This file is indexed.

/usr/share/gap/lib/algfp.gi is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
#############################################################################
##
#W  algfp.gi                   GAP library                   Alexander Hulpke
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the methods for finitely presented algebras.
##  So far, there are not many.
##


#############################################################################
##
#M  ElementOfFpAlgebra( <Fam>, <elm> )  . . . .  for family of f.p. alg.elms.
##
InstallMethod(ElementOfFpAlgebra,
    "for family of fp. alg. elements and ring element",
    true,
    [ IsElementOfFpAlgebraFamily, IsRingElement ], 0,
    function( fam, elm )
    return Objectify( fam!.defaultType, [ Immutable( elm ) ] );
    end );


#############################################################################
##
#M  ElementOfFpAlgebra( <Fam>, <elm> )  . .  for family with nice normal form
##
InstallMethod( ElementOfFpAlgebra,
    "for fp. alg. elms. family with normal form, and ring element",
    true,
    [ IsElementOfFpAlgebraFamily and HasNiceNormalFormByExtRepFunction,
      IsRingElement ], 0,
    function( Fam, elm )
    return NiceNormalFormByExtRepFunction( Fam )( Fam, ExtRepOfObj( elm ) );
    end );


#############################################################################
##
#M  ExtRepOfObj( <elm> )  . . . . . . . . . . . . .  for f.p. algebra element
##
##  The external representation of elements in an f.p. algebra is defined as
##  a list of length 2, the first entry being the zero coefficient,
##  the second being a zipped list containing the external representations
##  of the monomials and their coefficients.
##
InstallMethod( ExtRepOfObj,
    "for f.p. algebra element",
    true,
    [ IsElementOfFpAlgebra and IsPackedElementDefaultRep ], 0,
    elm -> ExtRepOfObj( elm![1] ) );


#############################################################################
##
#M  ObjByExtRep( <Fam>, <descr> ) . for f.p. alg. elms. fam. with normal form
##
InstallMethod( ObjByExtRep,
    "for family of f.p. algebra elements with normal form",
    true,
    [ IsElementOfFpAlgebraFamily and HasNiceNormalFormByExtRepFunction,
      IsList ], 0,
    function( Fam, descr )
    return NiceNormalFormByExtRepFunction( Fam )( Fam, descr );
    end );


############################################################################
##
#M  MappedExpression( <expr>, <gens1>, <gens2> )
##
BindGlobal( "MappedExpressionForElementOfFreeAssociativeAlgebra",
    function( expr, gens1, gens2 )

    local mapped,      # the mapped expression, result
          gen,         # one in `gens1'
          one,         # 1 of the coefficients field
          MappedWord,  # local function to map words
          i,           # loop over summands
          pos;         # position in a list

    expr:= ExtRepOfObj( expr )[2];
    if IsEmpty( expr ) then
      return Zero( gens2[1] );
    fi;

    # Get the numbers corresponding to the generators.
    gens1:= List( gens1, x -> ExtRepOfObj( x )[2] );
    for i in [ 1 .. Length( gens1 ) ] do
      gen:= gens1[i];
      if Length( gen ) = 2 and IsOne( gen[2] ) then
        gen:= gen[1];
        if Length( gen ) = 0 then
          gens1[i]:= 0;
        elif Length( gen ) = 2 and gen[2] = 1 then
          gens1[i]:= gen[1];
        else
          Error( "<gens1> must be list of generators or identity" );
        fi;
      else
        Error( "<gens1> must be list of generators or identity" );
      fi;
    od;
#T This was quite expensive.
#T Better introduce `MappedExpressions' to do this work not so often?

    one:= One( expr[2] );

    MappedWord:= function( word )
    local mapped, i;
    mapped:= gens2[ Position( gens1, word[1], 0 ) ] ^ word[2];
    for i in [ 4, 6 .. Length( word ) ] do
      if word[i] = 1 then
        mapped:= mapped * gens2[ Position( gens1, word[i-1], 0 ) ];
      else
        mapped:= mapped * gens2[ Position( gens1, word[i-1], 0 ) ] ^ word[i];
      fi;
    od;
    return mapped;
    end;

    # The empty word can be at most at the first position.
    if IsEmpty( expr[1] ) then
      pos:= Position( gens1, 0, 0 );
      if pos <> fail then
        mapped:= gens2[ pos ];
      else
        mapped:= One( gens2[1] );
      fi;
    else
      mapped:= MappedWord( expr[1] );
    fi;

    # Avoid to multiply explicitly with 1 in order to avoid deep trees.
    if expr[2] <> one then
      mapped:= expr[2] * mapped;
    fi;

    for i in [ 4, 6 .. Length( expr ) ] do
      if expr[i] = one then
        mapped:= mapped + MappedWord( expr[ i-1 ] );
      else
        mapped:= mapped + expr[i] * MappedWord( expr[ i-1 ] );
      fi;
    od;

    return mapped;
end );
#T special method for expression trees! (see GAP 3.5)

InstallMethod( MappedExpression,
    "for element of f.p. algebra, and two lists of generators",
    IsElmsCollsX,
    [ IsElementOfFpAlgebra, IsHomogeneousList, IsHomogeneousList ], 0,
#T install same method for free ass. algebra elements!
    MappedExpressionForElementOfFreeAssociativeAlgebra );


#############################################################################
##
#M  \=( <x>, <y> )  . . . . . . . .  for two normalized f.p. algebra elements
##
InstallMethod( \=,
    "for two normalized f.p. algebra elements",
    IsIdenticalObj,
    [ IsElementOfFpAlgebra and IsNormalForm,
      IsElementOfFpAlgebra and IsNormalForm ], 0,
    function( x, y )
    return ExtRepOfObj( x ) = ExtRepOfObj( y );
    end );

#T missing: \= method to look for normal form in the family


#############################################################################
##
#M  \=( <x>, <y> )  . . . . . . . . . . . . . . for two f.p. algebra elements
##
InstallMethod( \=,
    "for two f.p. algebra elements (try nice monomorphism)",
    IsIdenticalObj,
    [ IsElementOfFpAlgebra,
      IsElementOfFpAlgebra ], 0,
    function( x, y )
    local hom;
    hom:= NiceAlgebraMonomorphism( FamilyObj( x )!.wholeAlgebra );
    if hom = fail then
      TryNextMethod();
    fi;
    return ImagesRepresentative( hom, x ) = ImagesRepresentative( hom, y );
    end );


#############################################################################
##
#M  \<( <x>, <y> )  . . . . . . . .  for two normalized f.p. algebra elements
##
##  The ordering is defined as follows.
##  Expressions with less summands are shorter,
##  and for expressions with the same number of summands,
##  the words in algebra generators and the coefficients are compared
##  according to the ordering in the external representation.
##
InstallMethod( \<,
    "for two normalized f.p. algebra elements",
    IsIdenticalObj,
    [ IsElementOfFpAlgebra and IsNormalForm,
      IsElementOfFpAlgebra and IsNormalForm ], 0,
    function( x, y )
    local lenx, leny, i;

    x:= ExtRepOfObj( x )[2];
    y:= ExtRepOfObj( y )[2];
    lenx:= Length( x );
    leny:= Length( y );

    # Compare the lengths.
    if lenx < leny then
      return true;
    elif leny < lenx then
      return false;
    fi;

    # For expressions of same length, compare the summands.
    for i in [ 1 .. lenx ] do
      if x[i] < y[i] then
        return true;
      elif y[i] < x[i] then
        return false;
      fi;
    od;

    # The operands are equal.
    return false;
    end );


#############################################################################
##
#M  \<( <x>, <y> )  . . . . . . . . . . . . . . for two f.p. algebra elements
##
InstallMethod( \<,
    "for two f.p. algebra elements (try nice monomorphism)",
    IsIdenticalObj,
    [ IsElementOfFpAlgebra,
      IsElementOfFpAlgebra ], 0,
    function( x, y )
    local hom;
    hom:= NiceAlgebraMonomorphism( FamilyObj( x )!.wholeAlgebra );
    if hom = fail then
      TryNextMethod();
    fi;
    return ImagesRepresentative( hom, x ) < ImagesRepresentative( hom, y );
    end );


#############################################################################
##
#M  FactorFreeAlgebraByRelators( <F>, <rels> )  . . .  factor of free algebra
##
InstallGlobalFunction( FactorFreeAlgebraByRelators, function( F, rels )
    local A, fam;

    # Create a new family.
    fam := NewFamily( "FamilyElementsFpAlgebra", IsElementOfFpAlgebra );

    # Create the default type for the elements.
    fam!.defaultType := NewType( fam,
                       IsElementOfFpAlgebra and IsPackedElementDefaultRep );

    fam!.freeAlgebra := F;
    fam!.relators := Immutable( rels );
    fam!.familyRing := FamilyObj(LeftActingDomain(F));

    # We do not set the characteristic since this depends on the fact
    # whether or not we are 0-dimensional.

    # Create the algebra.
    if IsAlgebraWithOne( F ) then

      A := Objectify(
          NewType( CollectionsFamily( fam ),
                       IsSubalgebraFpAlgebra
                   and IsAlgebraWithOne
                   and IsWholeFamily
                   and IsAttributeStoringRep ),
          rec() );

      SetLeftActingDomain( A, LeftActingDomain( F ) );
      SetGeneratorsOfAlgebraWithOne( A,
          List( GeneratorsOfAlgebraWithOne( F ),
                i -> ElementOfFpAlgebra( fam, i ) ) );

    else

      A := Objectify(
          NewType( CollectionsFamily( fam ),
                       IsSubalgebraFpAlgebra
                   and IsWholeFamily
                   and IsAttributeStoringRep ),
          rec() );

      SetLeftActingDomain( A, LeftActingDomain( F ) );
      SetGeneratorsOfAlgebra( A,
          List( GeneratorsOfAlgebra( F ),
                i -> ElementOfFpAlgebra( fam, i ) ) );

    fi;

    SetZero( fam, ElementOfFpAlgebra( fam, Zero( F ) ) );
    UseFactorRelation( F, rels, A );
    SetIsFullFpAlgebra( A, true );
    fam!.wholeAlgebra:= A;

    return A;
end );


#############################################################################
##
#M  Characteristic( <A> )
#M  Characteristic( <algelm> )
#M  Characteristic( <algelmfam> )
##
##  (via delegations)
##
InstallMethod( Characteristic, "for an elements family of an fp subalgebra",
  [ IsElementOfFpAlgebraFamily ],
  function( fam )
    local A,n,one,x;
    A := fam!.wholeAlgebra;
    if IsAlgebraWithOne(A) then
        one := One(A);
        if Zero(A) = one then return 1; fi;
    else
        if Dimension(A) = 0 then return 1; fi;
    fi;
    if IsField(LeftActingDomain(A)) then
        return Characteristic(LeftActingDomain(A));
    else
        if not IsAlgebraWithOne(A) then return fail; fi;
        # This might be horribly slow and might not terminate if the
        # characteristic is 0:
        n := 2;
        x := one+one;
        while not(IsZero(x)) do
            x := x + one;
            n := n + 1;
        od;
        return n;
    fi;
  end );


#############################################################################
##
#M  FreeGeneratorsOfFpAlgebra( <A> )
##
InstallMethod( FreeGeneratorsOfFpAlgebra,
    "for a full f.p. algebra",
    true,
    [ IsSubalgebraFpAlgebra and IsFullFpAlgebra ], 0,
    function( A )
    A:= ElementsFamily( FamilyObj( A ) )!.freeAlgebra;
    if IsMagmaWithOne( A ) then
      return GeneratorsOfAlgebraWithOne( A );
    else
      return GeneratorsOfAlgebra( A );
    fi;
    end );


############################################################################
##
#M  RelatorsOfFpAlgebra( <A> )
##
InstallMethod( RelatorsOfFpAlgebra,
    "for a full f.p. algebra",
    true,
    [ IsSubalgebraFpAlgebra and IsFullFpAlgebra ], 0,
    A -> ElementsFamily( FamilyObj( A ) )!.relators );


#############################################################################
##
#A  FreeAlgebraOfFpAlgebra( <A> )
##
InstallMethod( FreeAlgebraOfFpAlgebra,
    "for a full f.p. algebra",
    true,
    [ IsSubalgebraFpAlgebra and IsFullFpAlgebra ], 0,
    A -> ElementsFamily( FamilyObj( A ) )!.freeAlgebra );


#############################################################################
##
#M  IsFullFpAlgebra( <A> )
##
InstallOtherMethod( IsFullFpAlgebra,
    "for f. p. algebra",
    true,
    [ IsAlgebra and IsSubalgebraFpAlgebra ], 0,
    function( A )
    local Fam;
    Fam:= ElementsFamily( FamilyObj( A ) );
    return IsSubset( A, List( GeneratorsOfAlgebra( Fam!.freeAlgebra ),
                              a -> ElementOfFpAlgebra( Fam, a ) ) );
    end );


#############################################################################
##
#M  NaturalHomomorphismByIdeal( <F>, <I> )  . . . . . for free alg. and ideal
##
##  The algebra <F> can be also a free magma ring.
##  If it is finite dimensional then we prefer not to regard it as a
##  f.p. algebra (modulo relations);
##  there is a method for  but to work with bases of <A> and <I>.
##
InstallMethod( NaturalHomomorphismByIdeal,
    "for free algebra and ideal",
    IsIdenticalObj,
    [ IsMagmaRingModuloRelations, IsFLMLOR ],
    function( F, I )

    local image, hom;

    if IsInt( Dimension( F ) ) then
      TryNextMethod();
    fi;
    image:= FactorFreeAlgebraByRelators( F, GeneratorsOfIdeal( I ) );

    if IsMagmaWithOne( F ) then
      hom:= AlgebraWithOneHomomorphismByImagesNC( F, image,
                GeneratorsOfAlgebraWithOne( F ),
                GeneratorsOfAlgebraWithOne( image ) );
    else
      hom:= AlgebraHomomorphismByImagesNC( F, image,
                GeneratorsOfAlgebra( F ),
                GeneratorsOfAlgebra( image ) );
    fi;

    SetIsSurjective( hom, true );

    return hom;
    end );


#############################################################################
##
#M  Print(<fp alg elm>)
##
InstallMethod(PrintObj,
    "fp algebra elements",
    true,
    [ IsElementOfFpAlgebra and IsPackedElementDefaultRep ], 0,
    function( e )
    Print( "[", e![1], "]" );
    end );


#############################################################################
##
#M  \+( <fp alg elm>, <fp alg elm> )
##
InstallMethod( \+,
    "fp algebra elements",
    IsIdenticalObj,
    [ IsElementOfFpAlgebra and IsPackedElementDefaultRep,
      IsElementOfFpAlgebra and IsPackedElementDefaultRep ], 0,
    function( a, b )
    return ElementOfFpAlgebra( FamilyObj( a ), a![1] + b![1] );
    end );


#############################################################################
##
#M  \-( <fp alg elm>, <fp alg elm> )
##
InstallMethod( \-,
    "fp algebra elements",
    IsIdenticalObj,
    [ IsElementOfFpAlgebra and IsPackedElementDefaultRep,
      IsElementOfFpAlgebra and IsPackedElementDefaultRep ], 0,
    function( a, b )
    return ElementOfFpAlgebra( FamilyObj( a ), a![1] - b![1] );
    end );


#############################################################################
##
#M  AdditiveInverseOp( <fp alg elm> )
##
InstallMethod( AdditiveInverseOp,
    "fp algebra element",
    true,
    [ IsElementOfFpAlgebra and IsPackedElementDefaultRep ], 0,
    function( a )
    return ElementOfFpAlgebra( FamilyObj( a ), AdditiveInverse( a![1] ) );
    end );


#############################################################################
##
#M  OneOp( <fp alg elm> )
##
InstallOtherMethod( OneOp,
    "for an f.p. algebra element",
    true,
    [ IsElementOfFpAlgebra and IsPackedElementDefaultRep ], 0,
    function( elm )
    local one;
    one:= One( elm![1] );
    if one <> fail then
      one:= ElementOfFpAlgebra( FamilyObj( elm ), one );
    fi;
    return one;
    end );


#############################################################################
##
#M  ZeroOp( <fp alg elm>)
##
InstallMethod( ZeroOp,
    "for an f.p. algebra element",
    true,
    [ IsElementOfFpAlgebra and IsPackedElementDefaultRep ], 0,
    elm -> ElementOfFpAlgebra( FamilyObj( elm ), Zero( elm![1] ) ) );


#############################################################################
##
#M  \*( <fp alg elm>, <fp alg elm> )
##
InstallMethod( \*,
    "fp algebra elements",
    IsIdenticalObj,
    [ IsElementOfFpAlgebra and IsPackedElementDefaultRep,
      IsElementOfFpAlgebra and IsPackedElementDefaultRep ], 0,
    function( a, b )
    return ElementOfFpAlgebra( FamilyObj( a ), a![1] * b![1] );
    end);


#############################################################################
##
#M  \*( <ring el>, <fp alg elm> )
##
InstallMethod( \*,"ring el *fp algebra el",IsRingsMagmaRings,
    [ IsRingElement, IsElementOfFpAlgebra and IsPackedElementDefaultRep ], 0,
    function( a, b )
    return ElementOfFpAlgebra( FamilyObj( b ), a * b![1] );
    end);


#############################################################################
##
#M  \*( <fp alg elm>, <ring el> )
##
InstallMethod( \*,"fp algebra el*ring el",IsMagmaRingsRings,
    [ IsElementOfFpAlgebra and IsPackedElementDefaultRep, IsRingElement ], 0,
    function( a, b )
    return ElementOfFpAlgebra( FamilyObj( a ), a![1] * b );
    end);

#AH  Embedding can only be defined reasonably if a `One' different from
#AH  the zero is present
#AH  (The factor may collaps).
#T The `One' of the factor may be equal to the `Zero',
#T so the ``embedding'' can be defined as a mapping from the ring
#T to the algebra,
#T but it is injective only if the `One' is not the `Zero'.


#############################################################################
##
#M  IsomorphismMatrixFLMLOR( <A> )  . . . . . . . . . . . . for a f.p. FLMLOR
##
InstallMethod( IsomorphismMatrixFLMLOR,
    "for a f.p. FLMLOR",
    true,
    [ IsFLMLOR and IsSubalgebraFpAlgebra ], 0,
    A -> Error( "sorry, no method to compute a matrix algebra\n",
                "for a (not nec. associative) f.p. algebra" ) );


#############################################################################
##
#M  IsomorphismMatrixFLMLOR( <A> )  . . . . . . for a full f.p. assoc. FLMLOR
##
##  We compute the operation homomorphism for <A> acting on itself from the
##  right.
##
InstallMethod( IsomorphismMatrixFLMLOR,
    "for a full f.p. associative FLMLOR",
    true,
    [ IsFLMLORWithOne and IsSubalgebraFpAlgebra and IsAssociative
      and IsFullFpAlgebra ], 0,
    A  -> OperationAlgebraHomomorphism( A, [ [ Zero( A ) ] ], OnRight ) );
#T change this: second argument should be the <A>-module itself!


#############################################################################
##
#M  OperationAlgebraHomomorphism( <A>, <C>, <opr> )
##
InstallOtherMethod( OperationAlgebraHomomorphism,
    "for a full f.p. associative FLMLOR, a collection, and a function",
    true,
    [ IsFLMLORWithOne and IsSubalgebraFpAlgebra and IsAssociative
      and IsFullFpAlgebra, IsCollection, IsFunction ], 0,
    function( A, C, opr )
    Error( "this case will eventually be handled by the Vector Enumerator\n",
           "which is not available yet" );
    end );


#############################################################################
##
#M  NiceAlgebraMonomorphism( <A> )  . . . . . . for a full f.p. assoc. FLMLOR
##
##  We delegate to `IsomorphismMatrixFLMLOR'.
##
InstallMethod( NiceAlgebraMonomorphism,
    "for a full f.p. associative FLMLOR (call `IsomorphismMatrixFLMLOR')",
    true,
    [ IsFLMLORWithOne and IsSubalgebraFpAlgebra and IsAssociative
      and IsFullFpAlgebra ], 0,
    IsomorphismMatrixFLMLOR );


#############################################################################
##
#M  IsFiniteDimensional( <A> )
#M  Dimension( <A> )
##
#M  NiceVector( <A>, <a> )
#M  UglyVector( <A>, <r> )
##
##  Provided the f.~p. algebra <A> knows its `NiceAlgebraMonomorphism' value,
##  it is handled via nice bases.
##  So we have to treat the case that this value is not (yet) known.
##  Note that `Dimension' may ask whether <A> is finite dimensional,
##  so we must provide a (partial) method for it.
##
##  The family of elements of <A> stores its whole algebra,
##  so it is reasonable to look whether this algebra knows already a
##  nice monomorphism.
##
InstallMethod( IsFiniteDimensional,
    "for f.p. algebra",
    true,
    [ IsSubalgebraFpAlgebra ], 0,
    function( A )
    local iso;
    if HasNiceAlgebraMonomorphism(
           ElementsFamily( FamilyObj( A ) )!.wholeAlgebra ) then
      iso:= NiceAlgebraMonomorphism(
                ElementsFamily( FamilyObj( A ) )!.wholeAlgebra );
    else
      iso:= IsomorphismMatrixFLMLOR( A );
    fi;
    if iso <> fail then
      if IsAlgebraHomomorphismFromFpRep( iso ) then
        SetNiceAlgebraMonomorphism( A, iso );
      fi;
      return true;
    fi;
    TryNextMethod();
    end );


#############################################################################
##
#M  NiceFreeLeftModuleInfo( <V> )
#M  NiceVector( <V>, <v> )
#M  UglyVector( <V>, <r> )
##
InstallHandlingByNiceBasis( "IsFpAlgebraElementsSpace", rec(
    detect := function( F, gens, V, zero )
      return IsElementOfFpAlgebraCollection( V ) and IsFreeLeftModule( V );
      end,

    NiceFreeLeftModuleInfo := ReturnTrue,

    NiceVector := function( A, a )
      local hom;
      hom:= NiceAlgebraMonomorphism( FamilyObj( a )!.wholeAlgebra );
      if hom = fail then
        TryNextMethod();
      fi;
      return ImagesRepresentative( hom, a );
      end,

    UglyVector := function( A, r )
      local hom;
      hom:= NiceAlgebraMonomorphism(
                ElementsFamily( FamilyObj( A ) )!.wholeAlgebra );
      if hom = fail then
        TryNextMethod();
      fi;
      return PreImagesRepresentative( hom, r );
      end ) );


#############################################################################
##
#F  FpAlgebraByGeneralizedCartanMatrix( <F>, <A> )
##
InstallGlobalFunction( FpAlgebraByGeneralizedCartanMatrix, function( F, A )

    local n,            # dimension of the matrix `A'
          i, j, k,      # loop variables
          gensstrings,  # names of algebra generators
          a,            # algebra, result
          gens,         # algebra generators
          e, h, f,      # different portions of generators
          LieBracket,   # function that computes the commutator
          rels,         # list of relators
          rel;          # one relator

    if not IsField( F ) then
      Error( "<F> must be a field" );
    elif not IsGeneralizedCartanMatrix( A ) then
      Error( "<A> must be a generalized Cartan matrix" );
    fi;

    n:= Length( A );
    gensstrings:= [];
    for i in [ 1 .. n ] do
      gensstrings[       i ]:= Concatenation( "e", String(i) );
    od;
    for i in [ 1 .. n ] do
      gensstrings[   n + i ]:= Concatenation( "h", String(i) );
    od;
    for i in [ 1 .. n ] do
      gensstrings[ 2*n + i ]:= Concatenation( "f", String(i) );
    od;
    a:= FreeAssociativeAlgebraWithOne( F, gensstrings );
    gens:= GeneratorsOfAlgebraWithOne( a );
    e:= gens{ [       1 ..   n ] };
    h:= gens{ [   n + 1 .. 2*n ] };
    f:= gens{ [ 2*n + 1 .. 3*n ] };

    LieBracket:= function( A, B )
      return A*B - B*A;
    end;

    rels:= [];
    for i in [ 1 .. n ] do
      for j in [ i+1 .. n ] do
        Add( rels, LieBracket( h[i], h[j] ) );
      od;
    od;

    for i in [ 1 .. n ] do
      for j in [ 1 .. n ] do
        if i = j then
          Add( rels, LieBracket( e[i], f[i] ) - h[i] );
        else
          Add( rels, LieBracket( e[i], f[j] ) );
        fi;
      od;
    od;

    for i in [ 1 .. n ] do
      for j in [ 1 .. n ] do
        Add( rels, LieBracket( h[i], e[j] ) - A[i][j] * e[j] );
        Add( rels, LieBracket( h[i], f[j] ) + A[i][j] * f[j] );
      od;
    od;

    for i in [ 1 .. n ] do
      for j in [ i+1 .. n ] do
        if A[i][j] = 0 then
          Add( rels, LieBracket( e[i], e[j] ) );
          Add( rels, LieBracket( f[i], f[j] ) );
        fi;
      od;
    od;

    for i in [ 1 .. n ] do
      for j in [ 1 .. n ] do
        if i <> j then
          rel:= e[j];
          for k in [ 1 .. 1 - A[i][j] ] do
            rel:= LieBracket( e[i], rel );
          od;
          Add( rels, rel );
          rel:= f[j];
          for k in [ 1 .. 1 - A[i][j] ] do
            rel:= LieBracket( f[i], rel );
          od;
          Add( rels, rel );
        fi;
      od;
    od;

    # Return the algebra.
    return a / rels;
end );


#############################################################################
##
#E