/usr/share/gap/lib/algfp.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 | #############################################################################
##
#W algfp.gd GAP library Alexander Hulpke
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations for finitely presented algebras
##
#############################################################################
##
#C IsElementOfFpAlgebra
##
DeclareCategory( "IsElementOfFpAlgebra", IsRingElement );
#############################################################################
##
#C IsElementOfFpAlgebraCollection
##
DeclareCategoryCollections( "IsElementOfFpAlgebra" );
#############################################################################
##
#C IsElementOfFpAlgebraFamily
##
DeclareCategoryFamily( "IsElementOfFpAlgebra" );
#############################################################################
##
#C IsSubalgebraFpAlgebra
##
DeclareCategory( "IsSubalgebraFpAlgebra", IsAlgebra );
#############################################################################
##
#M IsSubalgebraFpAlgebra( <D> ) . for alg. that is coll. of f.p. alg. elms.
##
InstallTrueMethod( IsSubalgebraFpAlgebra,
IsAlgebra and IsElementOfFpAlgebraCollection );
#############################################################################
##
#P IsFullFpAlgebra( <A> )
##
## A f.~p. algebra is given by generators which are arithmetic expressions
## in terms of a set of generators $X$ of an f.~p. algebra that was
## constructed as a quotient of a free algebra.
##
## A *full f.~p. algebra* is a f.~p. algebra that contains $X$.
#T or better postulate ``contains this free algebra''?
## (So a full f.~p. algebra need *not* contain the whole family of its
## elements.)
##
DeclareProperty( "IsFullFpAlgebra",
IsFLMLOR and IsElementOfFpAlgebraCollection );
#T or do we need `IsAlgebraOfFamily', as in the case of f.p. groups?
#############################################################################
##
#O ElementOfFpAlgebra( <Fam>, <elm> )
##
DeclareOperation( "ElementOfFpAlgebra",
[ IsElementOfFpAlgebraFamily, IsRingElement ] );
############################################################################
##
#O MappedExpression( <expr>, <gens1>, <gens2> )
##
## For an arithmetic expression <expr> in terms of the generators <gens1>,
## `MappedExpression' returns the corresponding expression in terms of
## <gens2>.
##
## Note that it is expected that one can raise elements in <gens2> to the
## zero-th power.
##
DeclareOperation( "MappedExpression",
[ IsElementOfFpAlgebra, IsHomogeneousList, IsHomogeneousList ] );
#############################################################################
##
#F FactorFreeAlgebraByRelators( <F>, <rels> ) . . . factor of free algebra
##
## is an f.p.~algebra $A$ isomorphic to the factor of the free (associative)
## algebra(-with-one) <F> by the two-sided ideasl spanned by the relators
## in the list <rels>.
##
## If <F> is an algebra-with-one then the generators in the list
## `GeneratorsOfAlgebraWithOne( $A$ )' correspond to the generators in the
## list `GeneratorsOfAlgebraWithOne( <F> )'.
## Otherwise the generators in the list `GeneratorsOfAlgebra( $A$ )'
## correspond to the generators in the list `GeneratorsOfAlgebra( <F> )'.
##
DeclareGlobalFunction( "FactorFreeAlgebraByRelators" );
#############################################################################
##
#A FreeGeneratorsOfFpAlgebra( <A> )
##
## is the list of underlying free generators corresponding to the generators
## of the finitely presented algebra <A>.
##
DeclareAttribute( "FreeGeneratorsOfFpAlgebra",
IsSubalgebraFpAlgebra and IsFullFpAlgebra );
############################################################################
##
#A RelatorsOfFpAlgebra( <A> )
##
## is the list of relators of the finitely presented algebra <A>,
## each relator being an expression in terms of the free generators
## provided by `FreeGeneratorsOfFpAlgebra( <A> )'.
##
DeclareAttribute( "RelatorsOfFpAlgebra",
IsSubalgebraFpAlgebra and IsFullFpAlgebra );
#############################################################################
##
#A FreeAlgebraOfFpAlgebra( <A> )
##
## is the underlying free algebra of the finitely presented algebra <A>.
## This is the algebra generated by the free generators provided by
## `FreeGeneratorsOfFpAlgebra( <A> )',
## with coefficient domain `LeftActingDomain( <A> )'.
##
DeclareAttribute( "FreeAlgebraOfFpAlgebra",
IsSubalgebraFpAlgebra and IsFullFpAlgebra );
#############################################################################
##
#P IsNormalForm( <elm> )
##
DeclareProperty( "IsNormalForm", IsObject );
#############################################################################
##
#A NiceNormalFormByExtRepFunction( <Fam> )
##
## `NiceNormalFormByExtRepFunction( <Fam> )' is a function that can be
## applied to the family <Fam> and the external representation of an element
## $e$ of <Fam>;
## This call returns the element of <Fam> that is equal to $e$ and in normal
## form.
##
## If the family <Fam> knows a nice normal form for its elements then the
## elements can be always constructed as normalized elements by
## `NormalizedObjByExtRep'.
##
## (Perhaps a normal form that is expensive to compute will not be regarded
## as a nice normal form.)
##
DeclareAttribute( "NiceNormalFormByExtRepFunction", IsFamily );
#############################################################################
##
#A NiceAlgebraMonomorphism( <A> )
##
## <#GAPDoc Label="NiceAlgebraMonomorphism">
## <ManSection>
## <Attr Name="NiceAlgebraMonomorphism" Arg='A'/>
## <Description>
## If <A>A</A> is an associative algebra with one, returns
## an isomorphism from <A>A</A> onto a matrix algebra
## (see <Ref Attr="IsomorphismMatrixAlgebra"/> for an example).
## If <A>A</A> is a finitely presented Lie algebra, returns an isomorphism
## from <A>A</A> onto a Lie algebra defined by a structure constants table
## (see <Ref Sect="Finitely Presented Lie Algebras"/> for an example).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
## Let <A> be a subspace or subalgebra of a f.p.~algebra.
##
## The `NiceAlgebraMonomorphism' value of the algebra stored in
## the `wholeFamily' component of the elements family of <A>
## is used to define the `\<' relation of algebra elements.
#T use it also for a ``nice normal form''!
##
## If a f.p.~algebra <A> knows the value of `NiceAlgebraMonomorphism'
## then it can be handled via the mechanism of nice bases
## (see~"IsFpAlgebraElementsSpace").
##
## `NiceAlgebraMonomorphism' is inherited to subalgebras and subspaces.
## (If one knows that <A> contains the source then one should set
## `GeneratorsOfLeftModule' for <A>,
## and also one can set `NiceFreeLeftModule' for <A> to the module
## of the basis `basisimages'.)
##
DeclareAttribute( "NiceAlgebraMonomorphism", IsSubalgebraFpAlgebra );
InstallSubsetMaintenance( NiceAlgebraMonomorphism,
IsFreeLeftModule and HasNiceAlgebraMonomorphism, IsFreeLeftModule );
#############################################################################
##
#F IsFpAlgebraElementsSpace( <V> )
##
## If an $F$-vector space <V> is in the filter `IsFpAlgebraElementsSpace'
## then this expresses that <V> consists of elements in a f.p.~algebra,
## and that <V> is handled via the mechanism of nice bases (see~"...")
## in the following way.
## Let $f$ be the `NiceAlgebraMonomorphism' value for <V>
## (see~"NiceAlgebraMonomorphism").
## The `NiceVector' value of $v \in <V>$ is defined as
## $`ImagesRepresentative'( f, v )$;
## the `NiceFreeLeftModuleInfo' value of <V> is irrelevant.
##
## So it is assumed that methods for computing the `NiceAlgebraMonomorphism'
## value are known.
##
DeclareHandlingByNiceBasis( "IsFpAlgebraElementsSpace",
"for free left modules of f.p. algebra elements" );
#############################################################################
##
#F FpAlgebraByGeneralizedCartanMatrix( <F>, <A> )
##
## is a finitely presented associative algebra over the field <F>,
## defined by the generalized Cartan matrix <A>.
##
DeclareGlobalFunction( "FpAlgebraByGeneralizedCartanMatrix" );
#############################################################################
##
#E
|