This file is indexed.

/usr/share/gap/grp/simple.gd is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
#############################################################################
##
#W  simple.gd                 GAP Library                    Alexander Hulpke
##
##
#Y  Copyright (C) 2011 The GAP Group
##
##  This file contains basic constructions for simple groups of bounded size,
##  if necessary by calling the `atlasrep' package.
##


#############################################################################
##
#F  SimpleGroup( <id> [,<param1>[,<param2>[] )  
##
##  <#GAPDoc Label="SimpleGroup">
##  <ManSection>
##  <Func Name="SimpleGroup" Arg='id [,param]'/>
##
##  <Description>
##  This function will construct <B>an</B> instance of the specified simple group.
##  Groups are specified via their name in ATLAS style notation, with parameters added
##  if necessary. The intelligence applied to parsing the name is limited, and at the
##  moment no proper extensions can be constructed.
##  For groups who do not have a permutation representation of small degree the
##  ATLASREP package might need to be installed to construct theses groups.
##  <Example><![CDATA[
##  gap> g:=SimpleGroup("M(23)");
##  M23
##  gap> Size(g);
##  10200960
##  gap> g:=SimpleGroup("PSL",3,5);
##  PSL(3,5)
##  gap> Size(g);
##  372000
##  gap> g:=SimpleGroup("PSp6",2);    
##  PSp(6,2)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("SimpleGroup");

#############################################################################
##
#F  SimpleGroupsIterator( [<start>,<end>] )
##
##  <#GAPDoc Label="SimpleGroupsIterator">
##  <ManSection>
##  <Func Name="SimpleGroupsIterator" Arg='[start[,end]]'/>
##
##  <Description>
##  This function returns an iterator that will run over all simple groups, starting
##  at order <A>start</A> if specified, up to order <M>10^{18}</M> (or -- if specified
##  -- order <A>end</A>). If the option <A>NOPSL2</A> is given, groups of type
##  <M>PSL_2(q)</M> are omitted.
##  <Example><![CDATA[
##  gap> it:=SimpleGroupsIterator(20000);
##  <iterator>
##  gap> List([1..8],x->NextIterator(it)); 
##  [ A8, PSL(3,4), PSL(2,37), PSp(4,3), Sz(8), PSL(2,32), PSL(2,41), 
##    PSL(2,43) ]
##  gap> it:=SimpleGroupsIterator(1,2000);;
##  gap> l:=[];;for i in it do Add(l,i);od;l;
##  [ A5, PSL(2,7), A6, PSL(2,8), PSL(2,11), PSL(2,13) ]
##  gap> it:=SimpleGroupsIterator(20000,100000:NOPSL2);;
##  gap> l:=[];;for i in it do Add(l,i);od;l;
##  [ A8, PSL(3,4), PSp(4,3), Sz(8), PSU(3,4), M12 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
DeclareGlobalFunction("SimpleGroupsIterator");


#############################################################################
##
#F  ClassicalIsomorphismTypeFiniteSimpleGroup(<G>] )
##
##  <#GAPDoc Label="ClassicalIsomorphismTypeFiniteSimpleGroup">
##  <ManSection>
##  <Func Name="ClassicalIsomorphismTypeFiniteSimpleGroup" Arg='G'/>
##  This function returns a result equivalent to (and based on)
##  <Ref Func="IsomorphismTypeInfoFiniteSimpleGroup"/>, but returns a
##  classically names series (consistent with
##  <Ref Func="SimpleGroup"/>) and the parameter always in a list. This makes it
##  easier to parse the result.
##  <Description>
##  <Example><![CDATA[
##  gap> ClassicalIsomorphismTypeFiniteSimpleGroup(SimpleGroup("O+",8,2));
##  rec( parameter := [ 8, 2 ], series := "O+" )
##  gap> IsomorphismTypeInfoFiniteSimpleGroup(SimpleGroup("O+",8,2));     
##  rec( name := "D(4,2) = O+(8,2)", parameter := [ 4, 2 ], series := "D" )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
DeclareGlobalFunction("ClassicalIsomorphismTypeFiniteSimpleGroup");