/usr/share/gap/lib/clas.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 | #############################################################################
##
#W clas.gi GAP library Heiko Theißen
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
#############################################################################
##
#M Enumerator( <xorb> ) . . . . . . . . . . . . . . enumerator constructor
##
## This is installed only because of the `PositionCanonical' functionality.
#T for which groups is this really used?
##
## The idea is that for the orbit <xorb> given by the acting domain $G$,
## the representative $r$, and the stabilizer $S$,
## a right transversal $T$ of $S$ in $G$ is chosen;
## the $i$-th element in the enumerator <enum> of <orb> is then
## the image of $r$ under $T[i]$, w.r.t. the action of <xorb>.
##
## So the position of an element <elm> in <enum> is determined by first
## finding an element $x$ in $G$ such that $r^x$ equals <elm>,
## and if $x$ exists then finding an element $y$ in $T$ such that
## $S x = S y$ holds; then the position of $y$ in $T$ is the result.
## By the construction of $T$, this can be computed as
## $`PositionCanonical'( T, x )$.
##
BindGlobal( "ElementNumber_ExternalOrbitByStabilizer", function( enum, pos )
local xorb;
xorb := UnderlyingCollection( enum );
return FunctionAction( xorb )
( Representative( xorb ), enum!.rightTransversal[ pos ] );
end );
BindGlobal( "NumberElement_ExternalOrbitByStabilizer", function( enum, elm )
local xorb, rep;
xorb := UnderlyingCollection( enum );
rep := RepresentativeAction( xorb, Representative( xorb ), elm );
if rep = fail then
return fail;
else
return PositionCanonical( enum!.rightTransversal, rep );
fi;
end );
InstallMethod( Enumerator,
"xorb by stabilizer",
[ IsExternalOrbitByStabilizerRep ],
xorb -> EnumeratorByFunctions( xorb, rec(
NumberElement := NumberElement_ExternalOrbitByStabilizer,
ElementNumber := ElementNumber_ExternalOrbitByStabilizer,
rightTransversal := RightTransversal( ActingDomain( xorb ),
StabilizerOfExternalSet( xorb ) ) ) ) );
#############################################################################
##
#M AsList( <xorb> ) . . . . . . . . . . . . . . enumerator constructor
##
InstallMethod( AsList,"xorb by stabilizer",
[ IsExternalOrbitByStabilizerRep ],
function( xorb )
local rep,opr;
rep:=Representative(xorb);
opr:=FunctionAction(xorb);
return List(RightTransversal( ActingDomain(xorb),
StabilizerOfExternalSet( xorb ) ),
i->opr(rep,i));
end );
#############################################################################
##
#M IsFinite( <xorb> ) . . . . . . . . . . . for an ext. orbit by stabilizer
##
InstallMethod( IsFinite,
"method for an ext. orbit by stabilizer",
[ IsExternalOrbitByStabilizerRep ],
xorb -> IsInt( Index( ActingDomain( xorb ),
StabilizerOfExternalSet( xorb ) ) ) );
#############################################################################
##
#M Size( <xorb> ) . . . . . . . . . . . . . for an ext. orbit by stabilizer
##
InstallMethod( Size,
"method for an ext. orbit by stabilizer",
[ IsExternalOrbitByStabilizerRep ],
xorb -> Index( ActingDomain( xorb ), StabilizerOfExternalSet( xorb ) ) );
#############################################################################
##
#M ConjugacyClass( <G>, <g> ) . . . . . . . . . . . . . . . . . constructor
##
InstallMethod( ConjugacyClass,"class of element",
IsCollsElms, [ IsGroup, IsObject ],
function( G, g )
local fam, filter, cl;
fam:=FamilyObj(G);
if not IsBound(fam!.defaultClassType) then
if IsPermGroup( G ) then filter := IsConjugacyClassPermGroupRep;
else filter := IsConjugacyClassGroupRep; fi;
if CanEasilyComputePcgs( G ) then
filter := filter and IsExternalSetByPcgs;
fi;
filter:=filter and HasActingDomain and HasRepresentative and
HasFunctionAction;
fam!.defaultClassType:=NewType( FamilyObj( G ), filter );
fi;
cl:=rec( start := [ g ] );
ObjectifyWithAttributes(cl, fam!.defaultClassType,
ActingDomain, G,
Representative, g,
FunctionAction, OnPoints );
return cl;
end );
InstallOtherMethod( ConjugacyClass,"class of element and centralizer",
IsCollsElmsColls, [ IsGroup, IsObject,IsGroup ],
function( G, g, cent )
local fam, filter, cl;
fam:=FamilyObj(G);
if not IsBound(fam!.defaultClassCentType) then
if IsPermGroup( G ) then filter := IsConjugacyClassPermGroupRep;
else filter := IsConjugacyClassGroupRep; fi;
if CanEasilyComputePcgs( G ) then
filter := filter and IsExternalSetByPcgs;
fi;
filter:=filter and HasActingDomain and HasRepresentative and
HasFunctionAction and HasStabilizerOfExternalSet;
fam!.defaultClassCentType:=NewType( FamilyObj( G ), filter );
fi;
cl:=rec( start := [ g ]);
ObjectifyWithAttributes(cl, fam!.defaultClassCentType,
ActingDomain, G,
Representative, g,
FunctionAction, OnPoints,
StabilizerOfExternalSet,cent);
return cl;
end );
#############################################################################
##
#M \^( <g>, <G> ) . . . . . . . . . conjugacy class of an element of a group
##
InstallOtherMethod( \^, "conjugacy class of an element of a group",
IsElmsColls, [ IsMultiplicativeElement, IsGroup ], 0,
function ( g, G )
if g in G then return ConjugacyClass(G,g); else TryNextMethod(); fi;
end );
#############################################################################
##
#M HomeEnumerator( <cl> ) . . . . . . . . . . . . . . . . enumerator of <G>
##
InstallMethod( HomeEnumerator, [ IsConjugacyClassGroupRep ],
cl -> Enumerator( ActingDomain( cl ) ) );
#############################################################################
##
#M PrintObj( <cl> ) . . . . . . . . . . . . . . . . . . . . print function
##
InstallMethod( PrintObj, [ IsConjugacyClassGroupRep ],
function( cl )
Print( "ConjugacyClass( ", ActingDomain( cl ), ", ",
Representative( cl ), " )" );
end );
#############################################################################
##
#M ViewObj( <cl> ) . . . . . . . . . . . . . . . . . . . . print function
##
InstallMethod( ViewObj, [ IsConjugacyClassGroupRep ],
function( cl )
View(Representative( cl ));
Print("^G");
end );
#############################################################################
##
#M Size( <cl> ) . . . . . . . . . . . . . . . . . . . . . for a conj. class
##
InstallMethod( Size,
"for a conjugacy class",
[ IsConjugacyClassGroupRep ],
cl -> Index( ActingDomain( cl ), StabilizerOfExternalSet( cl ) ) );
#############################################################################
##
#M IsFinite( <cl> ) . . . . . . . . . . . . . . . . . . . for a conj. class
##
InstallMethod( IsFinite,
"for a conjugacy class",
[ IsConjugacyClassGroupRep ],
cl -> IsInt( Index( ActingDomain( cl ),
StabilizerOfExternalSet( cl ) ) ) );
#T is it necessary to install the same method for `IsConjugacyClassGroupRep'
#T and for `IsExternalOrbitByStabilizerRep'?
InstallOtherMethod( Centralizer,
[ IsConjugacyClassGroupRep ],
StabilizerOfExternalSet );
InstallMethod( StabilizerOfExternalSet, [ IsConjugacyClassGroupRep ],
# override eventual pc method
10,
function(xset)
return Centralizer(ActingDomain(xset),Representative(xset));
end);
InstallGlobalFunction( ConjugacyClassesTry,
function ( G, classes, elm, length, fixes )
local i,D,o,divs,pows,norms,next,nnorms,oq,lelm,from,n,k,m,nu,zen,pr,orb,lo,
prg,C,u;
# if the element is not in one of the known classes add a new class
i:=1;
while i<=Length(classes) do
if length mod Size(classes[i])=0 and elm in classes[i] then
# return (modified) centralizer of element for iteration
D:=Centralizer(classes[i]);
if Size(D)=Order(elm) then
D:=G;
fi;
return D;
fi;
i:=i+1;
od;
# do not add the class here as we'll do it later with the powers
o:=Order(elm);
Info(InfoClasses,2,"process new class ",Length(classes)+1,
" element order ",o);
# gho through the divisors lattice
divs:=Filtered(DivisorsInt(o),x->x>1);
pows:=[1];
norms:=[G];
while Length(divs)>0 do
# those one prime away
next:=Filtered(divs,x->ForAny(pows,y->IsInt(x/y) and IsPrimeInt(x/y)));
divs:=Difference(divs,next);
nnorms:=[];
for i in next do
oq:=o/i; # power needed to get order i
lelm:=elm^oq;
from:=First(Reversed(pows),y->IsInt(i/y) and IsPrimeInt(i/y));
# step of normalizer calculation via powers
n:=Normalizer(norms[from],Subgroup(G,[lelm]));
nnorms[i]:=n;
if i=o or not ForAny(classes,x->lelm in x) then
# this power gives a new class
zen:=Centralizer(n,lelm); # all powers have the same centralizer
# what coprime powers are normalizer induced?
pr:=Difference(PrimeResidues(i),[1]);
u:=GroupByGenerators([ZmodnZObj(1,i)]);
orb:=Orbit(n,lelm);
lo:=Length(orb);
orb:=Set(Filtered(orb,x->x<>lelm));
while Size(u)<lo do
m:=First(pr,x->lelm^x=orb[1]);
nu:=ClosureGroup(u,ZmodnZObj(m,i));
if Size(nu)<lo then
for k in Difference(nu,u) do
RemoveSet(orb,lelm^Int(k));
od;
fi;
u:=nu;
od;
# now u is the group of normalizer induced powers
prg:=GroupByGenerators(
List(Flat(GeneratorsPrimeResidues(i).generators),
x->ZmodnZObj(x,i)));
orb:=List(RightTransversal(prg,u),Int);
for k in orb do
D:=ConjugacyClass(G,lelm^k);
SetStabilizerOfExternalSet(D,zen);
Add(classes,D);
Info(InfoClasses,3,"found new power of order ",i,
" class size ",Size(D));
if k=1 and i=o then C:=D;fi; #remember for return value
od;
fi;
od;
pows:=next;
norms:=nnorms;
od;
return Centralizer(C);
end );
#############################################################################
##
#M ConjugacyClassesByRandomSearch( <G> )
##
InstallGlobalFunction( ConjugacyClassesByRandomSearch, function ( G )
# uses random Search with Jerrum's strategy
local classes, # conjugacy classes of <G>, result
class, # one class of <G>
cent, # centralizer from which to take random elements
elms; # elements of <G>
# initialize the conjugacy class list
# if the group is small, or if its elements are known
# or if the group is abelian, do it the hard way
if Size( G ) <= 1000 or HasAsSSortedList( G ) or IsAbelian( G ) then
return ConjugacyClassesByOrbits(G);
# otherwise use probabilistic algorithm
else
classes := [ ConjugacyClass( G, One( G ) ) ];
cent:=G;
# while we have not found all conjugacy classes
while Sum( List( classes, Size ) ) <> Size( G ) do
# try random elements
cent:=ConjugacyClassesTry( G, classes, Random(cent), 0, 1 );
od;
fi;
# return the conjugacy classes
return classes;
end );
#############################################################################
##
#M ConjugacyClassesByOrbits( <G> )
##
InstallGlobalFunction(ConjugacyClassesByOrbits,
function(G)
local xset,i,cl,c,p,s;
#xset:=ExternalSet(G,AsSSortedListNonstored(G),OnPoints);
xset:=AsSSortedListNonstored(G);
s:=HasAsList(G) or HasAsSSortedList(G); # do we want to store class elements?
p:=false;
cl:=[];
#for i in ExternalOrbitsStabilizers(xset) do
for i in OrbitsDomain(G,xset) do
#c:=ConjugacyClass(G,Representative(i),StabilizerOfExternalSet(i));
c:=ConjugacyClass(G,i[1]);
SetSize(c,Length(i));
# the sorted element list will speed up `\in' tests
if s or Length(i)<5 then
SetAsSSortedList(c,SortedList(i));
fi;
Add(cl,c);
if IsOne(Representative(i)) then
SetStabilizerOfExternalSet(c,G);
p:=Length(cl);
fi;
od;
# force class of one in first position
c:=cl[p];cl[p]:=cl[1];cl[1]:=c;
return cl;
end);
#############################################################################
##
#M ConjugacyClasses( <G> ) . . . . . . . . . . . . . . . . . . . of a group
##
InstallMethod( ConjugacyClasses, "test options", [ IsGroup ],
GETTER_FLAGS-1, # this method tests options which would override the method
# selection. Therefore we get the highest possible value
# below the getter.
function(G)
if ValueOption("random")<>fail then
return ConjugacyClassesByRandomSearch(G);
elif ValueOption("action")<>fail then
return ConjugacyClassesByOrbits(G);
else
TryNextMethod();
fi;
end);
DEFAULT_CLASS_ORBIT_LIMIT:=500;
InstallGlobalFunction(ConjugacyClassesForSmallGroup,function(G)
if ValueOption("noaction")=fail and
(HasAsSSortedList(G) or HasAsList(G) or Size(G)<=DEFAULT_CLASS_ORBIT_LIMIT)
then
return ConjugacyClassesByOrbits(G);
else
return fail;
fi;
end);
InstallMethod( ConjugacyClasses, "for groups: try random search",
[ IsGroup ],
function(G)
local cl;
cl:=ConjugacyClassesForSmallGroup(G);
if cl<>fail then
return cl;
else
return ConjugacyClassesByRandomSearch(G);
fi;
end);
InstallMethod( ConjugacyClasses, "try solvable method",
[ IsGroup ],
function( G )
local cls, cl, c;
cl:=ConjugacyClassesForSmallGroup(G);
if cl<>fail then
return cl;
elif IsSolvableGroup( G ) and CanEasilyComputePcgs(G) then
cls := [ ];
for cl in ClassesSolvableGroup( G, 0 ) do
c := ConjugacyClass( G, cl.representative, cl.centralizer );
Assert(2,Centralizer(G,cl.representative)=cl.centralizer);
Add( cls, c );
od;
Assert(1,Sum(cls,Size)=Size(G));
return cls;
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M RationalClass( <G>, <g> ) . . . . . . . . . . . . . . . . . . constructor
##
InstallMethod( RationalClass, IsCollsElms, [ IsGroup, IsObject ],
function( G, g )
local cl;
cl := Objectify( NewType( FamilyObj( G ) ), rec( ) );
if IsPermGroup( G ) then
SetFilterObj( cl, IsRationalClassPermGroupRep );
else
SetFilterObj( cl, IsRationalClassGroupRep );
fi;
SetActingDomain( cl, G );
SetRepresentative( cl, g );
SetFunctionAction( cl, OnPoints );
return cl;
end );
#############################################################################
##
#M <cl1> = <cl2> . . . . . . . . . . . . . . . . . . . for rational classes
##
InstallMethod( \=, IsIdenticalObj, [ IsRationalClassGroupRep,
IsRationalClassGroupRep ],
function( cl1, cl2 )
if ActingDomain( cl1 ) <> ActingDomain( cl2 )
then
TryNextMethod();
fi;
# the Galois group of the identity is <0>, therefore we have to do this
# extra test.
return Order(Representative(cl1))=Order(Representative(cl2)) and
ForAny( RightTransversalInParent( GaloisGroup( cl1 ) ), e ->
RepresentativeAction( ActingDomain( cl1 ),
Representative( cl1 ),
Representative( cl2 ) ^ Int( e ) ) <> fail );
end );
#############################################################################
##
#M <g> in <cl> . . . . . . . . . . . . . . . . . . . . for rational classes
##
InstallMethod( \in, IsElmsColls, [ IsObject, IsRationalClassGroupRep ],
function( g, cl )
# the Galois group of the identity is <0>, therefore we have to do this
# extra test.
return Order(Representative(cl))=Order(g) and
ForAny( RightTransversalInParent( GaloisGroup( cl ) ), e ->
RepresentativeAction( ActingDomain( cl ),
Representative( cl ),
g ^ Int( e ) ) <> fail );
end );
#############################################################################
##
#M HomeEnumerator( <cl> ) . . . . . . . . . . . . . . . . enumerator of <G>
##
InstallMethod( HomeEnumerator, [ IsConjugacyClassGroupRep ],
cl -> Enumerator( ActingDomain( cl ) ) );
#############################################################################
##
#M PrintObj( <cl> ) . . . . . . . . . . . . . . . . . . . . print function
##
InstallMethod( PrintObj, [ IsRationalClassGroupRep ],
function( cl )
Print( "RationalClass( ", ActingDomain( cl ), ", ",
Representative( cl ), " )" );
end );
#############################################################################
##
#M Size( <cl> ) . . . . . . . . . . . . . . . . . . . for a rational class
##
InstallMethod( Size,
"method for a rational class",
[ IsRationalClassGroupRep ],
cl -> IndexInParent( GaloisGroup( cl ) ) *
Index( ActingDomain( cl ), StabilizerOfExternalSet( cl ) ) );
#############################################################################
##
#F DecomposedRationalClass( <cl> ) . . . . . decompose into ordinary classes
##
InstallOtherMethod(DecomposedRationalClass,
"generic",true,[IsRationalClassGroupRep],0,function( cl )
local G, C, rep, gal, T, cls, e, c;
G := ActingDomain( cl );
C := StabilizerOfExternalSet( cl );
rep := Representative( cl );
gal := GaloisGroup( cl );
T := RightTransversalInParent( gal );
cls := [ ];
for e in T do
# if e=0 then the element is the identity anyhow, no need to worry.
c := ConjugacyClass( G, rep ^ Int( e ),C );
Add( cls, c );
od;
return cls;
end );
#############################################################################
##
#M Enumerator( <rcl> ) . . . . . . . . . . . . . . . . . . of rational class
##
## The idea is that for the rational class <rcl> given by the acting domain
## $G$, the representative $r$, the centralizer $S$ of $r$, and the Galois
## group $\Sigma$ acting on the algebraic conjugates of the class $r^G$,
## a right transversal $T$ of $S$ in $G$ is chosen;
## for $i = |T| \cdot i_1 + i_2$, with $1 \leq i_2 \leq |T|$,
## the $i$-th element in the enumerator <enum> of <rcl> is then
## the image of $r$ under $T[i_2]$, w.r.t. the action of <xorb>, raised to
## the power given by the $i_1$-th element in $\Sigma$.
##
## So the position of an element <elm> in <enum> is determined by first
## finding an element $x$ in $G$ and an integer $i$ coprime to the order of
## $r$ such that $(r^x)^i$ equals <elm>,
## and if $x$ and $i$ exist then finding an element $y$ in $T$ such that
## $S x = S y$ holds; then the position of $y$ in $T$ is the result.
## By the construction of $T$, this can be computed as
## $`PositionCanonical'( T, x )$.
##
BindGlobal( "ElementNumber_RationalClassGroup", function( enum, pos )
local rcl, rep, gal, T, pow;
rcl := UnderlyingCollection( enum );
rep := Representative( rcl );
gal := RightTransversalInParent( GaloisGroup( rcl ) );
T := enum!.rightTransversal;
pos := pos - 1;
pow := QuoInt( pos, Length( T ) ) + 1;
if Length( gal ) < pow then
Error( "<enum>[", pos + 1, "] must have an assigned value" );
fi;
pos := pos mod Length( T ) + 1;
# if gal[pow]=0 then the element is the identity anyhow, no need to worry.
return ( rep ^ T[ pos ] ) ^ Int( gal[ pow ] );
end );
BindGlobal( "NumberElement_RationalClassGroup", function( enum, elm )
local rcl, G, rep, gal, T, pow, t;
rcl := UnderlyingCollection( enum );
G := ActingDomain( rcl );
rep := Representative( rcl );
gal := RightTransversalInParent( GaloisGroup( rcl ) );
T := enum!.rightTransversal;
for pow in [ 1 .. Length( gal ) ] do
# if gal[pow]=0 then the rep is the identity , no need to worry.
t := RepresentativeAction( G, rep ^ Int( gal[ pow ] ), elm );
if t <> fail then
break;
fi;
od;
if t = fail then
return fail;
else
return ( pow - 1 ) * Length( T ) + PositionCanonical( T, t );
fi;
end );
InstallMethod( Enumerator,
[ IsRationalClassGroupRep ],
rcl -> EnumeratorByFunctions( rcl, rec(
NumberElement := NumberElement_RationalClassGroup,
ElementNumber := ElementNumber_RationalClassGroup,
rightTransversal := RightTransversal( ActingDomain( rcl ),
StabilizerOfExternalSet( rcl ) ) ) ) );
InstallOtherMethod( CentralizerOp, [ IsRationalClassGroupRep ],
StabilizerOfExternalSet );
#############################################################################
##
#M AsList( <rcl> ) . . . . . . . . . . . . . . . . . . . by orbit algorithm
##
InstallMethod( AsList, [ IsRationalClassGroupRep ],
function( rcl )
local aslist, orb, e;
aslist := [ ];
orb := Orbit( ActingDomain( rcl ), Representative( rcl ) );
for e in RightTransversalInParent( GaloisGroup( rcl ) ) do
# if e=0 then the element is the identity anyhow, no need to worry.
Append( aslist, List( orb, g -> g ^ Int( e ) ) );
od;
return aslist;
end );
#############################################################################
##
#M GaloisGroup( <cl> ) . . . . . . . . . . . . . . . . . of a rational class
##
InstallOtherMethod( GaloisGroup, [ IsRationalClassGroupRep ],
function( cl )
local rep, ord, gals, i, pr;
rep := Representative( cl );
ord := Order( rep );
gals := [ ];
if ord>1 then
pr:=PrimeResidues(ord);
else
pr:=[];
fi;
for i in pr do
if RepresentativeAction( ActingDomain( cl ),
rep, rep ^ i ) <> fail then
Add( gals, i );
fi;
od;
return GroupByPrimeResidues( gals, ord );
end );
#############################################################################
##
#F GroupByPrimeResidues( <gens>, <oh> ) . . . . . . . . . . . . . . . local
##
InstallGlobalFunction( GroupByPrimeResidues, function( gens, oh )
local R;
R := Integers mod oh;
return SubgroupNC( Units( R ), gens * One( R ) );
end );
#############################################################################
##
#M RationalClasses( <G> ) . . . . . . . . . . . . . . . . . . . of a group
##
InstallMethod( RationalClasses, "trial", [ IsGroup ],
function( G )
local rcl;
rcl := [];
while Sum( rcl, Size ) < Size( G ) do
RationalClassesTry( G, rcl, Random(G) );
od;
return rcl;
end );
InstallGlobalFunction( RationalClassesTry, function( G, classes, elm )
local C, # new class
i; # loop variable
# if the element is not in one of the known classes add a new class
if ForAll( classes, D -> not elm in D ) then
C := RationalClass( G, elm );
Add( classes, C );
# try the powers of this element that reduce the order
for i in Set(FactorsInt(Order(elm))) do
RationalClassesTry( G, classes, elm ^ i );
od;
fi;
end );
InstallMethod( RationalClasses,"use classes",[ IsGroup ], 0,
function( G )
local rcls, cl, mark, rep, c, o, cop, same, sub, pow, p, i, j,closure,
dec,ggg;
closure:=function(sub,gens,m)
local test, t, i, Error;
# dimino algorithm for normal subgroup
test:=[1];
while Length(test)>0 do
t:=test[1];
for i in gens do
if i<>1 then
AddSet(ggg,i);
fi;
if not (sub[t]*i mod m) in sub then
AddSet(test,Length(sub)+1); # next element to test
Append(sub,Filtered(List(sub,x->x*i mod m),x-> not x in sub));
fi;
od;
RemoveSet(test,t);
od;
#Print(m," ",gens," ",sub,"\n");
end;
rcls:=[];
cl:=ConjugacyClasses(G);
mark:=BlistList([1..Length(cl)],[]);
for i in [1..Length(cl)] do
if mark[i]=false then
sub:=fail;
mark[i]:=true;
rep:=Representative(cl[i]);
c := RationalClass( G, rep);
SetStabilizerOfExternalSet( c, Centralizer(cl[i]) );
Add(rcls,c);
o:=Order(rep);
dec:=[cl[i]];
if o>2 then
cop:=Set(Flat(GeneratorsPrimeResidues(o).generators));
# get orders that give the same class
same:=Filtered(cop,i->RepresentativeAction(G,rep,rep^i)<>fail);
if Length(same)<Length(cop) then
# there are other classes:
sub:=[1];
ggg:=[];
closure(sub,same,o);
cop:=Difference(cop,same);
for j in cop do
# we know these are different
pow:=rep^j;
p:=First([i+1..Length(cl)],x->pow in cl[x]);
if p=fail then
Error("not found");
else
if mark[p]=false then
Add(dec,cl[p]);
fi;
mark[p]:=true;
fi;
od;
cop:=Difference(PrimeResidues(o),cop); # we've tested these
for j in cop do
if not j in sub then
pow:=rep^j;
p:=First([i..Length(cl)],x->pow in cl[x]);
if p=fail then
Error("not found");
elif p=i then
closure(sub,[j],o);
else
if mark[p]=false then
Add(dec,cl[p]);
fi;
mark[p]:=true;
fi;
fi;
od;
fi;
fi;
SetDecomposedRationalClass(c,dec);
SetSize(c,Length(dec)*Size(dec[1]));
if sub<>fail then
SetGaloisGroup(c,GroupByPrimeResidues(ggg,o));
fi;
fi;
od;
return rcls;
end);
#InstallMethod( RationalClasses,"solvable",[ CanEasilyComputePcgs ], 20,
# function( G )
# local rcls, cls, cl, c, sum, size;
#
# size := Size(G);
# rcls := [ ];
# if IsPrimePowerInt( size ) then
# for cl in RationalClassesSolvableGroup( G, 1 ) do
# c := RationalClass( G, cl.representative );
# SetStabilizerOfExternalSet( c, cl.centralizer );
# SetGaloisGroup( c, cl.galoisGroup );
# Add( rcls, c );
# od;
# else
# sum := 0;
# for cl in ConjugacyClasses(G) do
# c := RationalClass( G, Representative(cl) );
# SetStabilizerOfExternalSet( c, Centralizer(cl) );
# if sum < size and not c in rcls then
# Add( rcls, c );
# sum := sum + Size( c );
# if sum = size and not IsBound(cls) then
# break;
# fi;
# fi;
# od;
#
# fi;
#
# return rcls;
#end );
#############################################################################
##
#F RationalClassesInEANS( <G>, <E> ) . . . . . . . . by projective operation
##
InstallGlobalFunction( RationalClassesInEANS, function( G, E )
local pcgs, ff, one, pro, opr, gens, orbs, xorb, rcl, rcls,
rep, N;
rcls := [ RationalClass( G, One( G ) ) ];
if IsTrivial( E ) then
return rcls;
fi;
pcgs := Pcgs( E );
ff := GF( RelativeOrders( pcgs )[ 1 ] );
one := One( ff );
pro := EnumeratorOfNormedRowVectors( ff ^ Length( pcgs ) );
opr := function( v, g )
return one * ExponentsConjugateLayer( pcgs,
PcElementByExponentsNC( pcgs, v ) , g );
end;
gens := Pcgs( G );
if gens = fail then
gens := GeneratorsOfGroup( G );
fi;
orbs := ExternalOrbits( G, pro, gens, gens, opr );
# Construct the rational classes from the orbit representatives and the
# centralizers from the stabilizers.
for xorb in orbs do
rep := PcElementByExponentsNC( pcgs, Representative( xorb ) );
rcl := RationalClass( G, rep );
if HasStabilizerOfExternalSet( xorb ) then
N := StabilizerOfExternalSet( xorb );
else
N := G;
fi;
SetStabilizerOfExternalSet( rcl, Centralizer( N, rep, E ) );
Add( rcls, rcl );
od;
return rcls;
end );
#############################################################################
##
#E
|