/usr/share/gap/grp/perf.grp is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 | #############################################################################
##
#W perf.grp GAP Groups Library Alexander Hulpke
## Volkmar Felsch
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
##
## This file contains the access functions for the Holt/Plesken library
##
#############################################################################
##
#F PerfGrpLoad(<size>) force loading of secondary files, return index
##
InstallGlobalFunction( PerfGrpLoad, function(sz)
local p,sel,i,pos;
if PERFRec=fail then
ReadGrp("perf0.grp");
fi;
# get the index
pos:=PositionSet(PERFRec.sizes,sz);
if pos=fail then
return fail;
fi;
if PERFSELECT[pos] then
return pos;
fi;
# get the file number
p:=PositionSorted(PERFRec.covered,pos);
if SizeBlist(PERFSELECT)>50 then
# throw away old to free memory
sel:=Filtered([1..PERFRec.length],i->PERFSELECT[i]);
sel:=sel{[1..Length(sel)-25]};
for i in sel do
Unbind(PERFGRP[i]);
PERFSELECT[i]:=false;
od;
fi;
ReadGrp(Concatenation("perf",String(p),".grp"));
# store loaded info
if p=1 then
p:=[0,PERFRec.covered[p]];
else
p:=PERFRec.covered{[p-1,p]};
fi;
for i in [p[1]+1..p[2]] do
PERFSELECT[i]:=true;
od;
return pos;
end );
#############################################################################
##
#F SizesPerfectGroups( )
##
## `SizesPerfectGroups' returns an ordered list of all integers that occur
## as group sizes in the library of perfect groups.
##
InstallGlobalFunction( SizesPerfectGroups, function ( )
PerfGrpLoad(0);
# return the requested list.
return ShallowCopy( PERFRec.sizes );
end );
#############################################################################
##
#F NumberPerfectGroups( size )
##
## `NumberPerfectGroups' returns the number of nonisomorphic perfect groups
## of size size for 1 <= size <= 1 000 000.
##
## Exception: The number of perfect groups is not yet known for the eight
## sizes 61440, 122880, 172032, 245760, 344064, 491520, 688128, and 983040.
##
## If size is one of these exceptions or if size is out of range, the value
## fail will be returned.
##
InstallGlobalFunction( NumberPerfectGroups, function ( size )
PerfGrpLoad(0);
# get the number and return it.
if not size in [ 1 .. 1000000 ] or size in PERFRec.notKnown then
return fail;
elif not size in PERFRec.sizes then
return 0;
else
return PERFRec.number[ PositionSorted( PERFRec.sizes, size ) ];
fi;
end );
#############################################################################
##
#F NumberPerfectLibraryGroups( size )
##
## `NumberPerfectLibraryGroups' returns the number of nonisomorphic perfect
## groups of size size for 1 <= size <= 1 000 000 which are available in the
## perfect groups library.
##
InstallGlobalFunction( NumberPerfectLibraryGroups, function ( size )
local sizenum;
# get the number and return it.
sizenum := PerfGrpLoad( size );
if sizenum = fail or size in PERFRec.notAvailable or size = 1 then
return 0;
else
return PERFRec.number[sizenum];
fi;
end );
#############################################################################
##
#F PerfectCentralProduct( <grpdata> ) . . . . . . . . . . . . . . local
##
## `PerfectCentralProduct' returns, generators, relators and subgroup
## information for
## the direct product of two perfect groups or their central product modulo
## some given central element.
##
## It is expected that grpdata[1] is either of the form
## [ 2, <size1>, <n1>, <size2>, <n2> ]
## or [ 3, <size1>, <n1>, <size2>, <n2>, <string1>, <string2> ... ]
##
## In the first case, the resulting group G is just the direct product D of
## the n1-th group of size size1, G1, and the n2-th group of size size2, G2,
## from the perfect groups library.
##
## In the second case, the string entries are expected to be the names of
## suitable generators of D such that their product is the central element
## to be factored out in D to contain G.
##
## Note: This function is an internal function, hence the arguments are not
## checked to be in range. In particular, the first source entry which is
## expected to be 2 or 3 is neither checked nor used. Moreover, the perfect
## groups record PERFRec is expected to be already loaded.
##
PerfectCentralProduct := function ( grpdata )
local source,orbsize,nargs,grp1,grp2,names1,names2,names,F,fgens,
gens1,ngens1,gens2,words1,words2,rels,sub,i,j;
# get the arguments.
source:=grpdata[1];
orbsize:=grpdata[6];
nargs := Length( source );
grp1:=PERFGRP[PerfGrpLoad(source[2])][source[3]];
grp2:=PERFGRP[PerfGrpLoad(source[4])][source[5]];
# construct names for the generators of the group G to be constructed.
names1:=List(grp1[1][2],i->Concatenation([i],"1"));
names2:=List(grp2[1][2],i->Concatenation([i],"2"));
names := Concatenation( names1, names2 );
# get the associated free group generators.
F := FreeGroup( names );
fgens:=GeneratorsOfGroup(F);
ngens1 := Length( names1 );
gens1 := fgens{[1..ngens1]};
gens2 := fgens{[ngens1+1..Length(names)]};
# get relators and subgroup words
words1:=CallFuncList(grp1[1][3],gens1);
words2:=CallFuncList(grp2[1][3],gens2);
# common relations
rels:=Concatenation(words1[1],words2[1]);
# commuting relations
for i in gens1 do
for j in gens2 do
Add(rels,Comm(i,j));
od;
od;
sub:=[];
# in case of a central product compute additional relations and store
# suitable subgroups for a faithful permutation representation.
if Length(source)>5 then
Add(rels,Product(List(source{[6..Length(source)]},
i->fgens[Position(names,i)])));
for i in words1[2] do
for j in words2[2] do
Add(sub,Concatenation(i,j));
od;
od;
fi;
# return the result
return [F,fgens,rels,sub];
end;
#############################################################################
##
#F PerfectSubdirectProduct( <source> ) . . . . . . . . . . . . . . . . local
##
## `PerfectSubdirectProduct' returns, in form of a finitely presented group,
## the subdirect product of two perfect groups.
##
## It expects the associated source entry to be of the form
## [ 4, <size1>, <n1>, <size2>, <n2>, <over> ]
## or [ 4, <size1>, <n1>, <size2>, <n2>, <over>, <n1'>, <n2'> ]
##
## The resulting group G is the subdirect product of the n1-th group of size
## size1, G1, and the n2-th group of size size2, G2, from the perfect groups
## library over the perfect group G0 of size over.
##
## Note: This function is an internal function, hence the arguments are not
## checked to be in range. In particular, the first source entry which is
## expected to be 4 is neither checked nor used. Moreover, the perfect
## groups record PERFRec is expected to be already loaded.
##
## Warning: The method used here is n o t a general method to construct
## subdirect products. It is only guaranteed that it works correctly for the
## given set of examples.
##
PerfectSubdirectProduct := function (grpdata)
local source,grp1,grp2,grp0,ngens0,ngens1,ngens2,gens0,gens1,gens2,nrels0,
names0,names1,names2,names,F,fgens,ngens,rels,rels0,rels1,rels2,i,j;
# get the arguments.
source:=grpdata[1];
grp1:=PERFGRP[PerfGrpLoad(source[2])][source[3]];
grp2:=PERFGRP[PerfGrpLoad(source[4])][source[5]];
grp0:=PERFGRP[PerfGrpLoad(source[6])][1];
# construct names for the generators of the group G to be constructed.
ngens0:=Length(grp0[1][2]);
ngens1:=Length(grp1[1][2]);
ngens2:=Length(grp2[1][2]);
names0:=List(grp0[1][2],i->[i]);
names1:=List(grp1[1][2]{[ngens0+1..ngens1]},i->Concatenation([i],"1"));
names2:=List(grp2[1][2]{[ngens0+1..ngens2]},i->Concatenation([i],"2"));
names := Concatenation(names0,names1,names2);
# get the associated free group generators.
F := FreeGroup( names );
fgens:=GeneratorsOfGroup(F);
ngens:=Length(fgens);
gens0 := fgens{[1..ngens0]};
gens1 := fgens{[ngens0+1..ngens1]};
gens2 := fgens{[ngens1+1..ngens]};
# initialize relations
rels:=[];
for i in gens1 do
for j in gens2 do
Add(rels,Comm(i,j));
od;
od;
gens1:=Concatenation(gens0,gens1);
gens2:=Concatenation(gens0,gens2);
# get relators
rels0:=CallFuncList(grp0[1][3],gens0)[1];
rels1:=CallFuncList(grp1[1][3],gens1)[1];
rels2:=CallFuncList(grp2[1][3],gens2)[1];
# construct defining relators for G.
nrels0:=Length(rels0);
rels:=Concatenation(rels,rels1{[nrels0+1..Length(rels1)]});
rels:=Concatenation(rels,rels2{[nrels0+1..Length(rels2)]});
for i in [ 1 .. ngens0 ] do
gens1[i] := One(F);
gens2[i] := One(F);
od;
rels1:=CallFuncList(grp1[1][3],gens1)[1];
rels2:=CallFuncList(grp2[1][3],gens2)[1];
for i in [ 1 .. nrels0 ] do
Add(rels,rels0[i]*rels1[i]*rels2[i]);
od;
return [F,fgens,rels];
end;
#############################################################################
##
#M PerfGrpConst(<IsSubgroupFpGroup>,<descript>)
##
InstallMethod(PerfGrpConst,"fp grp",true,[IsSubgroupFpGroup,IsList],0,
function(filter,l)
local G,n;
if Length(l)=0 then
G:=FreeGroup(1);
return G/GeneratorsOfGroup(G);
fi;
n:=l[1][1];
if n=1 then
G:=FreeGroup(List(l[1][2],i->[i]));
G:=Concatenation([G,GeneratorsOfGroup(G)],
CallFuncList(l[1][3],GeneratorsOfGroup(G)));
elif n in [2,3] then
G:=PerfectCentralProduct(l);
elif n=4 then
G:=PerfectSubdirectProduct(l);
else
Error("not supported");
fi;
G:=G[1]/G[3];
if Length(l)>1 then
SetName(G,l[2]);
fi;
return G;
end);
#############################################################################
##
#M PerfGrpConst(<IsPermGroup>,<descript>)
##
InstallMethod(PerfGrpConst,"perm grp",true,[IsPermGroup,IsList],0,
function(filter,l)
local G,i,j,g1,g2,gl,e1,e2,gens,rels,subs,pgens,deg,ind,ct,fp,extend,num;
if Length(l)=0 then
# special treatment for the trivial group
G:= GroupByGenerators( [], () );
return G;
fi;
if l[1][1]=1 then
gl:=List(l[1][2],i->[i]);
if Length(l[1])>4 then
# we have auxiliary generators
extend:=l[1][5];
for i in [1..Length(extend)] do
if extend[i]<>0 then
Add(gl,Concatenation("aux",String(i)));
fi;
od;
else
extend:=false;
fi;
gens:=GeneratorsOfGroup(FreeGroup(gl));
num:=Length(l[1][2]);
rels:=CallFuncList(l[1][3],gens{[1..num]});
subs:=rels[2];
rels:=rels[1];
if extend<>false then
# add the further generators in the `auxiliary' component.
for i in [1..Length(extend)] do
if extend[i]<>0 then
num:=num+1;
if IsInt(extend[i]) then
Add(rels,gens[i]^extend[i]/gens[num]);
else
g1:=One(gens[1]);
for j in extend[i] do
if j>0 then g1:=g1*gens[j];
else g1:=g1/gens[-j];fi;
od;
Add(rels,g1/gens[num]);
fi;
fi;
od;
# Tietze
extend:=PresentationFpGroup(Group(gens)/rels);
TzOptions(extend).generatorsLimit:=Length(gens);
TzOptions(extend).printLevel:=0;
TzGo(extend);
G:=FpGroupPresentation(extend);
gl:=gens;
gens:=FreeGeneratorsOfFpGroup(G);
rels:=RelatorsOfFpGroup(G);
subs:=List(subs,i->List(i,j->MappedWord(j,gl,gens)));
fi;
elif l[1][1] in [2,4] then
g1:=PerfGrpConst(IsPermGroup,PERFGRP[PerfGrpLoad(l[1][2])][l[1][3]]);
g2:=PerfGrpConst(IsPermGroup,PERFGRP[PerfGrpLoad(l[1][4])][l[1][5]]);
G:=DirectProduct(g1,g2);
if Length(l[1])>5 then
gl:=Length(PERFGRP[PerfGrpLoad(l[1][6])][1][1][2]);
e1:=Embedding(G,1);
e2:=Embedding(G,2);
g1:=GeneratorsOfGroup(g1);
g2:=GeneratorsOfGroup(g2);
gens:=List([1..gl],i->Image(e1,g1[i])*Image(e2,g2[i]));
for i in [gl+1..Length(g1)] do
Add(gens,Image(e1,g1[i]));
od;
for i in [gl+1..Length(g2)] do
Add(gens,Image(e2,g2[i]));
od;
G:=Subgroup(G,gens);
fi;
if Length(l)>1 then
SetName(G,l[2]);
fi;
return G;
elif l[1][1]=3 then
gens:=PerfectCentralProduct(l);
rels:=gens[3];
subs:=gens[4];
gens:=gens[2];
else
Error("not supported");
fi;
pgens:=List(gens,i->());
deg:=0;
if IsBound(l[6]) then
ind:=l[6];
else
ind:=l[1][4];
fi;
if not IsList(ind) then
ind:=[ind];
fi;
for i in [1..Length(subs)] do
ct:=CosetTableFromGensAndRels(gens,rels,subs[i]);
ct:=ct{[1,3..Length(ct)-1]}; # avoid inverses
if Length(ct[1])<>ind[i] then
Error("index!");
fi;
ct:=List(ct,i->Concatenation([1..deg],i+deg)); #shift
ct:=List(ct,PermList); # make perms
pgens:=List([1..Length(gens)],i->pgens[i]*ct[i]);
deg:=deg+ind[i];
od;
G:= GroupByGenerators( pgens, () );
# # store the presentation
# fp:=Group(gens,gens[1]^0)/rels;
# SetIsomorphismFpGroup(G,GroupHomomorphismByImages(G,fp,pgens,
# GeneratorsOfGroup(fp)));
# SetIsomorphismPermGroup(fp,GroupHomomorphismByImages(fp,G,
# GeneratorsOfGroup(fp),pgens));
if Length(l)>1 then
SetName(G,l[2]);
fi;
return G;
end);
#############################################################################
##
#F PerfectGroup([<filter>,]<sz>,<nr>) . . . . Access perfect groups library
##
InstallGlobalFunction( PerfectGroup, function(arg)
local func,sz,p;
PerfGrpLoad(0); # force loading
if not IsFunction(arg[1]) then
func:=IsSubgroupFpGroup;
sz:=arg;
else
func:=arg[1];
sz:=arg{[2..Length(arg)]};
fi;
# list given
if Length(sz)=1 then
if not IsList(sz[1]) then
sz:=[sz[1],1];
else
sz:=sz[1];
fi;
fi;
if sz[1] in PERFRec.notKnown then
Error("Perfect groups of size ",sz[1]," not known");
elif sz[1] in PERFRec.notAvailable then
Error("Perfect groups of size ",sz[1]," not available");
elif sz[1]=1 then
Error("The trivial group is not considered to be part of this library");
fi;
p:=PerfGrpLoad(sz[1]);
if p=fail or sz[2]>PERFRec.number[p] then
Error("PerfectGroup(",sz[1],",",sz[2],") does not exist !");
fi;
p:=PerfGrpConst(func,PERFGRP[p][sz[2]]);
SetSize(p,sz[1]);
SetPerfectIdentification(p,ShallowCopy(sz));
SetIsPerfectGroup(p,true);
SetFilterObj(p,IsPerfectLibraryGroup);
return p;
end );
#############################################################################
##
#F DisplayInformationPerfectGroups( <size> ) . . . . . . . . . . . . . . . .
#F DisplayInformationPerfectGroups( <size>, <n> ) . . . . . . . . . . . . .
#F DisplayInformationPerfectGroups( [ <size>, <n> ] ) . . . . . . . . . . .
##
## `DisplayInformationPerfectGroups' displays some invariants of the n-th
## group of size size from the perfect groups library.
##
## If no value of n has been specified, the invariants will be displayed for
## all groups of size size available in the library.
##
InstallGlobalFunction( DisplayInformationPerfectGroups,
function ( arg )
local size,i,nr,n,leng,sizenum,hpnum,description,centre,orbsize;
if IsInt(arg[1]) then
size:=arg[1];
if Length(arg)=1 then
nr:=[1..NumberPerfectLibraryGroups(size)];
else
nr:=arg[2];
fi;
else
size:=arg[1][1];
nr:=arg[1][2];
fi;
if IsInt(nr) then
nr:=[nr];
fi;
sizenum:=PerfGrpLoad(size);
if size in PERFRec.notAvailable then
Print("#I no information available about size ",size,"\n");
return;
elif size in PERFRec.notKnown then
Print("#I no information known about size ",size,"\n");
return;
fi;
# loop over the given range.
for n in nr do
# get the required data from main list.
description := PERFGRP[sizenum][n][2];
hpnum := PERFGRP[sizenum][n][3];
centre := PERFGRP[sizenum][n][4];
orbsize := PERFGRP[sizenum][n][6];
# print the group number.
Print( "#I Perfect group ", size );
if Length(nr) > 1 then
Print( ".", n );
fi;
Print( ": " );
# print a message if the group is simple or quaqsisimple.
if centre = -1 then
if size = 1 then
Print( "trivial group " );
else
Print( "simple group " );
fi;
elif centre < -1 then
Print( "quasisimple group " );
centre := -centre;
fi;
# print the Holt-Plesken description.
Print( description, "\n#I " );
# print the size of the centre.
if centre > 1 then
Print( " centre = ", centre );
fi;
# print the group size.
Print( " size = " );
PrintFactorsInt( size );
# print the orbit sizes of the available permutation representations.
if IsInt( orbsize ) then
Print( " orbit size = ", orbsize, "\n" );
else
orbsize := ShallowCopy( orbsize );
Sort( orbsize );
Print( " orbit sizes = ", orbsize[1] );
for i in [ 2 .. Length( orbsize ) ] do
Print( " + ", orbsize[i] );
od;
Print( "\n" );
fi;
# print the Holt-Plesken classes and numbers.
if IsInt( hpnum ) then
Print( "#I Holt-Plesken class ", hpnum );
else
Print( "#I Holt-Plesken class ", hpnum[1] );
Print( " (", hpnum[2], ",", hpnum[3], ")" );
leng := Length( hpnum );
if leng > 3 then
if leng = 4 then
Print( " (occurs also in class ", hpnum[4] );
else
Print( " (occurs also in classes ", hpnum[4] );
for i in [ 5 .. leng ] do
Print( ", ", hpnum[i] );
od;
fi;
Print( ")" );
fi;
fi;
Print( "\n" );
od;
end );
#############################################################################
##
#F SizeNumbersPerfectGroups( <factor>, ..., <factor> ) . . . . . . . . . . .
##
## `SizeNumbersPerfectGroups' returns a list of the size numbers of all
## perfect library groups whose composition factors cover the given factors.
## Each argument must be one of the valid names of simple factors or a
## positive integer.
##
## The size number of a group from the perfect groups library is a pair of
## the form [ size, n ], where size is the group size and n is the number of
## the group within the list of all library groups of that size.
##
InstallGlobalFunction( SizeNumbersPerfectGroups, function ( arg )
local a6a6, a6a6a6, empty, factor, minsize, minsizenum, n, nn, num, pos,
simple, simple2, size, sizenum, sizenums;
# load the perfect groups record PERFRec if it is not yet available.
PerfGrpLoad( 0 );
# get and check the arguments, and get the minimal group size.
simple := [ ];
minsize := 1;
for factor in arg do
if IsInt( factor ) then
if factor < 1 then
Error( "illegal order of abelian factor" );
fi;
minsize := minsize * factor;
else
pos := Position( PERFRec.nameSimpleGroup, factor );
if pos = fail then
Error( "illegal name of simple factor" );
fi;
num := PERFRec.numberSimpleGroup[pos];
sizenum := PERFRec.sizeNumberSimpleGroup[num];
minsize := minsize * sizenum[1];
Add( simple, num );
fi;
od;
empty := simple = [ ];
if not empty then
if Length( simple ) = 1 then
simple := simple[1];
else
Sort( simple );
fi;
fi;
# initialize the resulting list of size numbers;
sizenums := [ ];
a6a6 := [1,1];
a6a6a6 := [1,1,1];
# get the first size to be handled.
minsizenum := Maximum(2,PositionSorted( PERFRec.sizes, minsize ));
# loop over all library groups of size >= minsize.
for sizenum in [ minsizenum .. Length( PERFRec.sizes ) ] do
# check the size for being a multiple of minsize.
if PERFRec.sizes[sizenum] mod minsize = 0 then
# loop over the library groups of size size.
size := PERFRec.sizes[sizenum];
PerfGrpLoad(size);
nn := PERFRec.number[sizenum];
for n in [ 1 .. nn ] do
if PERFGRP[sizenum][n]<>fail then
simple2 := PERFGRP[sizenum][n][5];
if simple = simple2 or empty or
IsList( simple2 ) and ( simple in simple2 or
( simple2 = a6a6 and simple = a6a6a6 ) ) then
# add the pair [size,n] to the list of size numbers.
Add( sizenums, [ size, n ] );
fi;
fi;
od;
fi;
od;
# return the list of size numbers.
return sizenums;
end );
#############################################################################
##
#M PerfectIdentification(<G>) . . . . . . . . . . . . id. for perfect groups
##
InstallMethod(PerfectIdentification,"id. for perfect groups",true,
[IsGroup],0,
function(G)
local s,l;
if not IsPerfectGroup(G) then
return fail;
fi;
s:=Size(G);
PerfGrpLoad(0);
if s>=10^6 or s in PERFRec.notAvailable or s in PERFRec.notKnown then
Print("#W No information about size ",s," available\n");
return fail;
fi;
l:=NumberPerfectLibraryGroups(s);
while l>1 do
if IsomorphismGroups(G,PerfectGroup(IsPermGroup,s,l))<>fail then
return [s,l];
fi;
l:=l-1;
od;
return [s,1];
end);
#############################################################################
##
#M IsomorphismFpGroup for perfect library groups
##
InstallMethod(IsomorphismFpGroup,"perfect library groups",true,
[IsPerfectLibraryGroup],100,
function(G)
local H,hom,permgens,fpgens;
H:=PerfectGroup(IsSubgroupFpGroup,PerfectIdentification(G));
permgens:=GeneratorsOfGroup(G);
fpgens:=GeneratorsOfGroup(H);
if Length(permgens)<>Length(fpgens) then
# remove auxiliary gens
hom:=GroupHomomorphismByImagesNC(G,H,permgens{[1..Length(fpgens)]},fpgens);
else
hom:=GroupHomomorphismByImagesNC(G,H,permgens,fpgens);
fi;
SetIsInjective(hom,true);
SetIsSurjective(hom,true);
return hom;
end);
#############################################################################
##
#M IsomorphismPermGroup for perfect library groups
##
InstallMethod(IsomorphismPermGroup,"perfect library groups",true,
[IsPerfectLibraryGroup],100,
function(G)
local H,hom,permgens,fpgens;
H:=PerfectGroup(IsPermGroup,PerfectIdentification(G));
fpgens:=GeneratorsOfGroup(G);
permgens:=GeneratorsOfGroup(H);
if Length(permgens)<>Length(fpgens) then
# remove auxiliary gens
hom:=GroupHomomorphismByImagesNC(G,H,fpgens,permgens{[1..Length(fpgens)]});
else
hom:=GroupHomomorphismByImagesNC(G,H,fpgens,permgens);
fi;
SetIsInjective(hom,true);
SetIsSurjective(hom,true);
return hom;
end);
#############################################################################
##
#E perf.grp . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##
|