/usr/share/gap/grp/ree.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | #############################################################################
#
#W ree.gd GAP library Alexander Hulpke
##
##
#Y (C) 2001 School Math. Sci., University of St Andrews, Scotland
##
#############################################################################
##
#O ReeGroupCons( <filter>, <q> )
##
## <ManSection>
## <Oper Name="ReeGroupCons" Arg='filter, q'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareConstructor( "ReeGroupCons", [ IsGroup, IsInt ] );
#############################################################################
##
#F ReeGroup( [<filt>, ] <q> ) . . . . . . . . . . . . . . . Ree group
#F Ree( [<filt>, ] <q> )
##
## <#GAPDoc Label="ReeGroup">
## <ManSection>
## <Func Name="ReeGroup" Arg='[filt, ] q'/>
## <Func Name="Ree" Arg='[filt, ] q'/>
##
## <Description>
## Constructs a group isomorphic to the Ree group <M>^2G_2(q)</M> where
## <M>q = 3^{{1+2m}}</M> for <M>m</M> a non-negative integer.
## <P/>
## If <A>filt</A> is not given it defaults to <Ref Func="IsMatrixGroup"/>
## and the generating matrices are based on <Cite Key="KLM01"/>.
## (No particular choice of a generating set is guaranteed.)
## <P/>
## <Example><![CDATA[
## gap> ReeGroup( 27 );
## Ree(27)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal( "ReeGroup", function ( arg )
if Length(arg) = 1 then
return ReeGroupCons( IsMatrixGroup, arg[1] );
elif IsOperation(arg[1]) then
if Length(arg) = 2 then
return ReeGroupCons( arg[1], arg[2] );
fi;
fi;
Error( "usage: ReeGroup( [<filter>, ] <m> )" );
end );
DeclareSynonym( "Ree", ReeGroup );
#############################################################################
##
#E
|