else
z := args[3];
if z < 1 or Length( znums ) < z then
Error( "Z-class number out of range" );
fi;
fi;
# return the position number of the class to be handled
return znums[z];
end );
#############################################################################
##
#F IsomorphismPermGroupImfGroup( <M> ) . . . . . . . . . . . . . . . . . . .
#F IsomorphismPermGroupImfGroup( <M>, <n> ) . . . . . . . . . . . . . . . .
##
InstallGlobalFunction( "IsomorphismPermGroupImfGroup", function ( arg )
local base, degrees, gens, id, imfM, imfP, M, n, orbit, P, perms, phi,
reps, vec;
# check the given group for being an imf matrix group
M := arg[1];
if not IsImfMatrixGroup( M ) then
Error( "the given group is not an imf matrix group" );
fi;
imfM := ImfRecord( M );
# check the given orbit number for being in range
degrees := imfM.sizesOrbitsShortVectors;
reps := imfM.repsOrbitsShortVectors;
if Length( arg ) = 1 then
n := 1;
else
n := arg[2];
if not n in [ 1 .. Length( reps ) ] then
Error( "orbit number out of range" );
fi;
fi;
# compute the specified orbit of short vectors
gens := GeneratorsOfGroup( M );
orbit := OrbitShortVectors( gens, reps[n] );
# check the orbit size
if Length( orbit ) <> degrees[n] then
Error( "inconsistent orbit size" );
fi;
# construct the associated permutation group
perms := List( gens, g -> PermList(
List( orbit, vec -> PositionSorted( orbit, vec * g ) ) ) );
id := perms[1]^0;
P := Group( perms, id );
# define an approriate imf record
imfP := rec( );
# define some appropriate group attributes
SetSize( P, Size( M ) );
SetIsSolvableGroup( P, IsSolvableGroup( M ) );
SetLargestMovedPoint( P, degrees[n] );
SetImfRecord( P, imfP );
# if IsBound( imfM.isomorphismType ) then
# imfP.isomorphismType := imfM.isomorphismType;
# fi;
# imfP.matGroup := M;
# compute the information which will be needed to reconvert permutations
# to matrices
base := BaseShortVectors( orbit );
imfP.orbitShortVectors := orbit;
imfP.baseVectorPositions := base[1];
imfP.baseChangeMatrix := base[2];
# construct the associated isomorphism from M to P
phi := GroupHomomorphismByFunction(
M,
P,
function ( mat )
local imf;
imf := ImfRecord( P );
return PermList( List( imf.orbitShortVectors, v ->
PositionSorted( imf.orbitShortVectors, v*mat ) ) );
end,
function ( perm )
local imf;
imf := ImfRecord( P );
return imf.baseChangeMatrix * List( imf.baseVectorPositions, i ->
imf.orbitShortVectors[i^perm] );
end );
SetIsBijective( phi, true );
# if n = 1, save a nice monomorphism of M
if n = 1 and not HasNiceMonomorphism( M ) then
SetNiceMonomorphism( M, phi );
fi;
return phi;
end );
#############################################################################
##
#M IsomorphismPermGroup( <M> )
##
InstallMethod( IsomorphismPermGroup,
"imf matrix groups",
[IsMatrixGroup and IsFinite and IsImfMatrixGroup],
IsomorphismPermGroupImfGroup );
#############################################################################
##
#F OrbitShortVectors( <gens>, <rep> ) . . . . . . . . . . . . . . . . . . .
##
InstallGlobalFunction( "OrbitShortVectors", function ( gens, rep )
local generator, images, new, nextvec, null, orbit, vector;
orbit := [ ];
null := ListWithIdenticalEntries( Length( rep ), 0 );
if rep > null then
images := [ Immutable( rep ) ];
else
images := [ Immutable( -rep ) ];
fi;
while images <> [ ] do
Append( orbit, images );
new := [ ];
for generator in gens do
for vector in images do
nextvec := vector * generator;
if nextvec > null then
Add( new, nextvec );
else
Add( new, -nextvec );
fi;
od;
od;
new := Set( new );
SubtractSet( new, orbit );
images := new;
od;
Append( orbit, -orbit );
# The function Immutable in the following statement essentially speeds
# up the function PositionSorted in IsomorphismPermGroupImfGroup.
return Immutable( Set( orbit ) );
end );
#############################################################################
##
#E
|