/usr/share/gap/lib/algsc.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 | #############################################################################
##
#W algsc.gi GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains methods for elements of algebras given by structure
## constants (s.~c.).
##
## The family of s.~c. algebra elements has the following components.
##
## `sctable' :
## the structure constants table,
## `names' :
## list of names of the basis vectors (for printing only),
## `zerocoeff' :
## the zero coefficient (needed already for the s.~c. table),
## `defaultTypeDenseCoeffVectorRep' :
## the type of s.~c. algebra elements that are represented by
## a dense list of coefficients.
##
## If the family has *not* the category `IsFamilyOverFullCoefficientsFamily'
## then it has the component `coefficientsDomain'.
##
#T need for the norm of a quaternion?
#T (note: returns an element in the coefficients domain, not in the algebra!
#T f( a b[1] + b b[2] + c b[3] + d b[4] ) = a^2 +b^2 +c^2 + d^2.)
#T
#T NormQuat := function( quat )
#T if not IsQuaternion( quat ) then
#T Error( "<quat> must be a quaternion" );
#T fi;
#T return Sum( List( ExtRepOfObj( quat ), c -> c^2 ) );
#T end;
#############################################################################
##
#M IsWholeFamily( <V> ) . . . . . . . for s.~c. algebra elements collection
##
InstallMethod( IsWholeFamily,
"for s. c. algebra elements collection",
[ IsSCAlgebraObjCollection and IsLeftModule and IsFreeLeftModule ],
function( V )
local Fam;
Fam:= ElementsFamily( FamilyObj( V ) );
if IsFamilyOverFullCoefficientsFamily( Fam ) then
return IsWholeFamily( LeftActingDomain( V ) )
and IsFullSCAlgebra( V );
else
return LeftActingDomain( V ) = Fam!.coefficientsDomain
and IsFullSCAlgebra( V );
fi;
end );
#############################################################################
##
#M IsFullSCAlgebra( <V> ) . . . . . . for s.~c. algebra elements collection
##
InstallMethod( IsFullSCAlgebra,
"for s. c. algebra elements collection",
[ IsSCAlgebraObjCollection and IsAlgebra ],
V -> Dimension(V) = Length( ElementsFamily( FamilyObj( V ) )!.names ) );
#############################################################################
##
#R IsDenseCoeffVectorRep( <obj> )
##
## This representation uses a coefficients vector
## w.r.t. the basis that is known for the whole family.
##
## The external representation is the coefficients vector,
## which is stored at position 1 in the object.
##
DeclareRepresentation( "IsDenseCoeffVectorRep",
IsPositionalObjectRep, [ 1 ] );
#############################################################################
##
#M ObjByExtRep( <Fam>, <descr> ) . . . . . . . . for s.~c. algebra elements
##
## Check whether the coefficients list <coeffs> has the right length,
## and lies in the correct family.
## If the coefficients family of <Fam> has a uniquely determined zero
## element, we need to check only whether the family of <descr> is the
## collections family of the coefficients family of <Fam>.
##
InstallMethod( ObjByExtRep,
"for s. c. algebra elements family",
[ IsSCAlgebraObjFamily, IsHomogeneousList ],
function( Fam, coeffs )
if IsFamilyOverFullCoefficientsFamily( Fam )
or not IsBound( Fam!.coefficientsDomain ) then
TryNextMethod();
elif Length( coeffs ) <> Length( Fam!.names ) then
Error( "<coeffs> must be a list of length ", Fam!.names );
elif not ForAll( coeffs, c -> c in Fam!.coefficientsDomain ) then
Error( "all in <coeffs> must lie in `<Fam>!.coefficientsDomain'" );
fi;
return Objectify( Fam!.defaultTypeDenseCoeffVectorRep,
[ Immutable( coeffs ) ] );
end );
InstallMethod( ObjByExtRep,
"for s. c. alg. elms. family with coefficients family",
[ IsSCAlgebraObjFamily and IsFamilyOverFullCoefficientsFamily,
IsHomogeneousList ],
function( Fam, coeffs )
if not IsIdenticalObj( CoefficientsFamily( Fam ),
ElementsFamily( FamilyObj( coeffs ) ) ) then
Error( "family of <coeffs> does not fit to <Fam>" );
elif Length( coeffs ) <> Length( Fam!.names ) then
Error( "<coeffs> must be a list of length ", Fam!.names );
fi;
return Objectify( Fam!.defaultTypeDenseCoeffVectorRep,
[ Immutable( coeffs ) ] );
end );
#############################################################################
##
#M ExtRepOfObj( <elm> ) . . . . . . . . . . . . for s.~c. algebra elements
##
InstallMethod( ExtRepOfObj,
"for s. c. algebra element in dense coeff. vector rep.",
[ IsSCAlgebraObj and IsDenseCoeffVectorRep ],
elm -> elm![1] );
#############################################################################
##
#M Print( <elm> ) . . . . . . . . . . . . . . . for s.~c. algebra elements
##
InstallMethod( PrintObj,
"for s. c. algebra element",
[ IsSCAlgebraObj ],
function( elm )
local F, # family of `elm'
names, # generators names
len, # dimension of the algebra
zero, # zero element of the ring
depth, # first nonzero position in coefficients list
one, # identity element of the ring
i; # loop over the coefficients list
F := FamilyObj( elm );
names := F!.names;
elm := ExtRepOfObj( elm );
len := Length( elm );
# Treat the case that the algebra is trivial.
if len = 0 then
Print( "<zero of trivial s.c. algebra>" );
return;
fi;
zero := Zero( elm[1] );
depth := PositionNot( elm, zero );
if len < depth then
# Print the zero element.
# (Note that the unique element of a zero algebra has a name.)
Print( "0*", names[1] );
else
one:= One( elm[1] );
if elm[ depth ] <> one then
Print( "(", elm[ depth ], ")*" );
fi;
Print( names[ depth ] );
for i in [ depth+1 .. len ] do
if elm[i] <> zero then
Print( "+" );
if elm[i] <> one then
Print( "(", elm[i], ")*" );
fi;
Print( names[i] );
fi;
od;
fi;
end );
#############################################################################
##
#M String( <elm> ) . . . . . . . . . . . . . . . for s.~c. algebra elements
##
InstallMethod( String,
"for s. c. algebra element",
[ IsSCAlgebraObj ],
function( elm )
local F, # family of `elm'
s, # string
names, # generators names
len, # dimension of the algebra
zero, # zero element of the ring
depth, # first nonzero position in coefficients list
one, # identity element of the ring
i; # loop over the coefficients list
F := FamilyObj( elm );
names := F!.names;
elm := ExtRepOfObj( elm );
len := Length( elm );
# Treat the case that the algebra is trivial.
if len = 0 then
return "<zero of trivial s.c. algebra>";
fi;
zero := Zero( elm[1] );
depth := PositionNot( elm, zero );
s:="";
if len < depth then
# Print the zero element.
# (Note that the unique element of a zero algebra has a name.)
Append(s, "0*");
Append(s,names[1]);
else
one:= One( elm[1] );
if elm[ depth ] <> one then
Add(s,'(');
Append(s,String(elm[ depth ]));
Append(s, ")*" );
fi;
Append(s, names[ depth ] );
for i in [ depth+1 .. len ] do
if elm[i] <> zero then
Add(s, '+' );
if elm[i] <> one then
Add(s,'(');
Append(s,String(elm[ i ]));
Append(s, ")*" );
fi;
Append(s, names[ i ] );
fi;
od;
fi;
return s;
end );
#############################################################################
##
#M One( <Fam> )
##
## Compute the identity (if exists) from the s.~c. table.
##
InstallMethod( One,
"for family of s. c. algebra elements",
[ IsSCAlgebraObjFamily ],
function( F )
local one;
one:= IdentityFromSCTable( F!.sctable );
if one <> fail then
one:= ObjByExtRep( F, one );
fi;
return one;
end );
#############################################################################
##
#M \=( <x>, <y> ) . . . . . . . . . . equality of two s.~c. algebra objects
#M \<( <x>, <y> ) . . . . . . . . . comparison of two s.~c. algebra objects
#M \+( <x>, <y> ) . . . . . . . . . . . . sum of two s.~c. algebra objects
#M \-( <x>, <y> ) . . . . . . . . . difference of two s.~c. algebra objects
#M \*( <x>, <y> ) . . . . . . . . . . product of two s.~c. algebra objects
#M Zero( <x> ) . . . . . . . . . . . . . . zero of an s.~c. algebra element
#M AdditiveInverse( <x> ) . . additive inverse of an s.~c. algebra element
#M Inverse( <x> ) . . . . . . . . . . . inverse of an s.~c. algebra element
##
InstallMethod( \=,
"for s. c. algebra elements",
IsIdenticalObj,
[ IsSCAlgebraObj, IsSCAlgebraObj ],
function( x, y ) return ExtRepOfObj( x ) = ExtRepOfObj( y ); end );
InstallMethod( \=,
"for s. c. algebra elements in dense vector rep.",
IsIdenticalObj,
[ IsSCAlgebraObj and IsDenseCoeffVectorRep,
IsSCAlgebraObj and IsDenseCoeffVectorRep ],
function( x, y ) return x![1] = y![1]; end );
InstallMethod( \<,
"for s. c. algebra elements",
IsIdenticalObj,
[ IsSCAlgebraObj, IsSCAlgebraObj ],
function( x, y ) return ExtRepOfObj( x ) < ExtRepOfObj( y ); end );
InstallMethod( \<,
"for s. c. algebra elements in dense vector rep.",
IsIdenticalObj,
[ IsSCAlgebraObj and IsDenseCoeffVectorRep,
IsSCAlgebraObj and IsDenseCoeffVectorRep ], 0,
function( x, y ) return x![1] < y![1]; end );
InstallMethod( \+,
"for s. c. algebra elements",
IsIdenticalObj,
[ IsSCAlgebraObj, IsSCAlgebraObj ],
function( x, y )
return ObjByExtRep( FamilyObj(x), ExtRepOfObj(x) + ExtRepOfObj(y) );
end );
InstallMethod( \+,
"for s. c. algebra elements in dense vector rep.",
IsIdenticalObj,
[ IsSCAlgebraObj and IsDenseCoeffVectorRep,
IsSCAlgebraObj and IsDenseCoeffVectorRep ],
function( x, y )
return ObjByExtRep( FamilyObj( x ), x![1] + y![1] );
end );
InstallMethod( \-,
"for s. c. algebra elements",
IsIdenticalObj,
[ IsSCAlgebraObj, IsSCAlgebraObj ],
function( x, y )
return ObjByExtRep( FamilyObj(x), ExtRepOfObj(x) - ExtRepOfObj(y) );
end );
InstallMethod( \-,
"for s. c. algebra elements in dense vector rep.",
IsIdenticalObj,
[ IsSCAlgebraObj and IsDenseCoeffVectorRep,
IsSCAlgebraObj and IsDenseCoeffVectorRep ],
function( x, y )
return ObjByExtRep( FamilyObj( x ), x![1] - y![1] );
end );
InstallMethod( \*,
"for s. c. algebra elements",
IsIdenticalObj,
[ IsSCAlgebraObj, IsSCAlgebraObj ],
function( x, y )
local F;
F:= FamilyObj( x );
return ObjByExtRep( F, SCTableProduct( F!.sctable,
ExtRepOfObj( x ), ExtRepOfObj( y ) ) );
end );
InstallMethod( \*,
"for s. c. algebra elements in dense vector rep.",
IsIdenticalObj,
[ IsSCAlgebraObj and IsDenseCoeffVectorRep,
IsSCAlgebraObj and IsDenseCoeffVectorRep ],
function( x, y )
local F;
F:= FamilyObj( x );
return ObjByExtRep( F, SCTableProduct( F!.sctable, x![1], y![1] ) );
end );
InstallMethod( \*,
"for ring element and s. c. algebra element",
IsCoeffsElms,
[ IsRingElement, IsSCAlgebraObj ],
function( x, y )
return ObjByExtRep( FamilyObj( y ), x * ExtRepOfObj( y ) );
end );
InstallMethod( \*,
"for ring element and s. c. algebra element in dense vector rep.",
IsCoeffsElms,
[ IsRingElement, IsSCAlgebraObj and IsDenseCoeffVectorRep ],
function( x, y )
return ObjByExtRep( FamilyObj( y ), x * y![1] );
end );
InstallMethod( \*,
"for s. c. algebra element and ring element",
IsElmsCoeffs,
[ IsSCAlgebraObj, IsRingElement ],
function( x, y )
return ObjByExtRep( FamilyObj( x ), ExtRepOfObj( x ) * y );
end );
InstallMethod( \*,
"for s. c. algebra element in dense vector rep. and ring element",
IsElmsCoeffs,
[ IsSCAlgebraObj and IsDenseCoeffVectorRep, IsRingElement ],
function( x, y )
return ObjByExtRep( FamilyObj( x ), x![1] * y );
end );
InstallMethod( \*,
"for integer and s. c. algebra element",
[ IsInt, IsSCAlgebraObj ],
function( x, y )
return ObjByExtRep( FamilyObj( y ), x * ExtRepOfObj( y ) );
end );
InstallMethod( \*,
"for integer and s. c. algebra element in dense vector rep.",
[ IsInt, IsSCAlgebraObj and IsDenseCoeffVectorRep ],
function( x, y )
return ObjByExtRep( FamilyObj( y ), x * y![1] );
end );
InstallMethod( \*,
"for s. c. algebra element and integer",
[ IsSCAlgebraObj, IsInt ],
function( x, y )
return ObjByExtRep( FamilyObj( x ), ExtRepOfObj( x ) * y );
end );
InstallMethod( \*,
"for s. c. algebra element in dense vector rep. and integer",
[ IsSCAlgebraObj and IsDenseCoeffVectorRep, IsInt ],
function( x, y )
return ObjByExtRep( FamilyObj( x ), x![1] * y );
end );
InstallMethod( \/,
"for s. c. algebra element and scalar",
IsElmsCoeffs,
[ IsSCAlgebraObj, IsScalar ],
function( x, y )
return ObjByExtRep( FamilyObj( x ), ExtRepOfObj( x ) / y );
end );
InstallMethod( \/,
"for s. c. algebra element in dense vector rep. and scalar",
IsElmsCoeffs,
[ IsSCAlgebraObj and IsDenseCoeffVectorRep, IsScalar ],
function( x, y )
return ObjByExtRep( FamilyObj( x ), x![1] / y );
end );
InstallMethod( ZeroOp,
"for s. c. algebra element",
[ IsSCAlgebraObj ],
x -> ObjByExtRep( FamilyObj( x ), Zero( ExtRepOfObj( x ) ) ) );
InstallMethod( AdditiveInverseOp,
"for s. c. algebra element",
[ IsSCAlgebraObj ],
x -> ObjByExtRep( FamilyObj( x ),
AdditiveInverse( ExtRepOfObj( x ) ) ) );
InstallOtherMethod( OneOp,
"for s. c. algebra element",
[ IsSCAlgebraObj ],
function( x )
local F, one;
F:= FamilyObj( x );
one:= IdentityFromSCTable( F!.sctable );
if one <> fail then
one:= ObjByExtRep( F, one );
fi;
return one;
end );
InstallOtherMethod( InverseOp,
"for s. c. algebra element",
[ IsSCAlgebraObj ],
function( x )
local one, F;
one:= One( x );
if one <> fail then
F:= FamilyObj( x );
one:= QuotientFromSCTable( F!.sctable, ExtRepOfObj( one ),
ExtRepOfObj( x ) );
if one <> fail then
one:= ObjByExtRep( F, one );
fi;
fi;
return one;
end );
#############################################################################
##
#M \in( <a>, <A> )
##
InstallMethod( \in,
"for s. c. algebra element, and full s. c. algebra",
IsElmsColls,
[ IsSCAlgebraObj, IsFullSCAlgebra ],
function( a, A )
return IsSubset( LeftActingDomain( A ), ExtRepOfObj( a ) );
end );
#############################################################################
##
#F AlgebraByStructureConstants( <R>, <sctable> )
#F AlgebraByStructureConstants( <R>, <sctable>, <name> )
#F AlgebraByStructureConstants( <R>, <sctable>, <names> )
#F AlgebraByStructureConstants( <R>, <sctable>, <name1>, <name2>, ... )
##
## is an algebra $A$ over the ring <R>, defined by the structure constants
## table <sctable> of length $n$, say.
##
## The generators of $A$ are linearly independent abstract space generators
## $x_1, x_2, \ldots, x_n$ which are multiplied according to the formula
## $ x_i x_j = \sum_{k=1}^n c_{ijk} x_k$
## where `$c_{ijk}$ = <sctable>[i][j][1][i_k]'
## and `<sctable>[i][j][2][i_k] = k'.
##
BindGlobal( "AlgebraByStructureConstantsArg", function( arglist, filter )
local T, # structure constants table
n, # dimensions of structure matrices
R, # coefficients ring
zero, # zero of `R'
names, # names of the algebra generators
Fam, # the family of algebra elements
A, # the algebra, result
gens; # algebra generators of `A'
# Check the argument list.
if not 1 < Length( arglist ) and IsRing( arglist[1] )
and IsList( arglist[2] ) then
Error( "usage: AlgebraByStructureConstantsArg([<R>,<sctable>]) or \n",
"AlgebraByStructureConstantsArg([<R>,<sctable>,<name1>,...])" );
fi;
# Check the s.~c. table.
#T really do this?
R := arglist[1];
zero := Zero( R );
T := arglist[2];
if zero = T[ Length( T ) ] then
T:= Immutable( T );
else
if T[ Length( T ) ] = 0 then
T:= ReducedSCTable( T, One( zero ) );
else
Error( "<R> and <T> are not compatible" );
fi;
fi;
if Length( T ) = 2 then
n:= 0;
else
n:= Length( T[1] );
fi;
# Construct names of generators (used for printing only).
if Length( arglist ) = 2 then
names:= List( [ 1 .. n ],
x -> Concatenation( "v.", String(x) ) );
MakeImmutable( names );
elif Length( arglist ) = 3 and IsString( arglist[3] ) then
names:= List( [ 1 .. n ],
x -> Concatenation( arglist[3], String(x) ) );
MakeImmutable( names );
elif Length( arglist ) = 3 and IsHomogeneousList( arglist[3] )
and Length( arglist[3] ) = n
and ForAll( arglist[3], IsString ) then
names:= Immutable( arglist[3] );
elif Length( arglist ) = 2 + n then
names:= Immutable( arglist{ [ 3 .. Length( arglist ) ] } );
else
Error( "usage: AlgebraByStructureConstantsArg([<R>,<sctable>]) or \n",
"AlgebraByStructureConstantsArg([<R>,<sctable>,<name1>,...])" );
fi;
# If the coefficients know to be additively commutative then
# also the s.c. algebra will know this.
if IsAdditivelyCommutativeElementFamily( FamilyObj( zero ) ) then
filter:= filter and IsAdditivelyCommutativeElement;
fi;
# Construct the family of elements of our algebra.
# If the elements family of `R' has a uniquely determined zero element,
# then all coefficients in this family are admissible.
# Otherwise only coefficients from `R' itself are allowed.
Fam:= NewFamily( "SCAlgebraObjFamily", filter );
if Zero( ElementsFamily( FamilyObj( R ) ) ) <> fail then
SetFilterObj( Fam, IsFamilyOverFullCoefficientsFamily );
else
Fam!.coefficientsDomain:= R;
fi;
Fam!.sctable := T;
Fam!.names := names;
Fam!.zerocoeff := zero;
# Construct the default type of the family.
Fam!.defaultTypeDenseCoeffVectorRep :=
NewType( Fam, IsSCAlgebraObj and IsDenseCoeffVectorRep );
SetCharacteristic( Fam, Characteristic( R ) );
SetCoefficientsFamily( Fam, ElementsFamily( FamilyObj( R ) ) );
# Make the generators and the algebra.
if 0 < n then
SetZero( Fam, ObjByExtRep( Fam, List( [ 1 .. n ], x -> zero ) ) );
gens:= Immutable( List( IdentityMat( n, R ),
x -> ObjByExtRep( Fam, x ) ) );
A:= FLMLORByGenerators( R, gens );
UseBasis( A, gens );
else
SetZero( Fam, ObjByExtRep( Fam, EmptyRowVector( FamilyObj(zero) ) ) );
gens:= Immutable( [] );
A:= FLMLORByGenerators( R, gens, Zero( Fam ) );
SetIsTrivial( A, true );
fi;
Fam!.basisVectors:= gens;
#T where is this needed?
# Store the algebra in the family of the elements,
# for accessing the full algebra, e.g., in `DefaultFieldOfMatrixGroup'.
Fam!.fullSCAlgebra:= A;
SetIsFullSCAlgebra( A, true );
# Return the algebra.
return A;
end );
InstallGlobalFunction( AlgebraByStructureConstants, function( arg )
return AlgebraByStructureConstantsArg( arg, IsSCAlgebraObj );
end );
InstallGlobalFunction( LieAlgebraByStructureConstants, function( arg )
local A;
A:= AlgebraByStructureConstantsArg( arg, IsSCAlgebraObj and IsJacobianElement );
SetIsLieAlgebra( A, true );
return A;
end );
InstallGlobalFunction( RestrictedLieAlgebraByStructureConstants, function( arg )
local A, fam, pmap, i, j, v;
A := AlgebraByStructureConstantsArg( arg{[1..Length(arg)-1]}, IsSCAlgebraObj and IsRestrictedJacobianElement );
SetIsLieAlgebra( A, true );
SetIsRestrictedLieAlgebra( A, true );
fam := FamilyObj(Representative(A));
fam!.pMapping := [];
pmap := arg[Length(arg)];
while Length(pmap)<>Dimension(A) do
Error("Pth power images list should have length ",Dimension(A));
od;
for i in [1..Length(pmap)] do
v := List(pmap,i->fam!.zerocoeff);
for j in [2,4..Length(pmap[i])] do
v[pmap[i][j]] := One(v[1])*pmap[i][j-1];
od;
v := ObjByExtRep(fam,v);
# while AdjointMatrix(Basis(A),A.(i))^Characteristic(A)<>AdjointMatrix(Basis(A),v) do
# Error("p-mapping at position ",i," doesn't satisfy the axioms of a restricted Lie algebra");
# od;
Add(fam!.pMapping,v);
od;
SetPthPowerImages(Basis(A),fam!.pMapping);
return A;
end );
#############################################################################
##
#M \.( <A>, <n> ) . . . . . . . access to generators of a full s.c. algebra
##
InstallAccessToGenerators( IsSCAlgebraObjCollection and IsFullSCAlgebra,
"s.c. algebra containing the whole family",
GeneratorsOfAlgebra );
#############################################################################
##
#V QuaternionAlgebraData
##
InstallFlushableValue( QuaternionAlgebraData, [] );
#############################################################################
##
#F QuaternionAlgebra( <F>[, <a>, <b>] )
##
InstallGlobalFunction( QuaternionAlgebra, function( arg )
local F, a, b, e, stored, filter, A;
if Length( arg ) = 1 and IsRing( arg[1] ) then
F:= arg[1];
a:= AdditiveInverse( One( F ) );
b:= a;
elif Length( arg ) = 1 and IsCollection( arg[1] ) then
F:= Field( arg[1] );
a:= AdditiveInverse( One( F ) );
b:= a;
elif Length( arg ) = 3 and IsRing( arg[1] ) then
F:= arg[1];
a:= arg[2];
b:= arg[3];
elif Length( arg ) = 3 and IsCollection( arg[1] ) then
F:= Field( arg[1] );
a:= arg[2];
b:= arg[3];
else
Error( "usage: QuaternionAlgebra( <F>[, <a>, <b>] ) for a ring <F>" );
fi;
e:= One( F );
if e = fail then
Error( "<F> must have an identity element" );
fi;
# Generators in the right family may be already available.
stored:= First( QuaternionAlgebraData,
t -> t[1] = a and t[2] = b
and IsIdenticalObj( t[3], FamilyObj( F ) ) );
if stored <> fail then
A:= AlgebraWithOne( F, GeneratorsOfAlgebra( stored[4] ), "basis" );
SetGeneratorsOfAlgebra( A, GeneratorsOfAlgebraWithOne( A ) );
else
# Construct a filter describing element properties,
# which will be stored in the family.
filter:= IsSCAlgebraObj and IsQuaternion;
if HasIsAssociative( F ) and IsAssociative( F ) then
filter:= filter and IsAssociativeElement;
fi;
if IsNegRat( a ) and IsNegRat( b )
#T it suffices if the parameters are real and negative
and IsCyclotomicCollection( F ) and IsField( F )
and ForAll( GeneratorsOfDivisionRing( F ),
x -> x = ComplexConjugate( x ) ) then
filter:= filter and IsZDFRE;
fi;
# Construct the algebra.
A:= AlgebraByStructureConstantsArg(
[ F,
[ [ [[1],[e]], [[2],[ e]], [[3],[ e]], [[4],[ e]] ],
[ [[2],[e]], [[1],[ a]], [[4],[ e]], [[3],[ a]] ],
[ [[3],[e]], [[4],[-e]], [[1],[ b]], [[2],[ -b]] ],
[ [[4],[e]], [[3],[-a]], [[2],[ b]], [[1],[-a*b]] ],
0, Zero(F) ],
"e", "i", "j", "k" ],
filter );
SetFilterObj( A, IsAlgebraWithOne );
#T better introduce AlgebraWithOneByStructureConstants?
# Store the data for the next call.
Add( QuaternionAlgebraData, [ a, b, FamilyObj( F ), A ] );
fi;
# A quaternion algebra with negative parameters over a real field
# is a division ring.
if IsNegRat( a ) and IsNegRat( b )
and IsCyclotomicCollection( F ) and IsField( F )
and ForAll( GeneratorsOfDivisionRing( F ),
x -> x = ComplexConjugate( x ) ) then
SetFilterObj( A, IsMagmaWithInversesIfNonzero );
#T better use `DivisionRingByGenerators'?
SetGeneratorsOfDivisionRing( A, GeneratorsOfAlgebraWithOne( A ) );
fi;
# Return the quaternion algebra.
return A;
end );
#############################################################################
##
#M OneOp( <quat> ) . . . . . . . . . . . . . . . . . . . . for a quaternion
##
InstallMethod( OneOp,
"for a quaternion",
[ IsQuaternion and IsSCAlgebraObj ],
quat -> ObjByExtRep( FamilyObj( quat ),
[ 1, 0, 0, 0 ] * One( ExtRepOfObj( quat )[1] ) ) );
#############################################################################
##
#M InverseOp( <quat> ) . . . . . . . . . . . . . . . . . . for a quaternion
##
## Let $a$ and $b$ be the parameters from which the algebra of <quat> was
## constructed.
## The inverse of $c_1 e + c_2 i + c_3 j + c_4 k$ is
## $c_1/z e - c_2/z i - c_3/z j - c_4/z k$
## where $z = c_1^2 - c_2^2 a - c_3^2 b + c_4^2 a b$.
##
InstallMethod( InverseOp,
"for a quaternion",
[ IsQuaternion and IsSCAlgebraObj ],
function( quat )
local data, z, a, b;
data:= ExtRepOfObj( quat );
a:= FamilyObj( quat )!.sctable[2][2][2][1];
b:= FamilyObj( quat )!.sctable[3][3][2][1];
z:= data[1]^2 - data[2]^2 * a - data[3]^2 * b + data[4]^2 * a * b;
if IsZero( z ) then
return fail;
fi;
return ObjByExtRep( FamilyObj( quat ),
[ data[1]/z, AdditiveInverse( data[2]/z ),
AdditiveInverse( data[3]/z ),
AdditiveInverse( data[4]/z ) ] );
end );
#############################################################################
##
#M ComplexConjugate( <quat> ) . . . . . . . . . . . . . . for a quaternion
##
InstallMethod( ComplexConjugate,
"for a quaternion",
[ IsQuaternion and IsSCAlgebraObj ],
function( quat )
local v;
v:= ExtRepOfObj( quat );
return ObjByExtRep( FamilyObj( quat ), [ v[1], -v[2], -v[3], -v[4] ] );
end );
#############################################################################
##
#M RealPart( <quat> ) . . . . . . . . . . . . . . . . . . for a quaternion
##
InstallMethod( RealPart,
"for a quaternion",
[ IsQuaternion and IsSCAlgebraObj ],
function( quat )
local v, z;
v:= ExtRepOfObj( quat );
z:= Zero( v[1] );
return ObjByExtRep( FamilyObj( quat ), [ v[1], z, z, z ] );
end );
#############################################################################
##
#M ImaginaryPart( <quat> ) . . . . . . . . . . . . . . . . for a quaternion
##
InstallMethod( ImaginaryPart,
"for a quaternion",
[ IsQuaternion and IsSCAlgebraObj ],
function( quat )
local v, z;
v:= ExtRepOfObj( quat );
z:= Zero( v[1] );
return ObjByExtRep( FamilyObj( quat ), [ v[2], z, v[4], -v[3] ] );
end );
#############################################################################
##
#F ComplexificationQuat( <vector> )
#F ComplexificationQuat( <matrix> )
##
InstallGlobalFunction( ComplexificationQuat, function( matrixorvector )
local result,
i, e,
M,
m,
n,
j, k,
v,
coeff;
result:= [];
i:= E(4);
e:= 1;
if IsQuaternionCollColl( matrixorvector ) then
M:= matrixorvector;
m:= Length( M );
n:= Length( M[1] );
for j in [ 1 .. 2*m ] do
result[j]:= [];
od;
for j in [ 1 .. m ] do
for k in [ 1 .. n ] do
coeff:= ExtRepOfObj( M[j][k] );
result[ j ][ k ]:= e * coeff[1] + i * coeff[2];
result[ j ][ n+k ]:= e * coeff[3] + i * coeff[4];
result[ m+j ][ k ]:= - e * coeff[3] + i * coeff[4];
result[ m+j ][ n+k ]:= e * coeff[1] - i * coeff[2];
od;
od;
elif IsQuaternionCollection( matrixorvector ) then
v:= matrixorvector;
n:= Length( v );
for j in [ 1 .. n ] do
coeff:= ExtRepOfObj( v[j] );
result[ j ]:= e * coeff[1] + i * coeff[2];
result[ n+j ]:= e * coeff[3] + i * coeff[4];
od;
else
Error( "<matrixorvector> must be a vector or matrix of quaternions" );
fi;
return result;
end );
#############################################################################
##
#F OctaveAlgebra( <F> )
##
InstallGlobalFunction( OctaveAlgebra, F -> AlgebraByStructureConstants(
F,
[ [ [[1],[1]],[[],[]],[[3],[1]],[[],[]],[[5],[1]],[[],[]],[[],[]],
[[8],[1]] ],
[ [[],[]],[[2],[1]],[[],[]],[[4],[1]],[[],[]],[[6],[1]],[[7],[1]],
[[],[]] ],
[ [[],[]],[[3],[1]],[[],[]],[[1],[1]],[[7],[1]],[[],[]],[[],[]],
[[6],[1]] ],
[ [[4],[1]],[[],[]],[[2],[1]],[[],[]],[[],[]],[[8],[1]],[[5],[1]],
[[],[]] ],
[ [[],[]],[[5],[1]],[[7],[-1]],[[],[]],[[],[]],[[1],[1]],[[],[]],
[[4],[-1]] ],
[ [[6],[1]],[[],[]],[[],[]],[[8],[-1]],[[2],[1]],[[],[]],[[3],[-1]],
[[],[]] ],
[ [[7],[1]],[[],[]],[[],[]],[[5],[-1]],[[],[]],[[3],[1]],[[],[]],
[[2],[-1]] ],
[ [[],[]],[[8],[1]],[[6],[-1]],[[],[]],[[4],[1]],[[],[]],[[1],[-1]],
[[],[]] ],
0, 0 ],
"s1", "t1", "s2", "t2", "s3", "t3", "s4", "t4" ) );
#############################################################################
##
#M NiceFreeLeftModuleInfo( <V> )
#M NiceVector( <V>, <v> )
#M UglyVector( <V>, <r> )
##
InstallHandlingByNiceBasis( "IsSCAlgebraObjSpace", rec(
detect := function( R, gens, V, zero )
return IsSCAlgebraObjCollection( V );
end,
NiceFreeLeftModuleInfo := ReturnTrue,
NiceVector := function( V, v )
return ExtRepOfObj( v );
end,
UglyVector := function( V, r )
local F;
F:= ElementsFamily( FamilyObj( V ) );
if Length( r ) <> Length( F!.names ) then
return fail;
fi;
return ObjByExtRep( F, r );
end ) );
#############################################################################
##
#M MutableBasis( <R>, <gens> )
#M MutableBasis( <R>, <gens>, <zero> )
##
## We choose a mutable basis that stores a mutable basis for a nice module.
##
InstallMethod( MutableBasis,
"for ring and collection of s. c. algebra elements",
[ IsRing, IsSCAlgebraObjCollection ],
MutableBasisViaNiceMutableBasisMethod2 );
InstallOtherMethod( MutableBasis,
"for ring, (possibly empty) list, and zero element",
[ IsRing, IsList, IsSCAlgebraObj ],
MutableBasisViaNiceMutableBasisMethod3 );
#############################################################################
##
#M Coefficients( <B>, <v> ) . . . . . . coefficients w.r.t. canonical basis
##
InstallMethod( Coefficients,
"for canonical basis of full s. c. algebra",
IsCollsElms,
[ IsBasis and IsCanonicalBasisFullSCAlgebra, IsSCAlgebraObj ],
function( B, v )
return ExtRepOfObj( v );
end );
#############################################################################
##
#M LinearCombination( <B>, <coeffs> ) . . . . . . . . . for canonical basis
##
InstallMethod( LinearCombination,
"for canonical basis of full s. c. algebra",
[ IsBasis and IsCanonicalBasisFullSCAlgebra, IsRowVector ],
function( B, coeffs )
return ObjByExtRep( ElementsFamily( FamilyObj( B ) ), coeffs );
end );
#############################################################################
##
#M BasisVectors( <B> ) . . . . . . for canonical basis of full s.~c. algebra
##
InstallMethod( BasisVectors,
"for canonical basis of full s. c. algebra",
[ IsBasis and IsCanonicalBasisFullSCAlgebra ],
B -> ElementsFamily( FamilyObj(
UnderlyingLeftModule( B ) ) )!.basisVectors );
#############################################################################
##
#M Basis( <A> ) . . . . . . . . . . . . . . . basis of a full s.~c. algebra
##
InstallMethod( Basis,
"for full s. c. algebra (delegate to `CanonicalBasis')",
[ IsFreeLeftModule and IsSCAlgebraObjCollection and IsFullSCAlgebra ],
CANONICAL_BASIS_FLAGS,
CanonicalBasis );
#############################################################################
##
#M CanonicalBasis( <A> ) . . . . . . . . . . . basis of a full s.~c. algebra
##
InstallMethod( CanonicalBasis,
"for full s. c. algebras",
[ IsFreeLeftModule and IsSCAlgebraObjCollection and IsFullSCAlgebra ],
function( A )
local B;
B:= Objectify( NewType( FamilyObj( A ),
IsCanonicalBasisFullSCAlgebra
and IsAttributeStoringRep
and IsFiniteBasisDefault
and IsCanonicalBasis ),
rec() );
SetUnderlyingLeftModule( B, A );
SetStructureConstantsTable( B,
ElementsFamily( FamilyObj( A ) )!.sctable );
return B;
end );
#############################################################################
##
#M IsCanonicalBasisFullSCAlgebra( <B> )
##
InstallMethod( IsCanonicalBasisFullSCAlgebra,
"for a basis",
[ IsBasis ],
function( B )
local A;
A:= UnderlyingLeftModule( B );
return IsSCAlgebraObjCollection( A )
and IsFullSCAlgebra( A )
and IsCanonicalBasis( B );
end );
#T change implementation: bases of their own right, as for Gaussian row spaces,
#T if the algebra is Gaussian
#############################################################################
##
#M Intersection2( <V>, <W> )
##
## Contrary to the generic case that is handled by `Intersection2Spaces',
## we know initially a (finite dimensional) common coefficient space,
## so we can avoid the intermediate construction of such a space.
##
InstallMethod( Intersection2,
"for two spaces in a common s.c. algebra",
IsIdenticalObj,
[ IsVectorSpace and IsSCAlgebraObjCollection,
IsVectorSpace and IsSCAlgebraObjCollection ],
function( V, W )
local F, # coefficients field
gensV, # list of generators of 'V'
gensW, # list of generators of 'W'
Fam, # family of an element
inters; # intersection, result
F:= LeftActingDomain( V );
if F <> LeftActingDomain( W ) then
# The generic method is good enough for this.
TryNextMethod();
fi;
gensV:= GeneratorsOfLeftModule( V );
gensW:= GeneratorsOfLeftModule( W );
if IsEmpty( gensV ) or IsEmpty( gensW ) then
inters:= [];
else
gensV:= List( gensV, ExtRepOfObj );
gensW:= List( gensW, ExtRepOfObj );
if not ( ForAll( gensV, v -> IsSubset( F, v ) )
and ForAll( gensW, v -> IsSubset( F, v ) ) ) then
# We are not in a Gaussian situation.
TryNextMethod();
fi;
Fam:= ElementsFamily( FamilyObj( V ) );
inters:= List( SumIntersectionMat( gensV, gensW )[2],
x -> ObjByExtRep( Fam, x ) );
fi;
# Construct the intersection space, if possible with a parent,
# and with as much structure as possible.
if IsEmpty( inters ) then
inters:= TrivialSubFLMLOR( V );
elif IsFLMLOR( V ) and IsFLMLOR( W ) then
inters:= FLMLOR( F, inters, "basis" );
else
inters:= VectorSpace( F, inters, "basis" );
fi;
if HasParent( V ) and HasParent( W )
and IsIdenticalObj( Parent( V ), Parent( W ) ) then
SetParent( inters, Parent( V ) );
fi;
# Run implications by the subset relation.
UseSubsetRelation( V, inters );
UseSubsetRelation( W, inters );
# Return the result.
return inters;
end );
# analogous for closure?
#############################################################################
##
#E
|