/usr/share/gap/lib/algfld.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 | #############################################################################
##
#W algfld.gd GAP Library Alexander Hulpke
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1999 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the categories, attributes, properties and operations
## for algebraic extensions of fields and their elements
#############################################################################
##
#C IsAlgebraicElement(<obj>)
##
## <#GAPDoc Label="IsAlgebraicElement">
## <ManSection>
## <Filt Name="IsAlgebraicElement" Arg='obj' Type='Category'/>
##
## <Description>
## is the category for elements of an algebraic extension.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsAlgebraicElement", IsScalar and IsZDFRE and
IsAssociativeElement and IsAdditivelyCommutativeElement
and IsCommutativeElement);
DeclareCategoryCollections( "IsAlgebraicElement");
DeclareCategoryCollections( "IsAlgebraicElementCollection");
DeclareCategoryCollections( "IsAlgebraicElementCollColl");
#############################################################################
##
#C IsAlgebraicElementFamily Category for Families of Algebraic Elements
##
## <ManSection>
## <Filt Name="IsAlgebraicElementFamily" Arg='obj' Type='Category'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareCategoryFamily( "IsAlgebraicElement" );
#############################################################################
##
#C IsAlgebraicExtension(<obj>)
##
## <#GAPDoc Label="IsAlgebraicExtension">
## <ManSection>
## <Filt Name="IsAlgebraicExtension" Arg='obj' Type='Category'/>
##
## <Description>
## is the category of algebraic extensions of fields.
## <Example><![CDATA[
## gap> IsAlgebraicExtension(e);
## true
## gap> IsAlgebraicExtension(Rationals);
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsAlgebraicExtension", IsField );
#############################################################################
##
#A AlgebraicElementsFamilies List of AlgElm. families to one poly over
##
## <ManSection>
## <Attr Name="AlgebraicElementsFamilies" Arg='obj'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute( "AlgebraicElementsFamilies",
IsUnivariatePolynomial, "mutable" );
#############################################################################
##
#O AlgebraicElementsFamily Create Family of alg elms
##
## <ManSection>
## <Oper Name="AlgebraicElementsFamily" Arg='obj'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareOperation( "AlgebraicElementsFamily",
[IsField,IsUnivariatePolynomial]);
#############################################################################
##
#O AlgebraicExtension(<K>,<f>)
##
## <#GAPDoc Label="AlgebraicExtension">
## <ManSection>
## <Oper Name="AlgebraicExtension" Arg='K,f'/>
##
## <Description>
## constructs an extension <A>L</A> of the field <A>K</A> by one root of the
## irreducible polynomial <A>f</A>, using Kronecker's construction.
## <A>L</A> is a field whose <Ref Attr="LeftActingDomain"/> value is
## <A>K</A>.
## The polynomial <A>f</A> is the <Ref Attr="DefiningPolynomial"/> value
## of <A>L</A> and the attribute
## <Ref Func="RootOfDefiningPolynomial"/>
## of <A>L</A> holds a root of <A>f</A> in <A>L</A>.
## <Example><![CDATA[
## gap> x:=Indeterminate(Rationals,"x");;
## gap> p:=x^4+3*x^2+1;;
## gap> e:=AlgebraicExtension(Rationals,p);
## <algebraic extension over the Rationals of degree 4>
## gap> IsField(e);
## true
## gap> a:=RootOfDefiningPolynomial(e);
## a
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "AlgebraicExtension",
[IsField,IsUnivariatePolynomial]);
#############################################################################
##
#F MaxNumeratorCoeffAlgElm(<a>)
##
## <ManSection>
## <Func Name="MaxNumeratorCoeffAlgElm" Arg='a'/>
##
## <Description>
## maximal (absolute value, in numerator)
## coefficient in the representation of algebraic elm. <A>a</A>
## </Description>
## </ManSection>
##
DeclareOperation("MaxNumeratorCoeffAlgElm",[IsScalar]);
#############################################################################
##
#F DefectApproximation( <K> ) . . . . . . . approximation for defect K, i.e.
#F denominators of integer elements in K
##
## <ManSection>
## <Func Name="DefectApproximation" Arg='K'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute("DefectApproximation",IsAlgebraicExtension);
#############################################################################
##
#F AlgExtEmbeddedPol(<ext>,<pol>)
##
## <ManSection>
## <Func Name="AlgExtEmbeddedPol" Arg='ext,pol'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction("AlgExtEmbeddedPol");
DeclareGlobalFunction("AlgExtSquareHensel");
|