/usr/share/gap/lib/algfp.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 | #############################################################################
##
#W algfp.gi GAP library Alexander Hulpke
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the methods for finitely presented algebras.
## So far, there are not many.
##
#############################################################################
##
#M ElementOfFpAlgebra( <Fam>, <elm> ) . . . . for family of f.p. alg.elms.
##
InstallMethod(ElementOfFpAlgebra,
"for family of fp. alg. elements and ring element",
true,
[ IsElementOfFpAlgebraFamily, IsRingElement ], 0,
function( fam, elm )
return Objectify( fam!.defaultType, [ Immutable( elm ) ] );
end );
#############################################################################
##
#M ElementOfFpAlgebra( <Fam>, <elm> ) . . for family with nice normal form
##
InstallMethod( ElementOfFpAlgebra,
"for fp. alg. elms. family with normal form, and ring element",
true,
[ IsElementOfFpAlgebraFamily and HasNiceNormalFormByExtRepFunction,
IsRingElement ], 0,
function( Fam, elm )
return NiceNormalFormByExtRepFunction( Fam )( Fam, ExtRepOfObj( elm ) );
end );
#############################################################################
##
#M ExtRepOfObj( <elm> ) . . . . . . . . . . . . . for f.p. algebra element
##
## The external representation of elements in an f.p. algebra is defined as
## a list of length 2, the first entry being the zero coefficient,
## the second being a zipped list containing the external representations
## of the monomials and their coefficients.
##
InstallMethod( ExtRepOfObj,
"for f.p. algebra element",
true,
[ IsElementOfFpAlgebra and IsPackedElementDefaultRep ], 0,
elm -> ExtRepOfObj( elm![1] ) );
#############################################################################
##
#M ObjByExtRep( <Fam>, <descr> ) . for f.p. alg. elms. fam. with normal form
##
InstallMethod( ObjByExtRep,
"for family of f.p. algebra elements with normal form",
true,
[ IsElementOfFpAlgebraFamily and HasNiceNormalFormByExtRepFunction,
IsList ], 0,
function( Fam, descr )
return NiceNormalFormByExtRepFunction( Fam )( Fam, descr );
end );
############################################################################
##
#M MappedExpression( <expr>, <gens1>, <gens2> )
##
BindGlobal( "MappedExpressionForElementOfFreeAssociativeAlgebra",
function( expr, gens1, gens2 )
local mapped, # the mapped expression, result
gen, # one in `gens1'
one, # 1 of the coefficients field
MappedWord, # local function to map words
i, # loop over summands
pos; # position in a list
expr:= ExtRepOfObj( expr )[2];
if IsEmpty( expr ) then
return Zero( gens2[1] );
fi;
# Get the numbers corresponding to the generators.
gens1:= List( gens1, x -> ExtRepOfObj( x )[2] );
for i in [ 1 .. Length( gens1 ) ] do
gen:= gens1[i];
if Length( gen ) = 2 and IsOne( gen[2] ) then
gen:= gen[1];
if Length( gen ) = 0 then
gens1[i]:= 0;
elif Length( gen ) = 2 and gen[2] = 1 then
gens1[i]:= gen[1];
else
Error( "<gens1> must be list of generators or identity" );
fi;
else
Error( "<gens1> must be list of generators or identity" );
fi;
od;
#T This was quite expensive.
#T Better introduce `MappedExpressions' to do this work not so often?
one:= One( expr[2] );
MappedWord:= function( word )
local mapped, i;
mapped:= gens2[ Position( gens1, word[1], 0 ) ] ^ word[2];
for i in [ 4, 6 .. Length( word ) ] do
if word[i] = 1 then
mapped:= mapped * gens2[ Position( gens1, word[i-1], 0 ) ];
else
mapped:= mapped * gens2[ Position( gens1, word[i-1], 0 ) ] ^ word[i];
fi;
od;
return mapped;
end;
# The empty word can be at most at the first position.
if IsEmpty( expr[1] ) then
pos:= Position( gens1, 0, 0 );
if pos <> fail then
mapped:= gens2[ pos ];
else
mapped:= One( gens2[1] );
fi;
else
mapped:= MappedWord( expr[1] );
fi;
# Avoid to multiply explicitly with 1 in order to avoid deep trees.
if expr[2] <> one then
mapped:= expr[2] * mapped;
fi;
for i in [ 4, 6 .. Length( expr ) ] do
if expr[i] = one then
mapped:= mapped + MappedWord( expr[ i-1 ] );
else
mapped:= mapped + expr[i] * MappedWord( expr[ i-1 ] );
fi;
od;
return mapped;
end );
#T special method for expression trees! (see GAP 3.5)
InstallMethod( MappedExpression,
"for element of f.p. algebra, and two lists of generators",
IsElmsCollsX,
[ IsElementOfFpAlgebra, IsHomogeneousList, IsHomogeneousList ], 0,
#T install same method for free ass. algebra elements!
MappedExpressionForElementOfFreeAssociativeAlgebra );
#############################################################################
##
#M \=( <x>, <y> ) . . . . . . . . for two normalized f.p. algebra elements
##
InstallMethod( \=,
"for two normalized f.p. algebra elements",
IsIdenticalObj,
[ IsElementOfFpAlgebra and IsNormalForm,
IsElementOfFpAlgebra and IsNormalForm ], 0,
function( x, y )
return ExtRepOfObj( x ) = ExtRepOfObj( y );
end );
#T missing: \= method to look for normal form in the family
#############################################################################
##
#M \=( <x>, <y> ) . . . . . . . . . . . . . . for two f.p. algebra elements
##
InstallMethod( \=,
"for two f.p. algebra elements (try nice monomorphism)",
IsIdenticalObj,
[ IsElementOfFpAlgebra,
IsElementOfFpAlgebra ], 0,
function( x, y )
local hom;
hom:= NiceAlgebraMonomorphism( FamilyObj( x )!.wholeAlgebra );
if hom = fail then
TryNextMethod();
fi;
return ImagesRepresentative( hom, x ) = ImagesRepresentative( hom, y );
end );
#############################################################################
##
#M \<( <x>, <y> ) . . . . . . . . for two normalized f.p. algebra elements
##
## The ordering is defined as follows.
## Expressions with less summands are shorter,
## and for expressions with the same number of summands,
## the words in algebra generators and the coefficients are compared
## according to the ordering in the external representation.
##
InstallMethod( \<,
"for two normalized f.p. algebra elements",
IsIdenticalObj,
[ IsElementOfFpAlgebra and IsNormalForm,
IsElementOfFpAlgebra and IsNormalForm ], 0,
function( x, y )
local lenx, leny, i;
x:= ExtRepOfObj( x )[2];
y:= ExtRepOfObj( y )[2];
lenx:= Length( x );
leny:= Length( y );
# Compare the lengths.
if lenx < leny then
return true;
elif leny < lenx then
return false;
fi;
# For expressions of same length, compare the summands.
for i in [ 1 .. lenx ] do
if x[i] < y[i] then
return true;
elif y[i] < x[i] then
return false;
fi;
od;
# The operands are equal.
return false;
end );
#############################################################################
##
#M \<( <x>, <y> ) . . . . . . . . . . . . . . for two f.p. algebra elements
##
InstallMethod( \<,
"for two f.p. algebra elements (try nice monomorphism)",
IsIdenticalObj,
[ IsElementOfFpAlgebra,
IsElementOfFpAlgebra ], 0,
function( x, y )
local hom;
hom:= NiceAlgebraMonomorphism( FamilyObj( x )!.wholeAlgebra );
if hom = fail then
TryNextMethod();
fi;
return ImagesRepresentative( hom, x ) < ImagesRepresentative( hom, y );
end );
#############################################################################
##
#M FactorFreeAlgebraByRelators( <F>, <rels> ) . . . factor of free algebra
##
InstallGlobalFunction( FactorFreeAlgebraByRelators, function( F, rels )
local A, fam;
# Create a new family.
fam := NewFamily( "FamilyElementsFpAlgebra", IsElementOfFpAlgebra );
# Create the default type for the elements.
fam!.defaultType := NewType( fam,
IsElementOfFpAlgebra and IsPackedElementDefaultRep );
fam!.freeAlgebra := F;
fam!.relators := Immutable( rels );
fam!.familyRing := FamilyObj(LeftActingDomain(F));
# We do not set the characteristic since this depends on the fact
# whether or not we are 0-dimensional.
# Create the algebra.
if IsAlgebraWithOne( F ) then
A := Objectify(
NewType( CollectionsFamily( fam ),
IsSubalgebraFpAlgebra
and IsAlgebraWithOne
and IsWholeFamily
and IsAttributeStoringRep ),
rec() );
SetLeftActingDomain( A, LeftActingDomain( F ) );
SetGeneratorsOfAlgebraWithOne( A,
List( GeneratorsOfAlgebraWithOne( F ),
i -> ElementOfFpAlgebra( fam, i ) ) );
else
A := Objectify(
NewType( CollectionsFamily( fam ),
IsSubalgebraFpAlgebra
and IsWholeFamily
and IsAttributeStoringRep ),
rec() );
SetLeftActingDomain( A, LeftActingDomain( F ) );
SetGeneratorsOfAlgebra( A,
List( GeneratorsOfAlgebra( F ),
i -> ElementOfFpAlgebra( fam, i ) ) );
fi;
SetZero( fam, ElementOfFpAlgebra( fam, Zero( F ) ) );
UseFactorRelation( F, rels, A );
SetIsFullFpAlgebra( A, true );
fam!.wholeAlgebra:= A;
return A;
end );
#############################################################################
##
#M Characteristic( <A> )
#M Characteristic( <algelm> )
#M Characteristic( <algelmfam> )
##
## (via delegations)
##
InstallMethod( Characteristic, "for an elements family of an fp subalgebra",
[ IsElementOfFpAlgebraFamily ],
function( fam )
local A,n,one,x;
A := fam!.wholeAlgebra;
if IsAlgebraWithOne(A) then
one := One(A);
if Zero(A) = one then return 1; fi;
else
if Dimension(A) = 0 then return 1; fi;
fi;
if IsField(LeftActingDomain(A)) then
return Characteristic(LeftActingDomain(A));
else
if not IsAlgebraWithOne(A) then return fail; fi;
# This might be horribly slow and might not terminate if the
# characteristic is 0:
n := 2;
x := one+one;
while not(IsZero(x)) do
x := x + one;
n := n + 1;
od;
return n;
fi;
end );
#############################################################################
##
#M FreeGeneratorsOfFpAlgebra( <A> )
##
InstallMethod( FreeGeneratorsOfFpAlgebra,
"for a full f.p. algebra",
true,
[ IsSubalgebraFpAlgebra and IsFullFpAlgebra ], 0,
function( A )
A:= ElementsFamily( FamilyObj( A ) )!.freeAlgebra;
if IsMagmaWithOne( A ) then
return GeneratorsOfAlgebraWithOne( A );
else
return GeneratorsOfAlgebra( A );
fi;
end );
############################################################################
##
#M RelatorsOfFpAlgebra( <A> )
##
InstallMethod( RelatorsOfFpAlgebra,
"for a full f.p. algebra",
true,
[ IsSubalgebraFpAlgebra and IsFullFpAlgebra ], 0,
A -> ElementsFamily( FamilyObj( A ) )!.relators );
#############################################################################
##
#A FreeAlgebraOfFpAlgebra( <A> )
##
InstallMethod( FreeAlgebraOfFpAlgebra,
"for a full f.p. algebra",
true,
[ IsSubalgebraFpAlgebra and IsFullFpAlgebra ], 0,
A -> ElementsFamily( FamilyObj( A ) )!.freeAlgebra );
#############################################################################
##
#M IsFullFpAlgebra( <A> )
##
InstallOtherMethod( IsFullFpAlgebra,
"for f. p. algebra",
true,
[ IsAlgebra and IsSubalgebraFpAlgebra ], 0,
function( A )
local Fam;
Fam:= ElementsFamily( FamilyObj( A ) );
return IsSubset( A, List( GeneratorsOfAlgebra( Fam!.freeAlgebra ),
a -> ElementOfFpAlgebra( Fam, a ) ) );
end );
#############################################################################
##
#M NaturalHomomorphismByIdeal( <F>, <I> ) . . . . . for free alg. and ideal
##
## The algebra <F> can be also a free magma ring.
## If it is finite dimensional then we prefer not to regard it as a
## f.p. algebra (modulo relations);
## there is a method for but to work with bases of <A> and <I>.
##
InstallMethod( NaturalHomomorphismByIdeal,
"for free algebra and ideal",
IsIdenticalObj,
[ IsMagmaRingModuloRelations, IsFLMLOR ],
function( F, I )
local image, hom;
if IsInt( Dimension( F ) ) then
TryNextMethod();
fi;
image:= FactorFreeAlgebraByRelators( F, GeneratorsOfIdeal( I ) );
if IsMagmaWithOne( F ) then
hom:= AlgebraWithOneHomomorphismByImagesNC( F, image,
GeneratorsOfAlgebraWithOne( F ),
GeneratorsOfAlgebraWithOne( image ) );
else
hom:= AlgebraHomomorphismByImagesNC( F, image,
GeneratorsOfAlgebra( F ),
GeneratorsOfAlgebra( image ) );
fi;
SetIsSurjective( hom, true );
return hom;
end );
#############################################################################
##
#M Print(<fp alg elm>)
##
InstallMethod(PrintObj,
"fp algebra elements",
true,
[ IsElementOfFpAlgebra and IsPackedElementDefaultRep ], 0,
function( e )
Print( "[", e![1], "]" );
end );
#############################################################################
##
#M \+( <fp alg elm>, <fp alg elm> )
##
InstallMethod( \+,
"fp algebra elements",
IsIdenticalObj,
[ IsElementOfFpAlgebra and IsPackedElementDefaultRep,
IsElementOfFpAlgebra and IsPackedElementDefaultRep ], 0,
function( a, b )
return ElementOfFpAlgebra( FamilyObj( a ), a![1] + b![1] );
end );
#############################################################################
##
#M \-( <fp alg elm>, <fp alg elm> )
##
InstallMethod( \-,
"fp algebra elements",
IsIdenticalObj,
[ IsElementOfFpAlgebra and IsPackedElementDefaultRep,
IsElementOfFpAlgebra and IsPackedElementDefaultRep ], 0,
function( a, b )
return ElementOfFpAlgebra( FamilyObj( a ), a![1] - b![1] );
end );
#############################################################################
##
#M AdditiveInverseOp( <fp alg elm> )
##
InstallMethod( AdditiveInverseOp,
"fp algebra element",
true,
[ IsElementOfFpAlgebra and IsPackedElementDefaultRep ], 0,
function( a )
return ElementOfFpAlgebra( FamilyObj( a ), AdditiveInverse( a![1] ) );
end );
#############################################################################
##
#M OneOp( <fp alg elm> )
##
InstallOtherMethod( OneOp,
"for an f.p. algebra element",
true,
[ IsElementOfFpAlgebra and IsPackedElementDefaultRep ], 0,
function( elm )
local one;
one:= One( elm![1] );
if one <> fail then
one:= ElementOfFpAlgebra( FamilyObj( elm ), one );
fi;
return one;
end );
#############################################################################
##
#M ZeroOp( <fp alg elm>)
##
InstallMethod( ZeroOp,
"for an f.p. algebra element",
true,
[ IsElementOfFpAlgebra and IsPackedElementDefaultRep ], 0,
elm -> ElementOfFpAlgebra( FamilyObj( elm ), Zero( elm![1] ) ) );
#############################################################################
##
#M \*( <fp alg elm>, <fp alg elm> )
##
InstallMethod( \*,
"fp algebra elements",
IsIdenticalObj,
[ IsElementOfFpAlgebra and IsPackedElementDefaultRep,
IsElementOfFpAlgebra and IsPackedElementDefaultRep ], 0,
function( a, b )
return ElementOfFpAlgebra( FamilyObj( a ), a![1] * b![1] );
end);
#############################################################################
##
#M \*( <ring el>, <fp alg elm> )
##
InstallMethod( \*,"ring el *fp algebra el",IsRingsMagmaRings,
[ IsRingElement, IsElementOfFpAlgebra and IsPackedElementDefaultRep ], 0,
function( a, b )
return ElementOfFpAlgebra( FamilyObj( b ), a * b![1] );
end);
#############################################################################
##
#M \*( <fp alg elm>, <ring el> )
##
InstallMethod( \*,"fp algebra el*ring el",IsMagmaRingsRings,
[ IsElementOfFpAlgebra and IsPackedElementDefaultRep, IsRingElement ], 0,
function( a, b )
return ElementOfFpAlgebra( FamilyObj( a ), a![1] * b );
end);
#AH Embedding can only be defined reasonably if a `One' different from
#AH the zero is present
#AH (The factor may collaps).
#T The `One' of the factor may be equal to the `Zero',
#T so the ``embedding'' can be defined as a mapping from the ring
#T to the algebra,
#T but it is injective only if the `One' is not the `Zero'.
#############################################################################
##
#M IsomorphismMatrixFLMLOR( <A> ) . . . . . . . . . . . . for a f.p. FLMLOR
##
InstallMethod( IsomorphismMatrixFLMLOR,
"for a f.p. FLMLOR",
true,
[ IsFLMLOR and IsSubalgebraFpAlgebra ], 0,
A -> Error( "sorry, no method to compute a matrix algebra\n",
"for a (not nec. associative) f.p. algebra" ) );
#############################################################################
##
#M IsomorphismMatrixFLMLOR( <A> ) . . . . . . for a full f.p. assoc. FLMLOR
##
## We compute the operation homomorphism for <A> acting on itself from the
## right.
##
InstallMethod( IsomorphismMatrixFLMLOR,
"for a full f.p. associative FLMLOR",
true,
[ IsFLMLORWithOne and IsSubalgebraFpAlgebra and IsAssociative
and IsFullFpAlgebra ], 0,
A -> OperationAlgebraHomomorphism( A, [ [ Zero( A ) ] ], OnRight ) );
#T change this: second argument should be the <A>-module itself!
#############################################################################
##
#M OperationAlgebraHomomorphism( <A>, <C>, <opr> )
##
InstallOtherMethod( OperationAlgebraHomomorphism,
"for a full f.p. associative FLMLOR, a collection, and a function",
true,
[ IsFLMLORWithOne and IsSubalgebraFpAlgebra and IsAssociative
and IsFullFpAlgebra, IsCollection, IsFunction ], 0,
function( A, C, opr )
Error( "this case will eventually be handled by the Vector Enumerator\n",
"which is not available yet" );
end );
#############################################################################
##
#M NiceAlgebraMonomorphism( <A> ) . . . . . . for a full f.p. assoc. FLMLOR
##
## We delegate to `IsomorphismMatrixFLMLOR'.
##
InstallMethod( NiceAlgebraMonomorphism,
"for a full f.p. associative FLMLOR (call `IsomorphismMatrixFLMLOR')",
true,
[ IsFLMLORWithOne and IsSubalgebraFpAlgebra and IsAssociative
and IsFullFpAlgebra ], 0,
IsomorphismMatrixFLMLOR );
#############################################################################
##
#M IsFiniteDimensional( <A> )
#M Dimension( <A> )
##
#M NiceVector( <A>, <a> )
#M UglyVector( <A>, <r> )
##
## Provided the f.~p. algebra <A> knows its `NiceAlgebraMonomorphism' value,
## it is handled via nice bases.
## So we have to treat the case that this value is not (yet) known.
## Note that `Dimension' may ask whether <A> is finite dimensional,
## so we must provide a (partial) method for it.
##
## The family of elements of <A> stores its whole algebra,
## so it is reasonable to look whether this algebra knows already a
## nice monomorphism.
##
InstallMethod( IsFiniteDimensional,
"for f.p. algebra",
true,
[ IsSubalgebraFpAlgebra ], 0,
function( A )
local iso;
if HasNiceAlgebraMonomorphism(
ElementsFamily( FamilyObj( A ) )!.wholeAlgebra ) then
iso:= NiceAlgebraMonomorphism(
ElementsFamily( FamilyObj( A ) )!.wholeAlgebra );
else
iso:= IsomorphismMatrixFLMLOR( A );
fi;
if iso <> fail then
if IsAlgebraHomomorphismFromFpRep( iso ) then
SetNiceAlgebraMonomorphism( A, iso );
fi;
return true;
fi;
TryNextMethod();
end );
#############################################################################
##
#M NiceFreeLeftModuleInfo( <V> )
#M NiceVector( <V>, <v> )
#M UglyVector( <V>, <r> )
##
InstallHandlingByNiceBasis( "IsFpAlgebraElementsSpace", rec(
detect := function( F, gens, V, zero )
return IsElementOfFpAlgebraCollection( V ) and IsFreeLeftModule( V );
end,
NiceFreeLeftModuleInfo := ReturnTrue,
NiceVector := function( A, a )
local hom;
hom:= NiceAlgebraMonomorphism( FamilyObj( a )!.wholeAlgebra );
if hom = fail then
TryNextMethod();
fi;
return ImagesRepresentative( hom, a );
end,
UglyVector := function( A, r )
local hom;
hom:= NiceAlgebraMonomorphism(
ElementsFamily( FamilyObj( A ) )!.wholeAlgebra );
if hom = fail then
TryNextMethod();
fi;
return PreImagesRepresentative( hom, r );
end ) );
#############################################################################
##
#F FpAlgebraByGeneralizedCartanMatrix( <F>, <A> )
##
InstallGlobalFunction( FpAlgebraByGeneralizedCartanMatrix, function( F, A )
local n, # dimension of the matrix `A'
i, j, k, # loop variables
gensstrings, # names of algebra generators
a, # algebra, result
gens, # algebra generators
e, h, f, # different portions of generators
LieBracket, # function that computes the commutator
rels, # list of relators
rel; # one relator
if not IsField( F ) then
Error( "<F> must be a field" );
elif not IsGeneralizedCartanMatrix( A ) then
Error( "<A> must be a generalized Cartan matrix" );
fi;
n:= Length( A );
gensstrings:= [];
for i in [ 1 .. n ] do
gensstrings[ i ]:= Concatenation( "e", String(i) );
od;
for i in [ 1 .. n ] do
gensstrings[ n + i ]:= Concatenation( "h", String(i) );
od;
for i in [ 1 .. n ] do
gensstrings[ 2*n + i ]:= Concatenation( "f", String(i) );
od;
a:= FreeAssociativeAlgebraWithOne( F, gensstrings );
gens:= GeneratorsOfAlgebraWithOne( a );
e:= gens{ [ 1 .. n ] };
h:= gens{ [ n + 1 .. 2*n ] };
f:= gens{ [ 2*n + 1 .. 3*n ] };
LieBracket:= function( A, B )
return A*B - B*A;
end;
rels:= [];
for i in [ 1 .. n ] do
for j in [ i+1 .. n ] do
Add( rels, LieBracket( h[i], h[j] ) );
od;
od;
for i in [ 1 .. n ] do
for j in [ 1 .. n ] do
if i = j then
Add( rels, LieBracket( e[i], f[i] ) - h[i] );
else
Add( rels, LieBracket( e[i], f[j] ) );
fi;
od;
od;
for i in [ 1 .. n ] do
for j in [ 1 .. n ] do
Add( rels, LieBracket( h[i], e[j] ) - A[i][j] * e[j] );
Add( rels, LieBracket( h[i], f[j] ) + A[i][j] * f[j] );
od;
od;
for i in [ 1 .. n ] do
for j in [ i+1 .. n ] do
if A[i][j] = 0 then
Add( rels, LieBracket( e[i], e[j] ) );
Add( rels, LieBracket( f[i], f[j] ) );
fi;
od;
od;
for i in [ 1 .. n ] do
for j in [ 1 .. n ] do
if i <> j then
rel:= e[j];
for k in [ 1 .. 1 - A[i][j] ] do
rel:= LieBracket( e[i], rel );
od;
Add( rels, rel );
rel:= f[j];
for k in [ 1 .. 1 - A[i][j] ] do
rel:= LieBracket( f[i], rel );
od;
Add( rels, rel );
fi;
od;
od;
# Return the algebra.
return a / rels;
end );
#############################################################################
##
#E
|