/usr/share/gap/lib/basis.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 | #############################################################################
##
#W basis.gd GAP library Thomas Breuer
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares the operations for bases of free left modules.
##
#############################################################################
##
## <#GAPDoc Label="[1]{basis}">
## In &GAP;, a <E>basis</E> of a free left <M>F</M>-module <M>V</M> is a list of vectors
## <M>B = [ v_1, v_2, \ldots, v_n ]</M> in <M>V</M> such that <M>V</M> is generated as a
## left <M>F</M>-module by these vectors and such that <M>B</M> is linearly
## independent over <M>F</M>.
## The integer <M>n</M> is the dimension of <M>V</M> (see <Ref Func="Dimension"/>).
## In particular, as each basis is a list (see Chapter <Ref Chap="Lists"/>),
## it has a length (see <Ref Func="Length"/>), and the <M>i</M>-th vector of <M>B</M> can be
## accessed as <M>B[i]</M>.
## <Example><![CDATA[
## gap> V:= Rationals^3;
## ( Rationals^3 )
## gap> B:= Basis( V );
## CanonicalBasis( ( Rationals^3 ) )
## gap> Length( B );
## 3
## gap> B[1];
## [ 1, 0, 0 ]
## ]]></Example>
## <P/>
## The operations described below make sense only for bases of <E>finite</E>
## dimensional vector spaces.
## (In practice this means that the vector spaces must be <E>low</E> dimensional,
## that is, the dimension should not exceed a few hundred.)
## <P/>
## Besides the basic operations for lists
## (see <Ref Sect="Basic Operations for Lists"/>),
## the <E>basic operations for bases</E> are <Ref Func="BasisVectors"/>,
## <Ref Func="Coefficients"/>,
## <Ref Func="LinearCombination"/>,
## and <Ref Func="UnderlyingLeftModule"/>.
## These and other operations for arbitrary bases are described
## in <Ref Sect="Operations for Vector Space Bases"/>.
## <P/>
## For special kinds of bases, further operations are defined
## (see <Ref Sect="Operations for Special Kinds of Bases"/>).
## <P/>
## &GAP; supports the following three kinds of bases.
## <P/>
## <E>Relative bases</E> delegate the work to other bases of the same
## free left module, via basechange matrices (see <Ref Func="RelativeBasis"/>).
## <P/>
## <E>Bases handled by nice bases</E> delegate the work to bases
## of isomorphic left modules over the same left acting domain
## (see <Ref Sect="Vector Spaces Handled By Nice Bases"/>).
## <P/>
## Finally, of course there must be bases in &GAP; that really do the work.
## <P/>
## For example, in the case of a Gaussian row or matrix space <A>V</A>
## (see <Ref Sect="Row and Matrix Spaces"/>),
## <C>Basis( <A>V</A> )</C> is a semi-echelonized basis (see <Ref Func="IsSemiEchelonized"/>)
## that uses Gaussian elimination; such a basis is of the third kind.
## <C>Basis( <A>V</A>, <A>vectors</A> )</C> is either semi-echelonized or a relative basis.
## Other examples of bases of the third kind are canonical bases of finite
## fields and of abelian number fields.
## <P/>
## Bases handled by nice bases are described
## in <Ref Sect="Vector Spaces Handled By Nice Bases"/>.
## Examples are non-Gaussian row and matrix spaces, and subspaces of finite
## fields and abelian number fields that are themselves not fields.
## <#/GAPDoc>
##
#############################################################################
##
#C IsBasis( <obj> )
##
## <#GAPDoc Label="IsBasis">
## <ManSection>
## <Filt Name="IsBasis" Arg='obj' Type='Category'/>
##
## <Description>
## In &GAP;, a <E>basis</E> of a free left module is an object that knows
## how to compute coefficients w.r.t. its basis vectors
## (see <Ref Func="Coefficients"/>).
## Bases are constructed by <Ref Func="Basis"/>.
## Each basis is an immutable list,
## the <M>i</M>-th entry being the <M>i</M>-th basis vector.
## <P/>
## (See <Ref Sect="Mutable Bases"/> for mutable bases.)
## <P/>
## <Example><![CDATA[
## gap> V:= GF(2)^2;;
## gap> B:= Basis( V );;
## gap> IsBasis( B );
## true
## gap> IsBasis( [ [ 1, 0 ], [ 0, 1 ] ] );
## false
## gap> IsBasis( Basis( Rationals^2, [ [ 1, 0 ], [ 0, 1 ] ] ) );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsBasis", IsHomogeneousList and IsDuplicateFreeList );
#############################################################################
##
#C IsFiniteBasisDefault( <obj> )
##
## <ManSection>
## <Filt Name="IsFiniteBasisDefault" Arg='obj' Type='Category'/>
##
## <Description>
## Objects in this category are in <C>IsListDefault</C>, that is, addition and
## multiplication for them is defined as for internally represented lists,
## the result presumably being an internally represented list.
## </Description>
## </ManSection>
##
DeclareSynonym( "IsFiniteBasisDefault",
IsBasis and IsCopyable and IsListDefault );
#############################################################################
##
#P IsCanonicalBasis( <B> )
##
## <#GAPDoc Label="IsCanonicalBasis">
## <ManSection>
## <Prop Name="IsCanonicalBasis" Arg='B'/>
##
## <Description>
## If the underlying free left module <M>V</M> of the basis <A>B</A>
## supports a canonical basis (see <Ref Func="CanonicalBasis"/>) then
## <Ref Func="IsCanonicalBasis"/> returns <K>true</K> if <A>B</A> is equal
## to the canonical basis of <M>V</M>,
## and <K>false</K> otherwise.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsCanonicalBasis", IsBasis );
#############################################################################
##
#P IsCanonicalBasisFullRowModule( <B> )
##
## <#GAPDoc Label="IsCanonicalBasisFullRowModule">
## <ManSection>
## <Prop Name="IsCanonicalBasisFullRowModule" Arg='B'/>
##
## <Description>
## <Index Subkey="for row spaces">canonical basis</Index>
## <Ref Func="IsCanonicalBasisFullRowModule"/> returns <K>true</K> if
## <A>B</A> is the canonical basis (see <Ref Func="IsCanonicalBasis"/>)
## of a full row module (see <Ref Func="IsFullRowModule"/>),
## and <K>false</K> otherwise.
## <P/>
## The <E>canonical basis</E> of a Gaussian row space is defined as the
## unique semi-echelonized (see <Ref Func="IsSemiEchelonized"/>) basis
## with the additional property that for <M>j > i</M> the position of the
## pivot of row <M>j</M> is bigger than the position of the pivot of row
## <M>i</M>, and that each pivot column contains exactly one nonzero entry.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsCanonicalBasisFullRowModule", IsBasis );
InstallTrueMethod( IsCanonicalBasis, IsCanonicalBasisFullRowModule );
InstallTrueMethod( IsSmallList,
IsList and IsCanonicalBasisFullRowModule );
#############################################################################
##
#P IsCanonicalBasisFullMatrixModule( <B> )
##
## <#GAPDoc Label="IsCanonicalBasisFullMatrixModule">
## <ManSection>
## <Prop Name="IsCanonicalBasisFullMatrixModule" Arg='B'/>
##
## <Description>
## <Index Subkey="for matrix spaces">canonical basis</Index>
## <Ref Func="IsCanonicalBasisFullMatrixModule"/> returns <K>true</K> if
## <A>B</A> is the canonical basis (see <Ref Func="IsCanonicalBasis"/>)
## of a full matrix module (see <Ref Func="IsFullMatrixModule"/>),
## and <K>false</K> otherwise.
## <P/>
## The <E>canonical basis</E> of a Gaussian matrix space is defined as the
## unique semi-echelonized (see <Ref Func="IsSemiEchelonized"/>) basis
## for which the list of concatenations of the basis vectors forms the
## canonical basis of the corresponding Gaussian row space.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsCanonicalBasisFullMatrixModule", IsBasis );
InstallTrueMethod( IsCanonicalBasis, IsCanonicalBasisFullMatrixModule );
InstallTrueMethod( IsSmallList,
IsList and IsCanonicalBasisFullMatrixModule );
#############################################################################
##
#P IsIntegralBasis( <B> )
##
## <#GAPDoc Label="IsIntegralBasis">
## <ManSection>
## <Prop Name="IsIntegralBasis" Arg='B'/>
##
## <Description>
## Let <A>B</A> be an <M>S</M>-basis of a <E>field</E> <M>F</M>, say, for a subfield <M>S</M> of <M>F</M>,
## and let <M>R</M> and <M>M</M> be the rings of algebraic integers in <M>S</M> and <M>F</M>,
## respectively.
## <C>IsIntegralBasis</C> returns <K>true</K> if <A>B</A> is also an <M>R</M>-basis of <M>M</M>,
## and <K>false</K> otherwise.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsIntegralBasis", IsBasis );
#############################################################################
##
#P IsNormalBasis( <B> )
##
## <#GAPDoc Label="IsNormalBasis">
## <ManSection>
## <Prop Name="IsNormalBasis" Arg='B'/>
##
## <Description>
## Let <A>B</A> be an <M>S</M>-basis of a <E>field</E> <M>F</M>, say,
## for a subfield <M>S</M> of <M>F</M>.
## <C>IsNormalBasis</C> returns <K>true</K> if <A>B</A> is invariant under
## the Galois group
## (see <Ref Attr="GaloisGroup" Label="of field"/>)
## of the field extension <M>F / S</M>, and <K>false</K> otherwise.
## <Example><![CDATA[
## gap> B:= CanonicalBasis( GaussianRationals );
## CanonicalBasis( GaussianRationals )
## gap> IsIntegralBasis( B ); IsNormalBasis( B );
## true
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsNormalBasis", IsBasis );
#############################################################################
##
#P IsSemiEchelonized( <B> )
##
## <#GAPDoc Label="IsSemiEchelonized">
## <ManSection>
## <Prop Name="IsSemiEchelonized" Arg='B'/>
##
## <Description>
## Let <A>B</A> be a basis of a Gaussian row or matrix space <M>V</M>, say
## (see <Ref Func="IsGaussianSpace"/>) over the field <M>F</M>.
## <P/>
## If <M>V</M> is a row space then <A>B</A> is semi-echelonized if the matrix formed
## by its basis vectors has the property that the first nonzero element in
## each row is the identity of <M>F</M>,
## and all values exactly below these pivot elements are the zero of <M>F</M>
## (cf. <Ref Func="SemiEchelonMat"/>).
## <P/>
## If <M>V</M> is a matrix space then <A>B</A> is semi-echelonized if the matrix
## obtained by replacing each basis vector by the concatenation of its rows
## is semi-echelonized (see above, cf. <Ref Func="SemiEchelonMats"/>).
## <Example><![CDATA[
## gap> V:= GF(2)^2;;
## gap> B1:= Basis( V, [ [ 0, 1 ], [ 1, 0 ] ] * Z(2) );;
## gap> IsSemiEchelonized( B1 );
## true
## gap> B2:= Basis( V, [ [ 0, 1 ], [ 1, 1 ] ] * Z(2) );;
## gap> IsSemiEchelonized( B2 );
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsSemiEchelonized", IsBasis );
#############################################################################
##
#A BasisVectors( <B> )
##
## <#GAPDoc Label="BasisVectors">
## <ManSection>
## <Attr Name="BasisVectors" Arg='B'/>
##
## <Description>
## For a vector space basis <A>B</A>, <C>BasisVectors</C> returns the list of basis
## vectors of <A>B</A>.
## The lists <A>B</A> and <C>BasisVectors( <A>B</A> )</C> are equal; the main purpose of
## <C>BasisVectors</C> is to provide access to a list of vectors that does <E>not</E>
## know about an underlying vector space.
## <Example><![CDATA[
## gap> V:= VectorSpace( Rationals, [ [ 1, 2, 7 ], [ 1/2, 1/3, 5 ] ] );;
## gap> B:= Basis( V, [ [ 1, 2, 7 ], [ 0, 1, -9/4 ] ] );;
## gap> BasisVectors( B );
## [ [ 1, 2, 7 ], [ 0, 1, -9/4 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "BasisVectors", IsBasis );
#############################################################################
##
#A EnumeratorByBasis( <B> )
##
## <#GAPDoc Label="EnumeratorByBasis">
## <ManSection>
## <Attr Name="EnumeratorByBasis" Arg='B'/>
##
## <Description>
## For a basis <A>B</A> of the free left <M>F</M>-module <M>V</M> of dimension <M>n</M>, say,
## <C>EnumeratorByBasis</C> returns an enumerator that loops over the elements of
## <M>V</M> as linear combinations of the vectors of <A>B</A> with coefficients the
## row vectors in the full row space (see <Ref Func="FullRowSpace"/>) of dimension <M>n</M>
## over <M>F</M>, in the succession given by the default enumerator of this row
## space.
## <Example><![CDATA[
## gap> V:= GF(2)^3;;
## gap> enum:= EnumeratorByBasis( CanonicalBasis( V ) );;
## gap> Print( enum{ [ 1 .. 4 ] }, "\n" );
## [ [ 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0 ],
## [ 0*Z(2), Z(2)^0, 0*Z(2) ], [ 0*Z(2), Z(2)^0, Z(2)^0 ] ]
## gap> B:= Basis( V, [ [ 1, 1, 1 ], [ 1, 1, 0 ], [ 1, 0, 0 ] ] * Z(2) );;
## gap> enum:= EnumeratorByBasis( B );;
## gap> Print( enum{ [ 1 .. 4 ] }, "\n" );
## [ [ 0*Z(2), 0*Z(2), 0*Z(2) ], [ Z(2)^0, 0*Z(2), 0*Z(2) ],
## [ Z(2)^0, Z(2)^0, 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2) ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "EnumeratorByBasis", IsBasis );
#############################################################################
##
#A StructureConstantsTable( <B> )
##
## <#GAPDoc Label="StructureConstantsTable">
## <ManSection>
## <Attr Name="StructureConstantsTable" Arg='B'/>
##
## <Description>
## Let <A>B</A> be a basis of a free left module <M>R</M>, say,
## that is also a ring.
## In this case <Ref Func="StructureConstantsTable"/> returns
## a structure constants table <M>T</M> in sparse representation,
## as used for structure constants algebras
## (see Section <Ref Sect="Algebras" BookName="tut"/>
## of the &GAP; User's Tutorial).
## <P/>
## If <A>B</A> has length <M>n</M> then <M>T</M> is a list of length
## <M>n+2</M>.
## The first <M>n</M> entries of <M>T</M> are lists of length <M>n</M>.
## <M>T[ n+1 ]</M> is one of <M>1</M>, <M>-1</M>, or <M>0</M>;
## in the case of <M>1</M> the table is known to be symmetric,
## in the case of <M>-1</M> it is known to be antisymmetric,
## and <M>0</M> occurs in all other cases.
## <M>T[ n+2 ]</M> is the zero element of the coefficient domain.
## <P/>
## The coefficients w.r.t. <A>B</A> of the product of the <M>i</M>-th
## and <M>j</M>-th basis vector of <A>B</A> are stored in <M>T[i][j]</M>
## as a list of length <M>2</M>;
## its first entry is the list of positions of nonzero coefficients,
## the second entry is the list of these coefficients themselves.
## <P/>
## The multiplication in an algebra <M>A</M> with vector space basis
## <A>B</A> with basis vectors <M>[ v_1, \ldots, v_n ]</M>
## is determined by the so-called structure matrices
## <M>M_k = [ m_{ijk} ]_{ij}</M>, <M>1 \leq k \leq n</M>.
## The <M>M_k</M> are defined by <M>v_i v_j = \sum_k m_{ijk} v_k</M>.
## Let <M>a = [ a_1, \ldots, a_n ]</M> and <M>b = [ b_1, \ldots, b_n ]</M>.
## Then
## <Display Mode="M">
## \left( \sum_i a_i v_i \right) \left( \sum_j b_j v_j \right)
## = \sum_{{i,j}} a_i b_j \left( v_i v_j \right)
## = \sum_k \left( \sum_j \left( \sum_i a_i m_{ijk} \right) b_j \right) v_k
## = \sum_k \left( a M_k b^{tr} \right) v_k.
## </Display>
## <P/>
## <Example><![CDATA[
## gap> A:= QuaternionAlgebra( Rationals );;
## gap> StructureConstantsTable( Basis( A ) );
## [ [ [ [ 1 ], [ 1 ] ], [ [ 2 ], [ 1 ] ], [ [ 3 ], [ 1 ] ],
## [ [ 4 ], [ 1 ] ] ],
## [ [ [ 2 ], [ 1 ] ], [ [ 1 ], [ -1 ] ], [ [ 4 ], [ 1 ] ],
## [ [ 3 ], [ -1 ] ] ],
## [ [ [ 3 ], [ 1 ] ], [ [ 4 ], [ -1 ] ], [ [ 1 ], [ -1 ] ],
## [ [ 2 ], [ 1 ] ] ],
## [ [ [ 4 ], [ 1 ] ], [ [ 3 ], [ 1 ] ], [ [ 2 ], [ -1 ] ],
## [ [ 1 ], [ -1 ] ] ], 0, 0 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "StructureConstantsTable", IsBasis );
#############################################################################
##
#A UnderlyingLeftModule( <B> )
##
## <#GAPDoc Label="UnderlyingLeftModule">
## <ManSection>
## <Attr Name="UnderlyingLeftModule" Arg='B'/>
##
## <Description>
## For a basis <A>B</A> of a free left module <M>V</M>, say,
## <Ref Attr="UnderlyingLeftModule"/> returns <M>V</M>.
## <P/>
## The reason why a basis stores a free left module is that otherwise one
## would have to store the basis vectors and the coefficient domain
## separately.
## Storing the module allows one for example to deal with bases whose basis
## vectors have not yet been computed yet (see <Ref Func="Basis"/>);
## furthermore, in some cases it is convenient to test membership of a
## vector in the module before computing coefficients w.r.t. a basis.
## <!-- this happens for example for finite fields and cyclotomic fields-->
## <Example><![CDATA[
## gap> B:= Basis( GF(2)^6 );; UnderlyingLeftModule( B );
## ( GF(2)^6 )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "UnderlyingLeftModule", IsBasis );
#############################################################################
##
#O Coefficients( <B>, <v> ) . . . coefficients of <v> w.r. to the basis <B>
##
## <#GAPDoc Label="Coefficients">
## <ManSection>
## <Oper Name="Coefficients" Arg='B, v'/>
##
## <Description>
## Let <M>V</M> be the underlying left module of the basis <A>B</A>, and <A>v</A> a vector
## such that the family of <A>v</A> is the elements family of the family of <M>V</M>.
## Then <C>Coefficients( <A>B</A>, <A>v</A> )</C> is the list of coefficients of <A>v</A> w.r.t.
## <A>B</A> if <A>v</A> lies in <M>V</M>, and <K>fail</K> otherwise.
## <Example><![CDATA[
## gap> V:= VectorSpace( Rationals, [ [ 1, 2, 7 ], [ 1/2, 1/3, 5 ] ] );;
## gap> B:= Basis( V, [ [ 1, 2, 7 ], [ 0, 1, -9/4 ] ] );;
## gap> Coefficients( B, [ 1/2, 1/3, 5 ] );
## [ 1/2, -2/3 ]
## gap> Coefficients( B, [ 1, 0, 0 ] );
## fail
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Coefficients", [ IsBasis, IsVector ] );
#############################################################################
##
#O LinearCombination( <B>, <coeff> ) . . . . linear combination w. r.t. <B>
##
## <#GAPDoc Label="LinearCombination">
## <ManSection>
## <Oper Name="LinearCombination" Arg='B, coeff'/>
##
## <Description>
## If <A>B</A> is a basis object (see <Ref Func="IsBasis"/>)
## or a homogeneous list of length <M>n</M>, say,
## and <A>coeff</A> is a row vector of the same length,
## <Ref Oper="LinearCombination"/> returns the vector
## <M>\sum_{{i = 1}}^n <A>coeff</A>[i] * <A>B</A>[i]</M>.
## <P/>
## Perhaps the most important usage is the case where <A>B</A> forms a
## basis.
## <Example><![CDATA[
## gap> V:= VectorSpace( Rationals, [ [ 1, 2, 7 ], [ 1/2, 1/3, 5 ] ] );;
## gap> B:= Basis( V, [ [ 1, 2, 7 ], [ 0, 1, -9/4 ] ] );;
## gap> LinearCombination( B, [ 1/2, -2/3 ] );
## [ 1/2, 1/3, 5 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "LinearCombination",
[ IsHomogeneousList, IsHomogeneousList ] );
#############################################################################
##
#O SiftedVector( <B>, <v> ) . . . . . . residuum of <v> w.r.t. the basis <B>
##
## <#GAPDoc Label="SiftedVector">
## <ManSection>
## <Oper Name="SiftedVector" Arg='B, v'/>
##
## <Description>
## Let <A>B</A> be a semi-echelonized basis (see <Ref Func="IsSemiEchelonized"/>) of a
## Gaussian row or matrix space <M>V</M> (see <Ref Func="IsGaussianSpace"/>),
## and <A>v</A> a row vector or matrix, respectively, of the same dimension as
## the elements in <M>V</M>.
## <C>SiftedVector</C> returns the <E>residuum</E> of <A>v</A> with respect to <A>B</A>, which
## is obtained by successively cleaning the pivot positions in <A>v</A> by
## subtracting multiples of the basis vectors in <A>B</A>.
## So the result is the zero vector in <M>V</M> if and only if <A>v</A> lies in <M>V</M>.
## <P/>
## <A>B</A> may also be a mutable basis (see <Ref Sect="Mutable Bases"/>) of a Gaussian row
## or matrix space.
## <Example><![CDATA[
## gap> V:= VectorSpace( Rationals, [ [ 1, 2, 7 ], [ 1/2, 1/3, 5 ] ] );;
## gap> B:= Basis( V );;
## gap> SiftedVector( B, [ 1, 2, 8 ] );
## [ 0, 0, 1 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "SiftedVector", [ IsBasis, IsVector ] );
#############################################################################
##
#O IteratorByBasis( <B> )
##
## <#GAPDoc Label="IteratorByBasis">
## <ManSection>
## <Oper Name="IteratorByBasis" Arg='B'/>
##
## <Description>
## For a basis <A>B</A> of the free left <M>F</M>-module <M>V</M> of dimension <M>n</M>, say,
## <C>IteratorByBasis</C> returns an iterator that loops over the elements of <M>V</M>
## as linear combinations of the vectors of <A>B</A> with coefficients the row
## vectors in the full row space (see <Ref Func="FullRowSpace"/>) of dimension <M>n</M> over
## <M>F</M>, in the succession given by the default enumerator of this row space.
## <Example><![CDATA[
## gap> V:= GF(2)^3;;
## gap> iter:= IteratorByBasis( CanonicalBasis( V ) );;
## gap> for i in [ 1 .. 4 ] do Print( NextIterator( iter ), "\n" ); od;
## [ 0*Z(2), 0*Z(2), 0*Z(2) ]
## [ 0*Z(2), 0*Z(2), Z(2)^0 ]
## [ 0*Z(2), Z(2)^0, 0*Z(2) ]
## [ 0*Z(2), Z(2)^0, Z(2)^0 ]
## gap> B:= Basis( V, [ [ 1, 1, 1 ], [ 1, 1, 0 ], [ 1, 0, 0 ] ] * Z(2) );;
## gap> iter:= IteratorByBasis( B );;
## gap> for i in [ 1 .. 4 ] do Print( NextIterator( iter ), "\n" ); od;
## [ 0*Z(2), 0*Z(2), 0*Z(2) ]
## [ Z(2)^0, 0*Z(2), 0*Z(2) ]
## [ Z(2)^0, Z(2)^0, 0*Z(2) ]
## [ 0*Z(2), Z(2)^0, 0*Z(2) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "IteratorByBasis", [ IsBasis ] );
#############################################################################
##
#A Basis( <V>[, <vectors>] )
#O BasisNC( <V>, <vectors> )
##
## <#GAPDoc Label="Basis">
## <ManSection>
## <Attr Name="Basis" Arg='V[, vectors]'/>
## <Oper Name="BasisNC" Arg='V, vectors'/>
##
## <Description>
## Called with a free left <M>F</M>-module <A>V</A> as the only argument,
## <Ref Attr="Basis"/> returns an <M>F</M>-basis of <A>V</A>
## whose vectors are not further specified.
## <P/>
## If additionally a list <A>vectors</A> of vectors in <A>V</A> is given
## that forms an <M>F</M>-basis of <A>V</A>
## then <Ref Attr="Basis"/> returns this basis;
## if <A>vectors</A> is not linearly independent over <M>F</M>
## or does not generate <A>V</A> as a free left <M>F</M>-module
## then <K>fail</K> is returned.
## <P/>
## <Ref Oper="BasisNC"/> does the same as the two argument version of
## <Ref Attr="Basis"/>, except that it does not check
## whether <A>vectors</A> form a basis.
## <P/>
## If no basis vectors are prescribed then <Ref Attr="Basis"/> need not
## compute basis vectors; in this case, the vectors are computed
## in the first call to <Ref Attr="BasisVectors"/>.
## <Example><![CDATA[
## gap> V:= VectorSpace( Rationals, [ [ 1, 2, 7 ], [ 1/2, 1/3, 5 ] ] );;
## gap> B:= Basis( V );
## SemiEchelonBasis( <vector space over Rationals, with
## 2 generators>, ... )
## gap> BasisVectors( B );
## [ [ 1, 2, 7 ], [ 0, 1, -9/4 ] ]
## gap> B:= Basis( V, [ [ 1, 2, 7 ], [ 3, 2, 30 ] ] );
## Basis( <vector space over Rationals, with 2 generators>,
## [ [ 1, 2, 7 ], [ 3, 2, 30 ] ] )
## gap> Basis( V, [ [ 1, 2, 3 ] ] );
## fail
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Basis", IsFreeLeftModule );
DeclareOperation( "Basis", [ IsFreeLeftModule, IsHomogeneousList ] );
DeclareOperation( "BasisNC", [ IsFreeLeftModule, IsHomogeneousList ] );
#############################################################################
##
#A SemiEchelonBasis( <V>[, <vectors>] )
#O SemiEchelonBasisNC( <V>, <vectors> )
##
## <#GAPDoc Label="SemiEchelonBasis">
## <ManSection>
## <Attr Name="SemiEchelonBasis" Arg='V[, vectors]'/>
## <Oper Name="SemiEchelonBasisNC" Arg='V, vectors'/>
##
## <Description>
## Let <A>V</A> be a Gaussian row or matrix vector space over the field
## <M>F</M> (see <Ref Func="IsGaussianSpace"/>,
## <Ref Func="IsRowSpace"/>, <Ref Func="IsMatrixSpace"/>).
## <P/>
## Called with <A>V</A> as the only argument,
## <Ref Attr="SemiEchelonBasis"/> returns a basis of <A>V</A>
## that has the property <Ref Func="IsSemiEchelonized"/>.
## <P/>
## If additionally a list <A>vectors</A> of vectors in <A>V</A> is given
## that forms a semi-echelonized basis of <A>V</A>
## then <Ref Attr="SemiEchelonBasis"/> returns this basis;
## if <A>vectors</A> do not form a basis of <A>V</A>
## then <K>fail</K> is returned.
## <P/>
## <Ref Oper="SemiEchelonBasisNC"/> does the same as the two argument
## version of <Ref Attr="SemiEchelonBasis"/>,
## except that it is not checked whether <A>vectors</A> form
## a semi-echelonized basis.
## <Example><![CDATA[
## gap> V:= GF(2)^2;;
## gap> B:= SemiEchelonBasis( V );
## SemiEchelonBasis( ( GF(2)^2 ), ... )
## gap> Print( BasisVectors( B ), "\n" );
## [ [ Z(2)^0, 0*Z(2) ], [ 0*Z(2), Z(2)^0 ] ]
## gap> B:= SemiEchelonBasis( V, [ [ 1, 1 ], [ 0, 1 ] ] * Z(2) );
## SemiEchelonBasis( ( GF(2)^2 ), <an immutable 2x2 matrix over GF2> )
## gap> Print( BasisVectors( B ), "\n" );
## [ [ Z(2)^0, Z(2)^0 ], [ 0*Z(2), Z(2)^0 ] ]
## gap> Coefficients( B, [ 0, 1 ] * Z(2) );
## [ 0*Z(2), Z(2)^0 ]
## gap> Coefficients( B, [ 1, 0 ] * Z(2) );
## [ Z(2)^0, Z(2)^0 ]
## gap> SemiEchelonBasis( V, [ [ 0, 1 ], [ 1, 1 ] ] * Z(2) );
## fail
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "SemiEchelonBasis", IsFreeLeftModule );
DeclareOperation( "SemiEchelonBasis",
[ IsFreeLeftModule, IsHomogeneousList ] );
DeclareOperation( "SemiEchelonBasisNC",
[ IsFreeLeftModule, IsHomogeneousList ] );
#T In fact they should be declared for `IsGaussianSpace', or at least for
#T `IsVectorSpace', but the files containing these categories are read later ..
#T (Change this!)
#############################################################################
##
#O RelativeBasis( <B>, <vectors> )
#O RelativeBasisNC( <B>, <vectors> )
##
## <#GAPDoc Label="RelativeBasis">
## <ManSection>
## <Oper Name="RelativeBasis" Arg='B, vectors'/>
## <Oper Name="RelativeBasisNC" Arg='B, vectors'/>
##
## <Description>
## A relative basis is a basis of the free left module <A>V</A> that delegates
## the computation of coefficients etc. to another basis of <A>V</A> via
## a basechange matrix.
## <P/>
## Let <A>B</A> be a basis of the free left module <A>V</A>,
## and <A>vectors</A> a list of vectors in <A>V</A>.
## <P/>
## <Ref Oper="RelativeBasis"/> checks whether <A>vectors</A> form a basis of <A>V</A>,
## and in this case a basis is returned in which <A>vectors</A> are
## the basis vectors; otherwise <K>fail</K> is returned.
## <P/>
## <Ref Oper="RelativeBasisNC"/> does the same, except that it omits the check.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "RelativeBasis", [ IsBasis, IsHomogeneousList ] );
DeclareOperation( "RelativeBasisNC", [ IsBasis, IsHomogeneousList ] );
#############################################################################
## <#GAPDoc Label="[2]{basis}">
## There are kinds of free <M>R</M>-modules for which efficient computations
## are possible because the elements are <Q>nice</Q>,
## for example subspaces of full row modules or of full matrix modules.
## In other cases, a <Q>nice</Q> canonical basis is known that allows one
## to do the necessary computations in the corresponding row module,
## for example algebras given by structure constants.
## <P/>
## In many other situations, one knows at least an isomorphism from the
## given module <M>V</M> to a <Q>nicer</Q> free left module <M>W</M>,
## in the sense that for each vector in <M>V</M>,
## the image in <M>W</M> can easily be computed,
## and analogously for each vector in <M>W</M>,
## one can compute the preimage in <M>V</M>.
## <P/>
## This allows one to delegate computations w.r.t. a basis <M>B</M>,
## say, of <M>V</M> to the corresponding basis <M>C</M>, say, of <M>W</M>.
## We call <M>W</M> the <E>nice free left module</E> of <M>V</M>,
## and <M>C</M> the <E>nice basis</E> of <M>B</M>.
## (Note that it may happen that also <M>C</M> delegates questions to a
## <Q>nicer</Q> basis.)
## The basis <M>B</M> indicates the intended behaviour by the filter
## <Ref Func="IsBasisByNiceBasis"/>,
## and stores <M>C</M> as value of the attribute <Ref Attr="NiceBasis"/>.
## <M>V</M> indicates the intended behaviour by the filter
## <Ref Filt="IsHandledByNiceBasis"/>, and stores <M>W</M> as value
## of the attribute <Ref Func="NiceFreeLeftModule"/>.
## <P/>
## The bijection between <M>V</M> and <M>W</M> is implemented by the
## functions <Ref Func="NiceVector"/> and <Ref Func="UglyVector"/>;
## additional data needed to compute images and preimages can be stored
## as value of <Ref Func="NiceFreeLeftModuleInfo"/>.
## <#/GAPDoc>
##
#############################################################################
##
#F DeclareHandlingByNiceBasis( <name>, <info> )
#F InstallHandlingByNiceBasis( <name>, <record> )
##
## <#GAPDoc Label="DeclareHandlingByNiceBasis">
## <ManSection>
## <Func Name="DeclareHandlingByNiceBasis" Arg='name, info'/>
## <Func Name="InstallHandlingByNiceBasis" Arg='name, record'/>
##
## <Description>
## These functions are used to implement a new kind of free left modules
## that shall be handled via the mechanism of nice bases
## (see <Ref Sect="Vector Spaces Handled By Nice Bases"/>).
## <P/>
## <A>name</A> must be a string,
## a filter <M>f</M> with this name is created, and
## a logical implication from <M>f</M> to <Ref Filt="IsHandledByNiceBasis"/>
## is installed.
## <P/>
## <A>record</A> must be a record with the following components.
## <List>
## <Mark><C>detect</C> </Mark>
## <Item>
## a function of four arguments <M>R</M>, <M>l</M>, <M>V</M>, and <M>z</M>,
## where <M>V</M> is a free left module over the ring <M>R</M> with generators
## the list or collection <M>l</M>, and <M>z</M> is either the zero element of
## <M>V</M> or <K>false</K> (then <M>l</M> is nonempty);
## the function returns <K>true</K> if <M>V</M> shall lie in the filter <M>f</M>,
## and <K>false</K> otherwise;
## the return value may also be <K>fail</K>, which indicates that <M>V</M> is
## <E>not</E> to be handled via the mechanism of nice bases at all,
## </Item>
## <Mark><C>NiceFreeLeftModuleInfo</C> </Mark>
## <Item>
## the <C>NiceFreeLeftModuleInfo</C> method for left modules in <M>f</M>,
## </Item>
## <Mark><C>NiceVector</C> </Mark>
## <Item>
## the <C>NiceVector</C> method for left modules <M>V</M> in <M>f</M>;
## called with <M>V</M> and a vector <M>v \in V</M>, this function returns the
## nice vector <M>r</M> associated with <M>v</M>, and
## </Item>
## <Mark><C>UglyVector</C></Mark>
## <Item>
## the <Ref Func="UglyVector"/> method for left modules <M>V</M> in <M>f</M>;
## called with <M>V</M> and a vector <M>r</M> in the <C>NiceFreeLeftModule</C> value
## of <M>V</M>, this function returns the vector <M>v \in V</M> to which <M>r</M> is
## associated.
## </Item>
## </List>
## <P/>
## The idea is that all one has to do for implementing a new kind of free
## left modules handled by the mechanism of nice bases is to call
## <C>DeclareHandlingByNiceBasis</C> and <C>InstallHandlingByNiceBasis</C>,
## which causes the installation of the necessary methods and adds the pair
## <M>[ f, </M><C><A>record</A>.detect</C><M> ]</M> to the global list <C>NiceBasisFiltersInfo</C>.
## The <Ref Func="LeftModuleByGenerators"/> methods call
## <Ref Func="CheckForHandlingByNiceBasis"/>, which sets the appropriate filter
## for the desired left module if applicable.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "DeclareHandlingByNiceBasis" );
DeclareGlobalFunction( "InstallHandlingByNiceBasis" );
#############################################################################
##
#V NiceBasisFiltersInfo
##
## <#GAPDoc Label="NiceBasisFiltersInfo">
## <ManSection>
## <Var Name="NiceBasisFiltersInfo"/>
##
## <Description>
## An overview of all kinds of vector spaces that are currently handled by
## nice bases is given by the global list <C>NiceBasisFiltersInfo</C>.
## Examples of such vector spaces are vector spaces of field elements
## (but not the fields themselves) and non-Gaussian row and matrix spaces
## (see <Ref Func="IsGaussianSpace"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal( "NiceBasisFiltersInfo", [] );
#############################################################################
##
#F CheckForHandlingByNiceBasis( <R>, <gens>, <M>, <zero> )
##
## <#GAPDoc Label="CheckForHandlingByNiceBasis">
## <ManSection>
## <Func Name="CheckForHandlingByNiceBasis" Arg='R, gens, M, zero'/>
##
## <Description>
## Whenever a free left module is constructed for which the filter
## <C>IsHandledByNiceBasis</C> may be useful,
## <C>CheckForHandlingByNiceBasis</C> should be called.
## (This is done in the methods for <C>VectorSpaceByGenerators</C>,
## <C>AlgebraByGenerators</C>, <C>IdealByGenerators</C> etc. in the &GAP; library.)
## <P/>
## The arguments of this function are the coefficient ring <A>R</A>, the list
## <A>gens</A> of generators, the constructed module <A>M</A> itself, and the zero
## element <A>zero</A> of <A>M</A>;
## if <A>gens</A> is nonempty then the <A>zero</A> value may also be <K>false</K>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "CheckForHandlingByNiceBasis" );
InstallGlobalFunction( "DeclareHandlingByNiceBasis", function( name, info )
local len, i;
len:= Length( NiceBasisFiltersInfo );
for i in [ len, len-1 .. 1 ] do
NiceBasisFiltersInfo[ i+1 ]:= NiceBasisFiltersInfo[i];
od;
DeclareFilter( name );
NiceBasisFiltersInfo[1]:= [ ValueGlobal( name ), info ];
end );
#############################################################################
##
#F IsGenericFiniteSpace( <V> )
##
## <ManSection>
## <Func Name="IsGenericFiniteSpace" Arg='V'/>
##
## <Description>
## If an <M>F</M>-vector space <A>V</A> is in the filter
## <Ref Filt="IsGenericFiniteSpace"/> then this expresses that <A>V</A>
## consists of elements in a <E>finite</E> vector space,
## and that <A>V</A> is handled via the mechanism of nice bases
## (see <Ref ???="..."/>)
## in the following way.
## (This is the generic treatment of finite vector spaces, better methods
## are installed for various special kinds of finite vector spaces.)
## Let <M>F</M> be of order <M>q</M>, <M>e_F</M> a list of the elements of
## <M>F</M>,
## <M>B = [ b_0, b_1, \ldots, b_k ]</M> be an <M>F</M>-basis of <M>V</M>,
## and let <M>e_V</M> be a list of elements of <M>V</M> with the property
## that
## <M>e_V[ 1 + \sum_{i=0}^k c_i q^i ] = \sum_{i=0}^k e_F[ c_i + 1 ] b_i</M>
## holds;
## then the <Ref Func="NiceVector"/> value of
## <M>e_V[ 1 + \sum_{i=0}^k c_i q^i ]</M> is the row vector
## <M>[ r_0, r_1, \ldots, r_k ]</M> with <M>r_i = e_F[ c_i + 1 ]</M>,
## and the <Ref Func="UglyVector"/> value of
## <M>[ r_0, r_1, \ldots, r_k ]</M> is <M>\sum_{i=0}^k r_i b_i</M>.
## <P/>
## The <Ref Func="NiceFreeLeftModuleInfo"/> value of <M>V</M> is a record
## with the following components.
## <List>
## <Mark><C>elements</C>:</Mark>
## <Item>
## a <E>strictly sorted</E> list <M>\tilde{e}_V</M> of elements of
## <M>V</M>,
## </Item>
## <Mark><C>numbers</C>:</Mark>
## <Item>
## a list <M>l</M> of the positive integers up to <M>q^{k+1}</M>,
## such that <M>e_V[ l[i] ] = \tilde{e}_V[i]</M> holds for
## <M>1 \leq i \leq q^{k+1}</M>.
## </Item>
## <Mark><C>q</C>:</Mark>
## <Item>
## the size of <M>F</M>,
## </Item>
## <Mark><C>fieldelements</C>:</Mark>
## <Item>
## the list <M>e_F</M>,
## </Item>
## <Mark><C>base</C>:</Mark>
## <Item>
## the list <M>B</M>.
## </Item>
## </List>
## <!-- use that the nice module is a full row space!-->
## <!-- (special method for NiceFreeLeftModule?)-->
## <!-- It is important that all other filters of this kind are installed <E>later</E>-->
## <!-- because otherwise the generic treatment may be chosen in cases for which-->
## <!-- a later filter indicates better methods.-->
## </Description>
## </ManSection>
##
DeclareHandlingByNiceBasis( "IsGenericFiniteSpace",
"for finite vector spaces (generic)" );
#############################################################################
##
#F IsSpaceOfRationalFunctions( <V> )
##
## <ManSection>
## <Func Name="IsSpaceOfRationalFunctions" Arg='V'/>
##
## <Description>
## If an <M>F</M>-vector space <A>V</A> is in the filter <C>IsSpaceOfRationalFunctions</C>
## then this expresses that <A>V</A> consists of rational functions,
## and that <A>V</A> is handled via the mechanism of nice bases in the following
## way.
## Let <M>v_1, v_2, \ldots, v_k</M> be vector space generators of <A>V</A>,
## let <M>d</M> be a polynomial such that all <M>d \cdot v_i</M> are polynomials,
## and let <M>S</M> be the set of monomials that occur in these polynomials.
## Then the <C>NiceFreeLeftModuleInfo</C> value of <A>V</A> is a record with the
## following components.
## <List>
## <Mark><C>family</C> </Mark>
## <Item>
## the elements family of <A>V</A>,
## </Item>
## <Mark><C>monomials</C> </Mark>
## <Item>
## the list <M>S</M>,
## </Item>
## <Mark><C>denom</C> </Mark>
## <Item>
## the polynomial <M>d</M>,
## </Item>
## <Mark><C>zerocoeff</C> </Mark>
## <Item>
## the zero coefficient of elements in <A>V</A>,
## </Item>
## <Mark><C>zerovector</C> </Mark>
## <Item>
## the zero row vector in the nice free left module.
## </Item>
## </List>
## The <C>NiceVector</C> value of <M>v \in <A>V</A></M> is defined as the row vector of
## coefficients of <M>v</M> w.r.t. <M>S</M>.
## <P/>
## Finite dimensional free left modules of rational functions
## are by default handled via the mechanism of nice bases.
## </Description>
## </ManSection>
##
DeclareHandlingByNiceBasis( "IsSpaceOfRationalFunctions",
"for free left modules of rational functions" );
#############################################################################
##
#C IsBasisByNiceBasis( <B> )
##
## <#GAPDoc Label="IsBasisByNiceBasis">
## <ManSection>
## <Filt Name="IsBasisByNiceBasis" Arg='B' Type='Category'/>
##
## <Description>
## This filter indicates that the basis <A>B</A> delegates tasks such as the
## computation of coefficients (see <Ref Func="Coefficients"/>) to a basis of an
## isomorphic <Q>nicer</Q> free left module.
## <!-- Any object in <C>IsBasisByNiceBasis</C> must be a <E>small</E> list in the sense of-->
## <!-- <Ref Prop="IsSmallList"/>.-->
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsBasisByNiceBasis", IsBasis and IsSmallList );
#############################################################################
##
#A NiceBasis( <B> )
##
## <#GAPDoc Label="NiceBasis">
## <ManSection>
## <Attr Name="NiceBasis" Arg='B'/>
##
## <Description>
## Let <A>B</A> be a basis of a free left module <A>V</A> that is handled via
## nice bases.
## If <A>B</A> has no basis vectors stored at the time of the first call to
## <C>NiceBasis</C> then <C>NiceBasis( <A>B</A> )</C> is obtained as
## <C>Basis( NiceFreeLeftModule( <A>V</A> ) )</C>.
## If basis vectors are stored then <C>NiceBasis( <A>B</A> )</C> is the result of the
## call of <C>Basis</C> with arguments <C>NiceFreeLeftModule( <A>V</A> )</C>
## and the <C>NiceVector</C> values of the basis vectors of <A>B</A>.
## <P/>
## Note that the result is <K>fail</K> if and only if the <Q>basis vectors</Q>
## stored in <A>B</A> are in fact not basis vectors.
## <P/>
## The attributes <C>GeneratorsOfLeftModule</C> of the underlying left modules
## of <A>B</A> and the result of <C>NiceBasis</C> correspond via <Ref Func="NiceVector"/> and
## <Ref Func="UglyVector"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "NiceBasis", IsBasisByNiceBasis );
#############################################################################
##
#O NiceBasisNC( <B> )
##
## <ManSection>
## <Oper Name="NiceBasisNC" Arg='B'/>
##
## <Description>
## If the basis <A>B</A> has basis vectors bound then the attribute <C>NiceBasis</C>
## of <A>B</A> is set to <C>BasisNC( <A>W</A>, <A>nice</A> )</C>
## where <A>W</A> is the value of <C>NiceFreeLeftModule</C> for the underlying
## free left module of <A>B</A>.
## This means that it is <E>not</E> checked whether <A>B</A> really is a basis.
## </Description>
## </ManSection>
##
DeclareOperation( "NiceBasisNC", [ IsBasisByNiceBasis ] );
#############################################################################
##
#A NiceFreeLeftModule( <V> ) . . . . nice free left module isomorphic to <V>
##
## <#GAPDoc Label="NiceFreeLeftModule">
## <ManSection>
## <Attr Name="NiceFreeLeftModule" Arg='V'/>
##
## <Description>
## For a free left module <A>V</A> that is handled via the mechanism of nice
## bases, this attribute stores the associated free left module to which the
## tasks are delegated.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "NiceFreeLeftModule", IsFreeLeftModule );
#############################################################################
##
#A NiceFreeLeftModuleInfo( <V> )
##
## <#GAPDoc Label="NiceFreeLeftModuleInfo">
## <ManSection>
## <Attr Name="NiceFreeLeftModuleInfo" Arg='V'/>
##
## <Description>
## For a free left module <A>V</A> that is handled via the mechanism of nice
## bases, this operation has to provide the necessary information (if any)
## for calls of <Ref Oper="NiceVector"/> and <Ref Oper="UglyVector"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "NiceFreeLeftModuleInfo",
IsFreeLeftModule and IsHandledByNiceBasis );
#############################################################################
##
#O NiceVector( <V>, <v> )
#O UglyVector( <V>, <r> )
##
## <#GAPDoc Label="NiceVector">
## <ManSection>
## <Oper Name="NiceVector" Arg='V, v'/>
## <Oper Name="UglyVector" Arg='V, r'/>
##
## <Description>
## <Ref Oper="NiceVector"/> and <Ref Oper="UglyVector"/> provide the linear bijection between the
## free left module <A>V</A> and <C><A>W</A>:= NiceFreeLeftModule( <A>V</A> )</C>.
## <P/>
## If <A>v</A> lies in the elements family of the family of <A>V</A> then
## <C>NiceVector( <A>v</A> )</C> is either <K>fail</K> or an element in the elements family
## of the family of <A>W</A>.
## <P/>
## If <A>r</A> lies in the elements family of the family of <A>W</A> then
## <C>UglyVector( <A>r</A> )</C> is either <K>fail</K> or an element in the elements family
## of the family of <A>V</A>.
## <P/>
## If <A>v</A> lies in <A>V</A> (which usually <E>cannot</E> be checked without using <A>W</A>)
## then <C>UglyVector( <A>V</A>, NiceVector( <A>V</A>, <A>v</A> ) ) = <A>v</A></C>.
## If <A>r</A> lies in <A>W</A> (which usually <E>can</E> be checked)
## then <C>NiceVector( <A>V</A>, UglyVector( <A>V</A>, <A>r</A> ) ) = <A>r</A></C>.
## <P/>
## (This allows one to implement for example a membership test for <A>V</A>
## using the membership test in <A>W</A>.)
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "NiceVector",
[ IsFreeLeftModule and IsHandledByNiceBasis, IsObject ] );
DeclareOperation( "UglyVector",
[ IsFreeLeftModule and IsHandledByNiceBasis, IsObject ] );
#############################################################################
##
#F BasisWithReplacedLeftModule( <B>, <V> )
##
## <ManSection>
## <Func Name="BasisWithReplacedLeftModule" Arg='B, V'/>
##
## <Description>
## For a basis <A>B</A> and a left module <A>V</A> that is equal to the underlying
## left module of <A>B</A>,
## <C>BasisWithReplacedLeftModule</C> returns a basis equal to <A>B</A> except that
## the underlying left module of this basis is <A>V</A>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "BasisWithReplacedLeftModule" );
#############################################################################
##
#E
|