/usr/share/gap/grp/perf.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 | #############################################################################
##
#W perf.gd GAP Groups Library Alexander Hulpke
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
##
## This file contains the declarations for the Holt/Plesken library of
## perfect groups
##
PERFRec := fail; # indicator that perf0.grp is not loaded
PERFSELECT := [];
PERFGRP := [];
#############################################################################
##
#C IsPerfectLibraryGroup(<G>) identifier for groups constructed from the
## library (used for perm->fp isomorphism)
##
## <ManSection>
## <Filt Name="IsPerfectLibraryGroup" Arg='G' Type='Category'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareCategory("IsPerfectLibraryGroup", IsGroup );
#############################################################################
##
#O PerfGrpConst(<filter>,<descriptor>)
##
## <ManSection>
## <Oper Name="PerfGrpConst" Arg='filter,descriptor'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareConstructor("PerfGrpConst",[IsGroup,IsList]);
#############################################################################
##
#F PerfGrpLoad(<size>) force loading of secondary files, return index
##
## <ManSection>
## <Func Name="PerfGrpLoad" Arg='size'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction("PerfGrpLoad");
#############################################################################
##
#A PerfectIdentification(<G>) . . . . . . . . . . . . id. for perfect groups
##
## <#GAPDoc Label="PerfectIdentification">
## <ManSection>
## <Attr Name="PerfectIdentification" Arg='G'/>
##
## <Description>
## This attribute is set for all groups obtained from the perfect groups
## library and has the value <C>[<A>size</A>,<A>nr</A>]</C> if the group is obtained with
## these parameters from the library.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("PerfectIdentification", IsGroup );
#############################################################################
##
#F SizesPerfectGroups()
##
## <#GAPDoc Label="SizesPerfectGroups">
## <ManSection>
## <Func Name="SizesPerfectGroups" Arg=''/>
##
## <Description>
## This is the ordered list of all numbers up to <M>10^6</M> that occur as
## sizes of perfect groups.
## One can iterate over the perfect groups library with:
## <Example><![CDATA[
## gap> for n in SizesPerfectGroups() do
## > for k in [1..NrPerfectLibraryGroups(n)] do
## > pg := PerfectGroup(n,k);
## > od;
## > od;
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("SizesPerfectGroups");
#############################################################################
##
#F NumberPerfectGroups( <size> ) . . . . . . . . . . . . . . . . . . . . . .
##
## <#GAPDoc Label="NumberPerfectGroups">
## <ManSection>
## <Func Name="NumberPerfectGroups" Arg='size'/>
##
## <Description>
## returns the number of non-isomorphic perfect groups of size <A>size</A> for
## each positive integer <A>size</A> up to <M>10^6</M> except for the eight sizes
## listed at the beginning of this section for which the number is not
## yet known. For these values as well as for any argument out of range it
## returns <K>fail</K>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("NumberPerfectGroups");
DeclareSynonym("NrPerfectGroups",NumberPerfectGroups);
#############################################################################
##
#F NumberPerfectLibraryGroups( <size> ) . . . . . . . . . . . . . . . . . .
##
## <#GAPDoc Label="NumberPerfectLibraryGroups">
## <ManSection>
## <Func Name="NumberPerfectLibraryGroups" Arg='size'/>
##
## <Description>
## returns the number of perfect groups of size <A>size</A> which are available
## in the library of finite perfect groups. (The purpose of the function
## is to provide a simple way to formulate a loop over all library groups
## of a given size.)
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("NumberPerfectLibraryGroups");
DeclareSynonym("NrPerfectLibraryGroups",NumberPerfectLibraryGroups);
#############################################################################
##
#F PerfectGroup( [<filt>, ]<size>[, <n>] )
#F PerfectGroup( [<filt>, ]<sizenumberpair> )
##
## <#GAPDoc Label="PerfectGroup">
## <ManSection>
## <Heading>PerfectGroup</Heading>
## <Func Name="PerfectGroup" Arg='[filt, ]size[, n]'
## Label="for group order (and index)"/>
## <Func Name="PerfectGroup" Arg='[filt, ]sizenumberpair'
## Label="for a pair [ order, index ]"/>
##
## <Description>
## returns a group which is isomorphic to the library group specified
## by the size number <C>[ <A>size</A>, <A>n</A> ]</C> or by the two
## separate arguments <A>size</A> and <A>n</A>, assuming a default value of
## <M><A>n</A> = 1</M>.
## The optional argument <A>filt</A> defines the filter in which the group is
## returned.
## Possible filters so far are <Ref Func="IsPermGroup"/> and
## <Ref Func="IsSubgroupFpGroup"/>.
## In the latter case, the generators and relators used coincide with those
## given in <Cite Key="HP89"/>.
## <Example><![CDATA[
## gap> G := PerfectGroup(IsPermGroup,6048,1);
## U3(3)
## gap> G:=PerfectGroup(IsPermGroup,823080,2);
## A5 2^1 19^2 C 19^1
## gap> NrMovedPoints(G);
## 6859
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("PerfectGroup");
#############################################################################
##
#F DisplayInformationPerfectGroups( <size>[, <n>] ) . . . . . . . . . . . .
#F DisplayInformationPerfectGroups( <sizenumberpair>] ) . . . . . . . . . .
##
## <#GAPDoc Label="DisplayInformationPerfectGroups">
## <ManSection>
## <Heading>DisplayInformationPerfectGroups</Heading>
## <Func Name="DisplayInformationPerfectGroups" Arg='size[, n]'
## Label="for group order (and index)"/>
## <Func Name="DisplayInformationPerfectGroups" Arg='sizenumberpair'
## Label="for a pair [ order, index ]"/>
##
## <Description>
## <Ref Func="DisplayInformationPerfectGroups" Label="for group order (and index)"/>
## displays some invariants of the <A>n</A>-th group of order <A>size</A>
## from the perfect groups library.
## <P/>
## If no value of <A>n</A> has been specified, the invariants will be
## displayed for all groups of size <A>size</A> available in the library.
## <P/>
## Alternatively, also a list of length two may be entered as the only
## argument, with entries <A>size</A> and <A>n</A>.
## <P/>
## The information provided for <M>G</M> includes the following items:
## <List>
## <Item>
## a headline containing the size number <C>[ <A>size</A>, <A>n</A> ]</C> of <M>G</M>
## in the form <C><A>size</A>.<A>n</A></C> (the suffix <C>.<A>n</A></C> will be suppressed
## if, up to isomorphism, <M>G</M> is the only perfect group of order
## <A>size</A>),
## </Item>
## <Item>
## a message if <M>G</M> is simple or quasisimple, i.e.,
## if the factor group of <M>G</M> by its centre is simple,
## </Item>
## <Item>
## the <Q>description</Q> of the structure of <M>G</M> as it is
## given by Holt and Plesken in <Cite Key="HP89"/> (see below),
## </Item>
## <Item>
## the size of the centre of <M>G</M> (suppressed, if <M>G</M> is
## simple),
## </Item>
## <Item>
## the prime decomposition of the size of <M>G</M>,
## </Item>
## <Item>
## orbit sizes for a faithful permutation representation
## of <M>G</M> which is provided by the library (see below),
## </Item>
## <Item>
## a reference to each occurrence of <M>G</M> in the tables of
## section 5.3 of <Cite Key="HP89"/>. Each of these references
## consists of a class number and an internal number <M>(i,j)</M> under which
## <M>G</M> is listed in that class. For some groups, there is more than one
## reference because these groups belong to more than one of the classes
## in the book.
## </Item>
## </List>
## <Example><![CDATA[
## gap> DisplayInformationPerfectGroups( 30720, 3 );
## #I Perfect group 30720: A5 ( 2^4 E N 2^1 E 2^4 ) A
## #I size = 2^11*3*5 orbit size = 240
## #I Holt-Plesken class 1 (9,3)
## gap> DisplayInformationPerfectGroups( 30720, 6 );
## #I Perfect group 30720: A5 ( 2^4 x 2^4 ) C N 2^1
## #I centre = 2 size = 2^11*3*5 orbit size = 384
## #I Holt-Plesken class 1 (9,6)
## gap> DisplayInformationPerfectGroups( Factorial( 8 ) / 2 );
## #I Perfect group 20160.1: A5 x L3(2) 2^1
## #I centre = 2 size = 2^6*3^2*5*7 orbit sizes = 5 + 16
## #I Holt-Plesken class 31 (1,1) (occurs also in class 32)
## #I Perfect group 20160.2: A5 2^1 x L3(2)
## #I centre = 2 size = 2^6*3^2*5*7 orbit sizes = 7 + 24
## #I Holt-Plesken class 31 (1,2) (occurs also in class 32)
## #I Perfect group 20160.3: ( A5 x L3(2) ) 2^1
## #I centre = 2 size = 2^6*3^2*5*7 orbit size = 192
## #I Holt-Plesken class 31 (1,3)
## #I Perfect group 20160.4: simple group A8
## #I size = 2^6*3^2*5*7 orbit size = 8
## #I Holt-Plesken class 26 (0,1)
## #I Perfect group 20160.5: simple group L3(4)
## #I size = 2^6*3^2*5*7 orbit size = 21
## #I Holt-Plesken class 27 (0,1)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("DisplayInformationPerfectGroups");
#############################################################################
##
#F SizeNumbersPerfectGroups( <factor1>, <factor2>, ... )
##
## <#GAPDoc Label="SizeNumbersPerfectGroups">
## <ManSection>
## <Func Name="SizeNumbersPerfectGroups" Arg='factor1, factor2, ...'/>
##
## <Description>
## <Ref Func="SizeNumbersPerfectGroups"/> returns a list of pairs,
## each entry consisting of a group order and the number of those groups in
## the library of perfect groups that contain the specified factors
## <A>factor1</A>, <A>factor2</A>, ...
## among their composition factors.
## <P/>
## Each argument must either be the name of a simple group or an integer
## which stands for the product of the sizes of one or more cyclic factors.
## (In fact, the function replaces all integers among the arguments
## by their product.)
## <P/>
## The following text strings are accepted as simple group names.
## <List>
## <Item>
## <C>A<A>n</A></C> or <C>A(<A>n</A>)</C> for the alternating groups
## <M>A_{<A>n</A>}</M>,
## <M>5 \leq n \leq 9</M>, for example <C>A5</C> or <C>A(6)</C>.
## </Item>
## <Item>
## <C>L<A>n</A>(<A>q</A>)</C> or <C>L(<A>n</A>,<A>q</A>)</C> for
## PSL<M>(n,q)</M>, where
## <M>n \in \{ 2, 3 \}</M> and <M>q</M> a prime power, ranging
## <List>
## <Item>
## for <M>n = 2</M> from 4 to 125
## </Item>
## <Item>
## for <M>n = 3</M> from 2 to 5
## </Item>
## </List>
## </Item>
## <Item>
## <C>U<A>n</A>(<A>q</A>)</C> or <C>U(<A>n</A>,<A>q</A>)</C> for
## PSU<M>(n,q)</M>, where
## <M>n \in \{ 3, 4 \}</M> and <M>q</M> a prime power, ranging
## <List>
## <Item>
## for <M>n = 3</M> from 3 to 5
## </Item>
## <Item>
## for <M>n = 4</M> from 2 to 2
## </Item>
## </List>
## </Item>
## <Item>
## <C>Sp4(4)</C> or <C>S(4,4)</C> for the symplectic group Sp<M>(4,4)</M>,
## </Item>
## <Item>
## <C>Sz(8)</C> for the Suzuki group Sz<M>(8)</M>,
## </Item>
## <Item>
## <C>M<A>n</A></C> or <C>M(<A>n</A>)</C> for the Mathieu groups
## <M>M_{11}</M>, <M>M_{12}</M>, and <M>M_{22}</M>, and
## </Item>
## <Item>
## <C>J<A>n</A></C> or <C>J(<A>n</A>)</C> for the Janko groups
## <M>J_1</M> and <M>J_2</M>.
## </Item>
## </List>
## <P/>
## Note that, for most of the groups, the preceding list offers two
## different names in order to be consistent with the notation used in
## <Cite Key="HP89"/> as well as with the notation used in the
## <Ref Func="DisplayCompositionSeries"/> command of &GAP;.
## However, as the names are
## compared as text strings, you are restricted to the above choice. Even
## expressions like <C>L2(2^5)</C> are not accepted.
## <P/>
## As the use of the term PSU<M>(n,q)</M> is not unique in the literature,
## we mention that in this library it denotes the factor group of
## SU<M>(n,q)</M> by its centre, where SU<M>(n,q)</M> is the group of all
## <M>n \times n</M> unitary matrices with entries in <M>GF(q^2)</M>
## and determinant 1.
## <P/>
## The purpose of the function is to provide a simple way to formulate a
## loop over all library groups which contain certain composition factors.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("SizeNumbersPerfectGroups");
#############################################################################
##
#E
|