/usr/share/gap/lib/algliess.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 | #############################################################################
##
#W algliess.gi GAP library Willem de Graaf
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains functions to construct semisimple Lie algebras of type
## $A_n$, $B_n$, $C_n$, $D_n$, $E_6$, $E_7$, $E_8$, $F_4$, $G_2$,
## as s.c. algebras. Also there are the restricted Lie algebras
## of types W,H,K,S.
##
## The algorithm used for types $A-G$ is the one described in
## Kac, Infinite Dimensional Lie Algebras, and de Graaf, Lie Algebras:
## Theory and Algorithms.
##
##
##############################################################################
##
#F AddendumSCTable( <T>, <i>, <j>, <k>, <val> )
##
## This function adds the structure constant c_{ij}^k to the table 'T'.
## If 'T[i][j]' contains already some constants, then 'k' and 'val' have
## to be inserted at the right position.
##
AddendumSCTable := function( T, i, j, k, val )
local pos,m,r,inds,cfs;
pos:= Position( T[i][j][1], k );
if pos = fail then
if T[i][j][1] = [] then
SetEntrySCTable( T, i, j, [ val, k ] );
else
m:=T[i][j][1][1];
r:=1;
inds:=[];
cfs:=[];
while m<k do
Add(inds,m);
Add(cfs,T[i][j][2][r]);
r:=r+1;
if r > Length(T[i][j][1]) then
m:= k;
else
m:= T[i][j][1][r];
fi;
od;
Add(inds,k);
Add(cfs,val);
while r <= Length(T[i][j][1]) do
Add(inds,T[i][j][1][r]);
Add(cfs,T[i][j][2][r]);
r:=r+1;
od;
T[i][j]:= [inds,cfs];
T[j][i]:= [inds,-cfs];
fi;
else
cfs:= ShallowCopy( T[i][j][2] );
cfs[pos]:= cfs[pos]+val;
T[i][j]:= [T[i][j][1], cfs];
cfs:= ShallowCopy( T[j][i][2] );
cfs[pos]:= cfs[pos]-val;
T[j][i]:= [T[j][i][1], cfs];
fi;
end;
SimpleLieAlgebraTypeA_G:= function( type, n, F )
local T, # The table of the Lie algebra constructed.
i,j,k,l, # Loop variables.
lst, # A list.
R, # Positive roots
cc, # List of coefficients.
lenR, # length of 'R'
Rij, # The sum of two roots from 'R'.
eps, # The so-called "epsilon"-function.
epsmat, # A matrix used to calculate the eps-function.
dim, # The dimension of the Lie algebra.
C, # Cartan matrix
L, # Lie algebra, result
vectors, # vectors spanning a Cartan subalgebra
CSA, # List of indices of the basis vectors of a Cartan
# subalgebra.
e,
inds, # List of indices.
r,r1,r2, # Roots.
roots, # List of roots.
primes, # List of lists of corresponding roots.
B, # Basis of a vector space.
cfs, # List of coefficient lists.
d, # Order of the diagram automorphism.
found, # Boolean.
a,
q,
perm, # Permutation representing the diagram automorphism.
shorts,
posR, # Positive roots.
CartanMatrixToPositiveRoots; # Function for determining the
# positive roots.
CartanMatrixToPositiveRoots:= function( C )
local rank, posr, ready, ind, le, i, a, j, ej, r, b,
q;
rank:= Length( C );
# `posr' will be a list of the positive roots. We start with the
# simple roots, which are simply unit vectors.
posr:= IdentityMat( rank );
ready:= false;
ind:= 1;
le:= rank;
while ind <= le do
# We loop over those elements of `posR' that have been found in
# the previous round, i.e., those at positions ranging from
# `ind' to `le'.
le:= Length( posr );
for i in [ind..le] do
a:= posr[i];
# We determine whether a+ej is a root (where ej is the j-th
# simple root.
for j in [1..rank] do
ej:= posr[j];
# We determine the maximum number `r' such that a-r*ej is
# a root.
r:= -1;
b:= ShallowCopy( a );
while b in posr do
b:= b-ej;
r:=r+1;
od;
q:= r-LinearCombination( TransposedMat( C )[j], a );
if q>0 and (not a+ej in posr ) then
Add( posr, a+ej );
fi;
od;
od;
ind:= le+1;
le:= Length( posr );
od;
return posr;
end;
# The following function is the so-called epsilon function.
eps:= function( a, b, epm )
local rk;
rk:= Length( epm );
return Product( [1..rk],i ->
Product( [1..rk], j ->
epm[i][j] ^ ( a[i]*b[j] ) ) );
end;
if type in [ "A", "D", "E" ] then
# We are in the simply-laced case. Here we construct the root
# system and the matrix of the epsilon function. Then we can
# fill the multiplication table directly.
C:= 2*IdentityMat( n );
if type = "A" then
for i in [1..n-1] do
C[i][i+1]:= -1;
C[i+1][i]:= -1;
od;
elif type = "D" then
if n < 4 then
Error("<n> must be >= 4");
fi;
for i in [1..n-2] do
C[i][i+1]:= -1;
C[i+1][i]:= -1;
od;
C[n-2][n]:=-1;
C[n][n-2]:= -1;
else
C:= [
[ 2, 0, -1, 0, 0, 0, 0, 0 ], [ 0, 2, 0, -1, 0, 0, 0, 0 ],
[ -1, 0, 2, -1, 0, 0, 0, 0 ], [ 0, -1, -1, 2, -1, 0, 0, 0 ],
[ 0, 0, 0, -1, 2, -1, 0, 0 ], [ 0, 0, 0, 0, -1, 2, -1, 0 ],
[ 0, 0, 0, 0, 0, -1, 2, -1 ], [ 0, 0, 0, 0, 0, 0, -1, 2 ] ];
if n = 6 then
C:= C{ [ 1 .. 6 ] }{ [ 1 .. 6 ] };
elif n = 7 then
C:= C{ [ 1 .. 7 ] }{ [ 1 .. 7 ] };
elif n < 6 or 8 < n then
Error( "<n> must be one of 6, 7, 8" );
fi;
fi;
R:= CartanMatrixToPositiveRoots( C );
# We conctruct `epsmat', which satisfies
# /
# |-1 if i=j,
# epsmat[i][j] = |-1 if i and j are connected, and i>j
# | 1 if i and j are not connected or i<j.
# \
# (where `connected' means connected in the Dynkin diagram.
epsmat:= [];
for i in [ 1 .. n ] do
epsmat[i]:= [];
for j in [ 1 .. i-1 ] do
epsmat[i][j]:= 1;
od;
epsmat[i][i]:= -1;
for j in [ i+1 .. n ] do
epsmat[i][j]:= (-1)^C[i][j];
od;
od;
lenR:= Length( R );
dim:= 2*lenR + n;
posR:= List( R, r -> Zero(F)*r );
# Initialize the s.c. table
T:= EmptySCTable( dim, Zero(F), "antisymmetric" );
lst:= [ 1 .. n ] + 2 * lenR;
for i in [1..lenR] do
for j in [i..lenR] do
Rij:= R[i]+R[j];
if Rij in R then
k:= Position(R,Rij);
e:= eps(R[i],R[j],epsmat)*One(F);
SetEntrySCTable( T, i, j, [ e, k ] );
SetEntrySCTable( T, i+lenR, j+lenR, [ -e, k+lenR ] );
fi;
if i = j and T[i][j+lenR] = [[],[]] then
# We form the product x_{\alpha_i}*x_{-\alpha_i}, which
# will be an element of the Cartan subalgebra.
inds:= Filtered( [1..n], x -> R[i][x] <> 0 );
T[i][j+lenR]:= [ lst{inds}, R[i]{inds}*One(F) ];
T[j+lenR][i]:= [ lst{inds}, -R[i]{inds}*One(F) ];
fi;
od;
od;
for i in [1..lenR] do
for j in [1..lenR] do
Rij:= R[i]-R[j];
if Rij in R then
k:= Position(R,Rij);
SetEntrySCTable( T, i, j+lenR,
[-One(F)*eps(R[i],-R[j],epsmat),k] );
elif -Rij in R then
k:= Position(R,-Rij);
SetEntrySCTable( T, i, j+lenR,
[One(F)*eps(R[i],-R[j],epsmat),k+lenR] );
fi;
od;
for j in [1..n] do
# We take care of the comutation relations of the form
# [h_j,x_{\beta_i}]= < \beta_i, \alpha_j > x_{\beta_i}.
cc:= LinearCombination( R[i], C[j] );
if cc <> 0*cc then
posR[i][j]:= One(F)*cc;
T[2*lenR+j][i]:=[[i],[One(F)*cc]];
T[i][2*lenR+j]:=[[i],[-One(F)*cc]];
T[2*lenR+j][i+lenR]:=[[i+lenR],[-One(F)*cc]];
T[i+lenR][2*lenR+j]:=[[i+lenR],[One(F)*cc]];
fi;
od;
od;
L:= LieAlgebraByStructureConstants( F, T );
# A Cartan subalgebra is spanned by the last 'n' basis elements.
CSA:= [ dim-n+1 .. dim ];
vectors:= BasisVectors( CanonicalBasis( L ) ){ CSA };
SetCartanSubalgebra( L, SubalgebraNC( L, vectors, "basis" ) );
SetIsRestrictedLieAlgebra( L, Characteristic( F ) > 0 );
elif type in [ "B", "C", "F", "G" ] then
# Now we are in the non simply laced case. In each case we construct
# a simply laced root system, which has a diagram automorphism.
# We take an epsilon function which is invariant under the diagram
# automorphism. Furthermore, the permutation `perm' will represent
# the diagram aotomorphism as acting on the roots (so that
# Permuted( r, perm ) is the result of applying the diagram
# automorphism to the root r).
if type = "B" then
# In this case we construct D_{n+1}.
if n <= 1 then
Error( "<n> must be >= 2");
fi;
C:= 2*IdentityMat( n+1 );
for i in [1..n-1] do
C[i][i+1]:= -1;
C[i+1][i]:= -1;
od;
C[n-1][n+1]:=-1;
C[n+1][n-1]:= -1;
R:= CartanMatrixToPositiveRoots( C );
epsmat:= NullMat( n+1, n+1 ) + 1;
for i in [ 1 .. n-1 ] do
epsmat[i+1][i]:= -1;
epsmat[i][i]:= -1;
od;
epsmat[n+1][n-1]:= -1;
epsmat[n][n]:= -1;
epsmat[n+1][n+1]:= -1;
perm:= (n,n+1);
d:= 2;
elif type = "C" then
# In this case we construct A_{2n-1}.
if n < 2 then
Error( "<n> must be >= 3");
fi;
C:= 2*IdentityMat( 2*n-1 );
for i in [1..2*n-2] do
C[i][i+1]:= -1;
C[i+1][i]:= -1;
od;
R:= CartanMatrixToPositiveRoots( C );
epsmat:= NullMat( 2*n-1, 2*n-1 ) + 1;
for i in [ 1 .. n-1 ] do
epsmat[i][i+1]:= -1;
epsmat[i][i]:= -1;
od;
for i in [n..2*n-2] do
epsmat[i+1][i]:= -1;
epsmat[i][i]:= -1;
od;
epsmat[2*n-1][2*n-1]:= -1;
perm:= ();
for i in [1..n-1] do
perm:= perm*(i,2*n-i);
od;
d:= 2;
elif type = "F" then
# In this case we construct E_6.
if n <> 4 then
Error( "<n> must be equal to 4");
fi;
C:= IdentityMat( 6 );
C[1][3]:=-1; C[2][4]:=-1; C[3][4]:=-1; C[4][5]:=-1; C[5][6]:=-1;
C:= C+TransposedMat( C );
R:= CartanMatrixToPositiveRoots( C );
epsmat:= NullMat( 6, 6 ) + 1;
for i in [1..6] do epsmat[i][i]:= -1; od;
epsmat[1][3]:=-1; epsmat[3][4]:=-1; epsmat[5][4]:=-1;
epsmat[6][5]:=-1; epsmat[2][4]:=-1;
perm:= (1,6)*(3,5);
d:= 2;
elif type = "G" then
# In this case we conctruct D_4.
if n <> 2 then
Error( "<n> must be equal to 2");
fi;
C:= IdentityMat( 4 );
C[1][2]:=-1; C[2][3]:=-1; C[2][4]:=-1;
C:= C+TransposedMat( C );
R:= CartanMatrixToPositiveRoots( C );
epsmat:= NullMat( 4, 4 ) + 1;
for i in [1..4] do epsmat[i][i]:= -1; od;
epsmat[1][2]:=-1; epsmat[4][2]:=-1; epsmat[3][2]:=-1;
perm:= (1,3,4);
d:= 3;
fi;
# Now `roots' will be the list of positive roots of the resulting Lie
# algebra. They are formed from the roots in `R' by applying the
# diagram automorphism. If a r\in R is invariant under the
# automorphism, then it is added to `roots' (and its prime is
# the root itself). Otherwise we add \frac{1}{d}(r+\phi(r)+\cdots
# + \phi^{d-1}(r)), where \phi is the diagram automorphism.
# In this case the prime of the root are all \phi^i(r).
if d = 2 then
roots:= [ ];
primes:= [ ];
for r in R do
r1:= Permuted( r, perm );
if r = r1 then
Add( roots, r );
Add( primes, [ r ] );
else
if not (r+r1)/2 in roots then
Add( roots, (r+r1)/2 );
Add( primes, [ r, r1 ] );
fi;
fi;
od;
B:= Basis( VectorSpace( Rationals, roots{[1..n]} ),roots{[1..n]});
cfs:= List( roots, x -> Coefficients( B, x ) );
elif d = 3 then
roots:= [ ];
primes:= [ ];
for r in R do
r1:= Permuted( r, perm );
if r = r1 then
Add( roots, r );
Add( primes, [ r ] );
else
r2:= (r+r1+Permuted(r1,perm))/3;
if not r2 in roots then
Add( roots, r2 );
Add( primes, [ r, r1, Permuted( r1, perm ) ] );
fi;
fi;
od;
B:= Basis( VectorSpace( Rationals, roots{[1..n]} ),roots{[1..n]});
cfs:= List( roots, x -> Coefficients( B, x ) );
fi;
# `shorts' will be a list of indices indicating where the
# short simple roots are. The coefficients on those places
# in `cfs' need to be divided by `d'.
shorts:= Filtered( [1..n], ii -> Length( primes[ii] ) > 1 );
for i in [1..Length(cfs)] do
for j in shorts do
cfs[i][j]:= cfs[i][j]/d;
od;
od;
Append( R, -R );
lenR:= Length( roots );
dim:= 2*lenR + n;
posR:= List( [1..lenR], ii -> List( [1..n], jj -> Zero( F ) ) );
# Initialize the s.c. table
T:= EmptySCTable( dim, Zero(F), "antisymmetric" );
lst:= [ 1 .. n ] + 2 * lenR;
for i in [1..lenR] do
for j in [i..lenR] do
Rij:= roots[i]+roots[j];
if Rij in roots then
# We look for `r' in `primes[i]' and `r1' in `primes[j]'
# such that `r+r1' lies in `R'.
found:= false;
for k in [1..Length(primes[i])] do
if found then break; fi;
r:= primes[i][k];
for l in [1..Length(primes[j])] do
r1:= primes[j][l];
if r+r1 in R then
found := true; break;
fi;
od;
od;
# `q' will be the maximal integer such that `roots[i]-
# roots[j]' is a root.
k:= Position( roots, Rij );
q:=0; a:= roots[i] - roots[j];
while a in roots or -a in roots do
q:=q+1;
a:= a-roots[j];
od;
e:= eps(r,r1,epsmat)*(q+1)*One(F);
SetEntrySCTable( T, i, j, [ e, k ] );
SetEntrySCTable( T, i+lenR, j+lenR, [ -e, k+lenR ] );
fi;
if i = j and T[i][j+lenR] = [[],[]] then
# We form the product x_{\alpha_i}*x_{-\alpha_i}, which
# will be an element of the Cartan subalgebra.
inds:= Filtered( [1..n], x -> cfs[i][x] <> 0 );
if Length( primes[i] ) = 1 then
T[i][j+lenR]:= [ lst{inds}, cfs[i]{inds}*One(F) ];
T[j+lenR][i]:= [ lst{inds}, -cfs[i]{inds}*One(F) ];
else
T[i][j+lenR]:= [ lst{inds}, cfs[i]{inds}*d*One(F) ];
T[j+lenR][i]:= [ lst{inds}, -cfs[i]{inds}*d*One(F) ];
fi;
fi;
od;
od;
for i in [1..lenR] do
for j in [1..lenR] do
Rij:= roots[i]-roots[j];
if Rij in roots then
found:= false;
for k in [1..Length(primes[i])] do
if found then break; fi;
r:= primes[i][k];
for l in [1..Length(primes[j])] do
r1:= primes[j][l];
if r-r1 in R then
found := true; break;
fi;
od;
od;
k:= Position( roots, Rij );
q:=0; a:= roots[i] + roots[j];
while a in roots or -a in roots do
q:=q+1;
a:= a+roots[j];
od;
SetEntrySCTable( T, i, j+lenR,
[-One(F)*(q+1)*eps(r,-r1,epsmat),k] );
elif -Rij in roots then
found:= false;
for k in [1..Length(primes[i])] do
if found then break; fi;
r:= primes[i][k];
for l in [1..Length(primes[j])] do
r1:= primes[j][l];
if r-r1 in R then
found := true; break;
fi;
od;
od;
k:= Position( roots, -Rij );
q:=0; a:= roots[i] + roots[j];
while a in roots or -a in roots do
q:=q+1;
a:= a+roots[j];
od;
SetEntrySCTable( T, i, j+lenR,
[One(F)*(q+1)*eps(r,-r1,epsmat),k+lenR] );
fi;
od;
for j in [1..n] do
# Now we take care of the relations [h,x_{\beta}]....
cc:= LinearCombination( roots[i], C[j] );
if Length( primes[j] ) > 1 then
# i.e., `roots[j]' is "short".
cc:= d*cc;
fi;
if cc <> 0*cc then
posR[i][j]:= One(F)*cc;
T[2*lenR+j][i]:=[[i],[One(F)*cc]];
T[i][2*lenR+j]:=[[i],[-One(F)*cc]];
T[2*lenR+j][i+lenR]:=[[i+lenR],[-One(F)*cc]];
T[i+lenR][2*lenR+j]:=[[i+lenR],[One(F)*cc]];
fi;
od;
od;
L:= LieAlgebraByStructureConstants( F, T );
# A Cartan subalgebra is spanned by the last 'n' basis elements.
CSA:= [ dim-n+1 .. dim ];
vectors:= BasisVectors( CanonicalBasis( L ) ){ CSA };
SetCartanSubalgebra( L, SubalgebraNC( L, vectors, "basis" ) );
SetIsRestrictedLieAlgebra( L, Characteristic( F ) > 0 );
fi;
R:= Objectify( NewType( NewFamily( "RootSystemFam", IsObject ),
IsAttributeStoringRep and IsRootSystemFromLieAlgebra ),
rec() );
SetUnderlyingLieAlgebra( R, L );
SetPositiveRoots( R, posR );
SetNegativeRoots( R, -posR );
SetSimpleSystem( R, posR{[1..n]} );
SetCanonicalGenerators( R, [ CanonicalBasis( L ){[1..n]},
CanonicalBasis( L ){[lenR+1..lenR+n]},
vectors ] );
SetPositiveRootVectors( R, CanonicalBasis(L){[1..lenR]} );
SetNegativeRootVectors( R, CanonicalBasis(L){[lenR+1..2*lenR]} );
SetChevalleyBasis( L, [ PositiveRootVectors( R ),
NegativeRootVectors( R ),
vectors ] );
if not ( Characteristic( F ) in [ 2, 3 ] ) then
C:= 2*IdentityMat( n );
for i in [1..n] do
for j in [1..n] do
if i <> j then
q:= 0;
r:= posR[i]+posR[j];
while r in posR do
q:=q+1;
r:= r+posR[j];
od;
C[i][j]:= -q;
fi;
od;
od;
SetCartanMatrix( R, C );
SetSemiSimpleType( L, Concatenation( type, String( n ) ) );
fi;
SetRootSystem( L, R );
if Characteristic( F ) = 0 then
SetIsSimpleAlgebra( L, true );
fi;
return L;
end;
##############################################################################
##
#F SimpleLieAlgebraTypeW( <n>, <F> )
##
## The Witt Lie algebra is constructed.
##
## The Witt algebra can be constructed as a subalgebra of the derivation
## algebra of a certain polynomial algebra.
## (see e.g. R. Farnsteiner and H. Strade,
## Modular Lie Algebras and Their Representations, Dekker, New York, 1988.)
## It is determined by a prime p and list of integers
## n=(n_1...n_m). It is spanned by the elements
##
## x^{\alpha}D_j
##
## where \alpha=(i_1..i_m) is a multi index such that 0 <= i_k < p^{n_k}-1
## and 1 <= j <=m. The Lie multiplication is given by
##
## [x^{\alpha}D_i,x^{\beta}D_j]={(\alpha+\beta-\epsilon_i)\choose (\alpha)}*
## x^{\alpha+\beta-\epsilon_i}D_j-{(\alpha+\beta-\epsilon_j)\choose(\beta)}*
## x^{\alpha+\beta-\epsilon_j}D_i.
##
## (We refer to the above mentioned book for the notation.)
##
SimpleLieAlgebraTypeW := function( n, F )
local p, # The characteristic of 'F'.
pn,
dim, # The dimension of the resulting Lie algebra.
eltlist, # A list of basis elements of the Lie algebra.
i,j,k, # Loop variables.
u,noa, # Integers.
a, # A list of integers.
T, # Multiplication table.
x1,x2, # Elements from 'eltlist'.
ex, # Multi index.
no, # Integer (position in a list).
cf, # Coefficient (element from 'F').
L; # The Lie algebra.
if not IsList( n ) then
Error( "<n> must be a list of nonnegative integers" );
fi;
p:= Characteristic( F );
if p = 0 then
Error( "<F> must be a field of nonzero characteristic" );
fi;
pn:=p^Sum( n );
dim:= Length( n )*pn;
eltlist:=[];
# First we construct a list of basis elements. A basis element is given by
# a multi index and an integer u such that 1 <= u <=m.
for i in [0..dim-1] do
# calculate the multi-index a and the derivation D_u belonging to i
u:= EuclideanQuotient( i, pn )+1;
noa:= i mod pn;
# Now we calculate the multi index belonging to noa.
# The relation between multi index and number is given as follows:
# if (i_1...i_m) is the multi index then to that index belongs a number
# noa given by
#
# noa = i_1 + p^n[1]( i_2 + p^n[2]( i_3 + .......))
#
a:=[];
for k in [1..Length( n )-1] do
a[k]:= noa mod p^n[k];
noa:= (noa-a[k])/(p^n[k]);
od;
Add( a, noa );
eltlist[i+1]:=[a,u];
od;
# Initialising the table.
T:=EmptySCTable( dim, Zero( F ), "antisymmetric" );
# Filling the table.
for i in [1..dim] do
for j in [i+1..dim] do
# We calculate [x_i,x_j]. This product is a sum of two elements.
x1:= eltlist[i];
x2:= eltlist[j];
if x2[1][x1[2]] > 0 then
ex:= ShallowCopy( x1[1]+x2[1] );
ex[x1[2]]:=ex[x1[2]]-1;
cf:=One(F);
for k in [1..Length( n )] do
cf:= Binomial( ex[k], x1[1][k] ) * cf;
od;
if cf<>Zero(F) then
no:=Position(eltlist,[ex,x2[2]]);
AddendumSCTable( T, i, j, no, cf );
fi;
fi;
if x1[1][x2[2]] > 0 then
ex:= ShallowCopy( x1[1]+x2[1] );
ex[x2[2]]:=ex[x2[2]]-1;
cf:=One(F);
for k in [1..Length( n )] do
cf:= Binomial( ex[k], x2[1][k] ) * cf;
od;
if cf<>Zero(F) then
no:=Position(eltlist,[ex,x1[2]]);
AddendumSCTable( T, i, j, no, -cf );
fi;
fi;
od;
od;
L:= LieAlgebraByStructureConstants( F, T );
SetIsRestrictedLieAlgebra( L, ForAll( n, x -> x=1 ) );
# We also return the list of basis elements of 'L', because this is needed
# in the functions for the Lie algebras of type 'S' and 'H'.
return [ L, eltlist ];
end;
##############################################################################
##
#F SimpleLieAlgebraTypeS( <n>, <F> )
##
## The "special" Lie algebra is constructed as a subalgebra of the
## Witt Lie algebra. It is spanned by all elements x\in W such that
## div(x)=0, where W is the Witt algebra.
## We refer to the book cited in the comments to the function
## 'SimpleLieAlgebraTypeW' for the details.
##
SimpleLieAlgebraTypeS:= function( n, F )
local dim, # The dimension of the Witt algebra.
i,j, # Loop variables.
WW, # The output of 'SimpleLieAlgebraTypeW'.
eqs, # The equation system for a basis of the Lie algebra.
divlist, # A list of elements of the Witt algebra.
x, # Element from 'divlist'.
dones, # A list of the elements of 'divlist' that have already
# been processed.
eq, # An equation (to be added to 'eqs').
bas, # Basis vectors of the solution space.
L; # The Lie algebra.
WW:=SimpleLieAlgebraTypeW( n, F );
dim:= Dimension( WW[1] );
divlist:= WW[2];
for i in [1..dim] do
#Apply the operator "div" to the elements of divlist.
divlist[i][1][divlist[i][2]]:=divlist[i][1][divlist[i][2]]-1;
od;
# At some positions of 'divlist' there will be the same element. An equation
# will then be a vector of 1's and 0's such that a 1 appears at every
# position where there is a copy of a particular element. After this we
# do not need to consider this element again, so we add it to 'dones'.
eqs:=[]; dones:=[]; i:=1;
while i <= dim do
eq:=List([1..dim],x->Zero(F));
x:=divlist[i];
if not x in dones then
Add(dones,x);
if x[1][x[2]]>=0 then
eq[i]:= One( F );
for j in [i+1..dim] do
if divlist[j][1]=x[1] then
eq[j]:=One( F );
fi;
od;
Add(eqs,eq);
fi;
fi;
i:=i+1;
od;
bas:= NullspaceMat( TransposedMat( eqs ) );
bas:= List( bas, v -> LinearCombination( Basis( WW[1] ), v ) );
L:= LieDerivedSubalgebra( Subalgebra( WW[1], bas, "basis" ) );
SetIsRestrictedLieAlgebra( L, ForAll( n, x -> x=1 ) );
return L;
end;
##############################################################################
##
#F SimpleLieAlgebraTypeH( <n>, <F> )
##
## Just like the special algebra, the Hamiltonian algebra is constructed as
## a subalgebra of the Witt Lie algebra. It is spanned by the image of
## a linear map D_H which maps a special kind of polynomial algebra into
## the Witt algebra. Again we refer to the book cited in the notes to
## 'SimpleLieAlgebraTypeW' for the details.
##
SimpleLieAlgebraTypeH := function( n, F )
local p, # Chracteristic of 'F'.
m, # The length of 'n'.
i,j, # Loop variables.
noa, # Integer.
a, # List of integers "belonging" to 'noa'.
x1,x2, # Multi indices.
mons, # List of multi indices (or monomials).
WW, # The output of 'SimpleLieAlgebraTypeW'.
cf, # List of coefficients of an element of the Witt algebra.
pos, # Position in a list.
sp, # Vector space.
bas, # Basis vectors of the Lie algebra.
L; # The Lie algebra.
p:= Characteristic( F );
if p = 0 then
Error( "<F> must be a field of nonzero characteristic" );
fi;
if not IsList( n ) then
Error( "<n> must be a list of nonnegative integers" );
fi;
m:= Length( n );
if m mod 2 <> 0 then
Error( "<n> must be a list of even length" );
fi;
# 'mons' will be a list of multi indices [i1...1m] such that
# ik < p^n[k] for 1 <= k <= m. The encoding is the same as in
# 'SimpleLieAlgebraTypeW'. The last (or "maximal") element is not taken
# in the list. 'mons' will correspond to the monomials that span the
# algebra which is mapped into the Witt algebra by the map D_H.
mons:= [];
for i in [0..p^Sum( n ) - 2 ] do
a:= [ ];
noa:= i;
for j in [1..m-1] do
a[j]:= noa mod p^n[j];
noa:= (noa-a[j])/(p^n[j]);
od;
a[m]:= noa;
Add(mons,a);
od;
WW:= SimpleLieAlgebraTypeW( n, F );
for i in [1..Length(mons)] do
# The map D_H is applied to the element 'mons[i]'.
x1:= mons[i];
cf:= List( WW[2], e -> Zero(F) );
for j in [1..m/2] do
if x1[j] > 0 then
x2:= ShallowCopy( x1 );
x2[j]:= x2[j] - 1;
pos:= Position( WW[2], [x2,j+m/2] );
cf[pos]:= One( F );
fi;
if x1[j+m/2] > 0 then
x2:= ShallowCopy( x1 );
x2[j+m/2]:= x2[j+m/2] - 1;
pos:= Position( WW[2], [x2,j] );
cf[pos]:= -One( F );
fi;
od;
if cf <> Zero( F )*cf then
if IsBound( sp ) then
if not IsContainedInSpan( sp, cf ) then
CloseMutableBasis( sp, cf );
fi;
else
sp:= MutableBasis( F, [ cf ] );
fi;
fi;
od;
bas:= BasisVectors( sp );
bas:= List( bas, x -> LinearCombination( Basis(WW[1]), x ) );
L:= Subalgebra( WW[1], bas, "basis" );
SetIsRestrictedLieAlgebra( L, ForAll( n, x -> x=1 ) );
return L;
end;
##############################################################################
##
#F SimpleLieAlgebraTypeK( <n>, <F> )
##
## The kontact algebra has the same underlying vector space as a
## particular kind of polynomial algebra. On this space a Lie bracket
## is defined. We refer to the book cited in the comments to the function
## 'SimpleLieAlgebraTypeW' for the details.
##
SimpleLieAlgebraTypeK := function( n, F )
local p, # The characteristic of 'F'.
m, # The length of 'n'.
pn, # The dimension of the resulting Lie algebra.
eltlist, # List of basis elements of the Lie algebra.
i,j,k, # Loop variables.
noa, # Integer.
a, # The multi index "belonging" to 'noa'.
T,S, # Tables of structure constants.
x1,x2,y1,y2, # Elements from 'eltlist'.
r, # Integer.
pos, # Position in a list.
coef, # Function calculating a product of binomials.
v, # A value.
vals, # A list of values.
ii, # List of indices.
cc, # List of coefficients.
L; # The Lie algebra.
coef:= function( a, b, F )
# Here 'a' and 'b' are two multi indices. This function calculates
# the product of the binomial coefficients 'a[i] \choose b[i]'.
local cf,i;
cf:= One( F );
for i in [1..Length(a)] do
cf:= Binomial( a[i], b[i] ) * cf;
od;
return cf;
end;
p:= Characteristic( F );
if p = 0 then
Error( "<F> must be a field of nonzero characteristic" );
fi;
if not IsList( n ) then
Error( "<n> must be a list of nonnegative integers" );
fi;
m:= Length( n );
if m mod 2 <> 1 or m = 1 then
Error( "<n> must be a list of odd length >= 3" );
fi;
pn:= p^Sum( n );
r:= ( m - 1 )/2;
eltlist:=[];
# First we construct a list of basis elements.
for i in [0..pn-1] do
noa:= i;
a:=[];
for k in [1..m-1] do
a[k]:= noa mod p^n[k];
noa:= (noa-a[k])/(p^n[k]);
od;
a[m]:= noa;
eltlist[i+1]:=a;
od;
# Initialising the table.
T:= EmptySCTable( pn, Zero(F), "antisymmetric" );
for i in [1..pn] do
for j in [i+1..pn] do
# We calculate [x_i,x_j]. The coefficients of this element w.r.t. the basis
# contained in 'eltlist' will be stored in the vector 'vals'.
# The formula for the commutator is quite complicated, and this leads to
# many if-statements. (These if-statements are largely due to the fact that
# D_i(x^a)=0 if a[i]=0, so that we have to check that this element is not 0.)
x1:= eltlist[i];
x2:= eltlist[j];
vals:= List([1..pn],i->Zero( F ) );
for k in [1..r] do
if x1[k] > 0 then
if x2[k+r] > 0 then
y1:= ShallowCopy(x1); y2:= ShallowCopy(x2);
y1[k]:=y1[k]-1; y2[k+r]:=y2[k+r]-1;
v:=coef( y1+y2, y1, F );
if v<>Zero(F) then
pos:= Position( eltlist, y1+y2 );
vals[pos]:= vals[pos] + v;
fi;
fi;
if x2[ m ] > 0 then
y1:= ShallowCopy(x1); y2:= ShallowCopy(x2);
y1[k]:=y1[k]-1; y2[ m ]:=y2[ m ]-1;
v:=coef(x1+y2,y1,F)*(x2[k]+1);
if v<>Zero(F) then
pos:= Position( eltlist, x1+y2 );
vals[pos]:= vals[pos]-v;
fi;
fi;
fi;
if x1[ m ] > 0 then
if x2[k+r] > 0 then
y1:= ShallowCopy(x1); y2:= ShallowCopy(x2);
y1[m]:=y1[m]-1; y2[k+r]:=y2[k+r]-1;
v:=coef( y1+x2, y2, F )*(x1[k+r]+1);
if v<>Zero( F ) then
pos:= Position( eltlist, y1+x2 );
vals[pos]:= vals[pos] + v;
fi;
fi;
if x2[ m ] > 0 then
y1:= ShallowCopy(x1); y2:= ShallowCopy(x2);
y1[m]:=y1[m]-1; y2[ m ]:=y2[ m ]-1;
y1[k+r]:=y1[k+r]+1; y2[k]:=y2[k]+1;
v:=coef(y1+y2,y1,F)*y1[k+r]*y2[k];
if v<>Zero(F) then
pos:= Position( eltlist, y1+y2 );
vals[pos]:= vals[pos]-v;
fi;
y1:= ShallowCopy(x1); y2:= ShallowCopy(x2);
y1[m]:=y1[m]-1; y2[ m ]:=y2[ m ]-1;
y1[k]:=y1[k]+1; y2[k+r]:=y2[k+r]+1;
v:=coef(y1+y2,y1,F)*y1[k]*y2[k+r];
if v<>Zero(F) then
pos:= Position( eltlist, y1+y2 );
vals[pos]:= vals[pos]+v;
fi;
fi;
if x2[k] > 0 then
y1:= ShallowCopy(x1); y2:= ShallowCopy(x2);
y1[m]:=y1[m]-1; y2[k]:=y2[k]-1;
v:=coef( y1+x2, y2, F )*(x1[k]+1);
if v <> Zero(F) then
pos:= Position( eltlist, y1+x2 );
vals[pos]:= vals[pos] + v;
fi;
fi;
fi;
if x1[k+r] > 0 then
if x2[k] > 0 then
y1:= ShallowCopy(x1); y2:= ShallowCopy(x2);
y1[k+r]:=y1[k+r]-1; y2[k]:=y2[k]-1;
v:=coef( y1+y2, y1, F );
if v<>Zero(F) then
pos:= Position( eltlist, y1+y2 );
vals[pos]:= vals[pos] - v;
fi;
fi;
if x2[ m ] > 0 then
y1:= ShallowCopy(x1); y2:= ShallowCopy(x2);
y1[k+r]:=y1[k+r]-1; y2[ m ]:=y2[ m ]-1;
v:=coef(x1+y2,y1,F)*(x2[k+r]+1);
if v<>Zero(F) then
pos:= Position( eltlist, x1+y2 );
vals[pos]:= vals[pos]-v;
fi;
fi;
fi;
if x1[m]>0 then
y1:= ShallowCopy(x1);
y1[m]:=y1[m]-1;
v:=coef(y1+x2,x2,F);
if v<>Zero(F) then
pos:= Position( eltlist, y1+x2 );
vals[pos]:= vals[pos]-2*v;
fi;
fi;
if x2[m]>0 then
y2:= ShallowCopy(x2);
y2[m]:=y2[m]-1;
v:= coef(x1+y2,x1,F);
if v<>Zero(F) then
pos:= Position( eltlist, x1+y2 );
vals[pos]:= vals[pos]+2*v;
fi;
fi;
od;
# We convert 'vals' to multiplication table format.
ii:=[]; cc:=[];
for k in [1..Length(vals)] do
if vals[k] <> Zero( F ) then
Add(ii,k); Add(cc,vals[k]);
fi;
od;
T[i][j]:=[ii,cc];
T[j][i]:=[ii,-cc];
od;
od;
if (m + 3) mod p = 0 then
# In this case the kontact algebra is somewhat smaller.
S:= EmptySCTable( pn-1, Zero(F), "antisymmetric" );
for i in [1..pn-1] do
for j in [1..pn-1] do
S[i][j]:=T[i][j];
od;
od;
T:=S;
fi;
L:= LieAlgebraByStructureConstants( F, T );
SetIsRestrictedLieAlgebra( L, ForAll( n, x -> x=1 ) );
return L;
end;
##############################################################################
##
#F SimpleLieAlgebraTypeM( <n>, <F> )
##
## The Melikyan Lie algebra is constructed.
##
## The code is due to Erik Postma.
##
## The Melikyan Lie algebra is most conveniently constructed by
## viewing it as the direct sum of a Witt type Lie algebra and two
## of its modules. This is the presentation described by
## M.I. Kuznetsov, The Melikyan algebras as Lie algebras of the
## type G2, Comm. Algebra 19 (1991).
##
## The Melikyan Lie algebra is parametrized by two positive
## integers, n1 and n2, and can only be defined over fields of
## characteristic 5. It can be decomposed into a 2*5^(n1 + n2)-dimensional
## subalgebra isomorphic to W(n1, n2), having a basis of monomials
## X1^i1 X2^i2 dXk where 0 <= i1 < 5^n1, 0 <= i2 < 5^n2, k in {1, 2}; a
## 5^(n1 + n2)-dimensional module of this subalgebra which we call O,
## having a basis of elements we call X1^i1 X2^i2 (where i1 and i2 are
## within the same boundaries); and a 2*5^(n1 + n2)-dimensional
## module which we call Wtilde, having a basis of elements we
## call X1^i1 X2^i2 dXk^tilde (again with i1 and i2 within the same
## boundaries, and with k in {1, 2}).
##
## The multiplication is described in the above paper and in the code
## below. We use lists of symbolic descriptions for the basis
## elements: [i1, i2] for X1^i1 X2^i2 and [[i1, i2], k] for either
## X1^i1 X2^i2 dXk or X1^i1 X2^i2 dXk^tilde. All valid such
## symbolic descriptions can be found in two lists, OBasis and
## WBasis, respectively. In the basis of the full algebra, we first
## put the elements of W as ordered in WBasis, then the elements of O
## as ordered in OBasis, and finally the elements of Wtilde, again as
## ordered in WBasis. Throughout the function below, we describe
## basis elements using either these symbolic descriptions, or the
## positions in this basis.
SimpleLieAlgebraTypeM := function (n, F)
local n1, n2, # The parameters.
one, zero, # Shortcuts to the field elements.
dimO, dimW, # Dimensions of the O and W spaces.
OBasis, # A representation of a basis for O.
posO, # Function to find the position of a given
# OBasis element in the basis.
OProduct, # The regular product of two elements of OBasis.
WBasis, # A representation of a basis for W.
div, # The divergence function for elements of WBasis.
posW, # Function to find the position of a WBasis
# element in the basis.
WOProduct, # The action of W on O.
WProduct, # The regular product of two elements of WBasis.
WBracket, # The commutator of two elements of WBasis
# w.r.t. WProduct.
degrees, # The list of degrees of different components.
GradingFunction, # The function giving the grading components.
tildify, clean, # Utility functions.
table, i, w1, j, w2, result, term, prod, x2, x1, d;
# Temporary results and counters.
if not (IsList (n) and Length (n) = 2 and n [1] > 0 and n [2] > 0)
then
Error ("<n> must be a list of two positive integers");
fi;
if Characteristic (F) <> 5 then
Error ("<F> must be a field of characteristic 5");
fi;
n1 := n [1];
n2 := n [2];
dimO := 5^(n1 + n2);
dimW := 2*dimO;
one := One (F);
zero := Zero (F);
# The element [a, b] of OBasis represents the element
# X1^a X2^b / (a! b!)
# of the truncated polynomial ring.
OBasis := Cartesian ([0 .. 5^n1 - 1], [0 .. 5^n2 - 1]);
# The position of an OBasis element in the basis.
posO := function (o)
return o [2] + 5^n2 * o [1] + 1;
end;
# Given two OBasis elements x1 and x2, returns a list with a
# coefficient coeff and the position pos of a basis element, such
# that
# x1 * x2 = coeff * OBasis [pos]
OProduct := function (x1, x2)
local pow;
pow := ShallowCopy (x1 + x2);
if pow [1] < 5^n1 and pow [2] < 5^n2 then
return [Binomial (pow [1], x1 [1]) *
(Binomial (pow [2], x1 [2]) * one),
posO (pow)];
else
return [zero, 1];
fi;
end;
# The element [[a, b], c] of WBasis represents the element
# O dXc
# where O is the element of OBasis represented by [a, b].
WBasis := Cartesian (OBasis, [1, 2]);
# The divergence: f dX1 + g dX2 -> dX1 (f) + dX2 (g), maps WBasis
# elements to OBasis elements. Note: if the result is 0, we return
# that instead of the OBasis element.
div := function (abc)
local ab, pos;
if abc [1] [abc [2]] = 0 then
return 0;
fi;
pos := abc [2];
ab := ShallowCopy (abc [1]);
ab [pos] := ab [pos] - 1;
return ab;
end;
# The position of the WBasis element [OBasis (o), c] in the basis,
# where o is the number of an OBasis element.
posW := function (o, c)
return 2 * o + c - 2;
end;
# Given a WBasis element [[a1, b1], c1] and an OBasis element [a2,
# b2], representing the usual monomials, this function computes
# p = X1^a1 X2^a2 (dXc1 X1^a2 X2^b2),
# and returns a list [pos, coeff] with the position in OBasis of
# the basis element this is a multiple of, and its coefficient; so
# that
# p = coeff * OBasis [pos].
WOProduct := function (w1, x2)
local pow, prod;
if x2 [w1 [2]] > 0 then
pow := ShallowCopy (x2);
pow [w1 [2]] := pow [w1 [2]] - 1;
return OProduct (w1 [1], pow);
else
return [zero, 1];
fi;
end;
# Given two WBasis elements [[a1, b1], c1] and [[a2, b2], c2],
# representing the usual monomials, this
# function computes
# p = X1^a1 X2^a2 (dXc1 (X1^a2 X2^b2)) dXc2,
# and returns a list [pos, coeff] with the position in WBasis of
# the basis element this is a multiple of, and its coefficient; so
# that
# p = coeff * WBasis [pos].
WProduct := function (x1, x2)
local prod;
prod := WOProduct (x1, x2 [1]);
if prod [1] <> zero then
return [prod [1], posW (prod [2], x2 [2])];
else
return [zero, 1];
fi;
end;
# The bracket on W is defined as mapping x1, x2 to their
# commutator, where the multiplication is as above. This function
# returns a list ls of, alternatingly, coefficients and positions,
# such that the bracket of x1 and x2 is equal to
# ls [1] * WBasis [ls [2]] + ls [3] * WBasis [ls [4]].
# However, if any coefficient is 0, the corresponding list
# elements are omitted. So the list returned has length 4, 2 or 0.
WBracket := function (x1, x2)
local result, prod;
prod := WProduct (x1, x2);
if prod [1] <> zero then
result := prod;
else
result := [];
fi;
prod := WProduct (x2, x1);
if prod [1] <> zero then
Append (result, [- prod [1], prod [2]]);
fi;
return result;
end;
# The order of the basis elements is: first the basis elements of
# W, then of O, then of Wtilde. Definitions of W, Wtilde and O can
# be found in H. Strade, Simple Lie Algebras over Fields of
# Positive Characteristic, Walter de Gruyter - Berlin/New York 2004.
# This is the realization found in M.I. Kuznetsov, The Melikian
# algebras as Lie algebras of the type G2, Comm. Algebra 19
# (1991), 1281-1312.
# tildify adds cst to each even position in ls. It is useful for
# mapping a result of WBracket from W to Wtilde, or an OBasis
# element to the correct position in the full basis.
tildify := function (ls, cst)
local i;
i := 2;
while IsBound (ls [i]) do
ls [i] := ls [i] + cst;
i := i + 2;
od;
end;
# clean is a function that 'cleans' a list before submission to
# SetEntrySCTable. That is, if any positions are the same, the
# coefficients are added.
clean := function (ls)
local ps, i;
ps := rec ();
i := 2;
while IsBound (ls [i]) do
if IsBound (ps.(ls [i])) then
ls [ps.(ls [i]) - 1] := ls [ps.(ls [i]) - 1] + ls [i - 1];
Unbind (ls [i - 1]);
Unbind (ls [i]);
else
ps.(ls [i]) := i;
fi;
i := i + 2;
od;
return Compacted (ls);
end;
table := EmptySCTable (dimO + 2 * dimW, Zero (F), "antisymmetric");
for i in [1 .. dimW] do
w1 := WBasis [i];
for j in [1 .. dimW] do
w2 := WBasis [j];
if i < j then
# Compute the product for w1 and w2 in W.
# This is simply [w1, w2].
SetEntrySCTable (table, i, j, clean (WBracket (w1, w2)));
# Compute the product for w1 and w2 in WTilde.
# This is f1g2 - f2g1 if w1 = f1d1 + f2d2, w2 = g1d1 +
# g2d2.
if w1 [2] <> w2 [2] then
prod := OProduct (w1 [1], w2 [1]);
if prod [1] <> zero then
SetEntrySCTable (table, i + dimW + dimO,
j + dimW + dimO,
[(3 - 2 * w1 [2]) * # This is the coefficient
# plus or minus one.
prod [1], prod [2] + dimW]);
fi;
fi;
fi;
# Compute the product for w1 in W, w2 in WTilde.
# This is defined as [w1, w2]^tilde + 2 div(w1) w2^tilde
# [w1, w2]^tilde:
result := WBracket (w1, w2);
tildify (result, dimW + dimO);
# 2 div(w1) w2^tilde:
d := div (w1);
if d <> 0 then
term := OProduct (d, w2 [1]);
if term [1] <> zero then
Append (result, [2 * term [1],
posW (term [2], w2 [2]) + dimW + dimO]);
fi;
fi;
SetEntrySCTable (table, i, j + dimW + dimO, clean (result));
od;
for j in [1 .. dimO] do
x2 := OBasis [j];
# Compute the product for w1 in W, x2 in O.
# This is w1 (x2) - 2 div (w1) x2.
# w1 (x2):
result := WOProduct (w1, x2);
# - 2 div (w1) x2:
d := div (w1);
if d <> 0 then
term := OProduct (d, x2);
if term [1] <> zero then
Append (result, [-2 * term [1], term [2]]);
fi;
fi;
tildify (result, dimW);
SetEntrySCTable (table, i, j + dimW, clean (result));
# Compute the product for w1 in Wtilde, x2 in O.
# This is - x2 w1^un-tilde.
# We put it in the table as the product of x2 and w1, so
# that we don't have to bother with the minus sign.
result := OProduct (x2, w1 [1]);
SetEntrySCTable (table, j + dimW, i + dimW + dimO,
[result [1], posW (result [2], w1 [2])]);
od;
od;
for i in [1 .. dimO] do
x1 := OBasis [i];
for j in [i + 1 .. dimO] do
x2 := OBasis [j];
# Compute the product for x1 and x2 in O.
# This is 2 (x2 dX2(x1) - x1 dX2(x2))dX1^tilde + 2 (x1
# dX1(x2) - x2 dX1(x1)) dX2^tilde.
# 2 x2 dX2(x1) dX1:
result := WProduct ([x2, 2], [x1, 1]);
result [1] := 2 * result [1];
# - 2 x1 dX2(x2) dX1:
term := WProduct ([x1, 2], [x2, 1]);
Append (result, [- 2 * term [1], term [2]]);
# 2 x1 dX1(x2) dX2:
term := WProduct ([x1, 1], [x2, 2]);
Append (result, [2 * term [1], term [2]]);
# - 2 x2 dX1(x1) dX2:
term := WProduct ([x2, 1], [x1, 2]);
Append (result, [- 2 * term [1], term [2]]);
tildify (result, dimW + dimO);
SetEntrySCTable (table, i + dimW, j + dimW,
clean (result));
od;
od;
result := LieAlgebraByStructureConstants (F, table);
SetIsRestrictedLieAlgebra (result, n1 = 1 and n2 = 1);
degrees := Concatenation (List (WBasis, lst ->
lst [1] * [[2, 1], [1, 2]] +
\[\]([[-2, -1], [-1, -2]], lst [2])),
List (OBasis, lst ->
lst * [[2, 1], [1, 2]] + [-1, -1]),
List (WBasis, lst ->
lst [1] * [[2, 1], [1, 2]] +
\[\]([[-1, 0], [0, -1]], lst [2])));
GradingFunction := d -> Subspace (result,
Basis(result) {Positions (degrees, d)});
SetGrading (result, rec(
source :=
FreeLeftModule(Integers, [[1, 0], [0, 1]], "basis"),
hom_components := GradingFunction,
non_zero_hom_components := Set (degrees)));
# GradingFunction := function (d)
# local degsum, r, oposns;
# r := d[1] + d[2] mod 3;
# if r = 0 then
#
# degsum := (d [1] + d [2] - r) / 3 + 1;
# oposns := List ([Maximum (0, degsum - 5^n2 + 1) ..
# Minimum (degsum, 5^n1 - 1)],
# i -> posO ([i, degsum - i]));
# if r = 0 then
# return SubspaceNC (result,
# Basis (result) {Concatenation (
# List (oposns, p -> posW (p, 1)),
# List (oposns, p -> posW (p, 2)))},
# "basis");
# elif r = 1 then
# return SubspaceNC (result,
# Basis (result) {oposns + dimW},
# "basis");
# else # r = 2
# return SubspaceNC (result,
# Basis (result) {3 * dimO + Concatenation (
# List (oposns, p -> posW (p, 1)),
# List (oposns, p -> posW (p, 2)))},
# "basis");
# fi;
# end;
# SetGrading (result,
# rec (min_degree := -3,
# max_degree := 3 * (5^n1 + 5^n2) - 7,
# source := Integers,
# hom_components := GradingFunction));
return result;
end;
##############################################################################
##
#F SimpleLieAlgebra( <type>, <n>, <F> )
##
InstallGlobalFunction( SimpleLieAlgebra, function( type, n, F )
local A;
# Check the arguments.
if not ( IsString( type ) and ( IsInt( n ) or IsList( n ) ) and
IsRing( F ) ) then
Error( "<type> must be a string, <n> an integer, <F> a ring" );
fi;
if type in [ "A","B","C","D","E","F","G" ] then
A := SimpleLieAlgebraTypeA_G( type, n, F );
elif type = "W" then
A := SimpleLieAlgebraTypeW( n, F )[1];
elif type = "S" then
A := SimpleLieAlgebraTypeS( n, F );
elif type = "H" then
A := SimpleLieAlgebraTypeH( n, F );
elif type = "K" then
A := SimpleLieAlgebraTypeK( n, F );
elif type = "M" then
A := SimpleLieAlgebraTypeM( n, F );
else
Error( "<type> must be one of \"A\", \"B\", \"C\", \"D\", \"E\", ",
"\"F\", \"G\", \"H\", \"K\", \"M\", \"S\", \"W\" " );
fi;
# store the pth power images in the family (LB)
if IsRestrictedLieAlgebra(A) then
FamilyObj(Representative(A))!.pMapping := PthPowerImages(Basis(A));
fi;
return A;
end );
#############################################################################
##
#E algliess.gi . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
|