/usr/share/gap/lib/csetgrp.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 | #############################################################################
##
#W csetgrp.gd GAP library Alexander Hulpke
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations of operations for cosets.
##
#############################################################################
##
#V InfoCoset
##
## <#GAPDoc Label="InfoCoset">
## <ManSection>
## <InfoClass Name="InfoCoset"/>
##
## <Description>
## The information function for coset and double coset operations is
## <Ref InfoClass="InfoCoset"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareInfoClass("InfoCoset");
#############################################################################
##
#F AscendingChain( <G>, <U> ) . chain of subgroups G = G_1 > ... > G_n = U
##
## <#GAPDoc Label="AscendingChain">
## <ManSection>
## <Func Name="AscendingChain" Arg='G, U'/>
##
## <Description>
## This function computes an ascending chain of subgroups from <A>U</A> to
## <A>G</A>.
## This chain is given as a list whose first entry is <A>U</A> and the last
## entry is <A>G</A>.
## The function tries to make the links in this chain small.
## <P/>
## The option <C>refineIndex</C> can be used to give a bound for refinements
## of steps to avoid &GAP; trying to enforce too small steps.
## The option <C>cheap</C> (if set to <K>true</K>) will overall limit the
## amount of heuristic searches.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("AscendingChain");
#############################################################################
##
#O AscendingChainOp(<G>,<U>) chain of subgroups
##
## <ManSection>
## <Oper Name="AscendingChainOp" Arg='G,U'/>
##
## <Description>
## This operation does the actual work of computing ascending chains. It
## gets called from <C>AscendingChain</C> if no chain is found stored in
## <C>ComputedAscendingChains</C>.
## </Description>
## </ManSection>
##
DeclareOperation("AscendingChainOp",[IsGroup,IsGroup]);
#############################################################################
##
#A ComputedAscendingChains(<U>) list of already computed ascending chains
##
## <ManSection>
## <Attr Name="ComputedAscendingChains" Arg='U'/>
##
## <Description>
## This attribute stores ascending chains. It is a list whose entries are
## of the form [<A>G</A>,<A>chain</A>] where <A>chain</A> is an ascending chain from <A>U</A> up
## to <A>G</A>. This storage is used by <C>AscendingChain</C> to avoid duplicate
## calculations.
## </Description>
## </ManSection>
##
DeclareAttribute("ComputedAscendingChains",IsGroup,
"mutable");
#############################################################################
##
#F RefinedChain(<G>,<c>) . . . . . . . . . . . . . . . . refine chain links
##
## <ManSection>
## <Func Name="RefinedChain" Arg='G,c'/>
##
## <Description>
## <A>c</A> is an ascending chain in the Group <A>G</A>. The task of this routine is
## to refine <A>c</A>, i.e., if there is a "link" <M>U>L</M> in <A>c</A> with <M>[U:L]</M> too big,
## this procedure tries to find subgroups <M>G_0,...,G_n</M> of <A>G</A>; such that
## <M>U=G_0>...>G_n=L</M>. This is done by extending L inductively: Since normal
## steps can help in further calculations, the routine first tries to
## extend to the normalizer in U. If the subgroup is self-normalizing,
## the group is extended via a random element. If this results in a step
## too big, it is repeated several times to find hopefully a small
## extension!
## <P/>
## The option <C>refineIndex</C> can be used to tell &GAP; that a specified
## step index is good enough. The option <C>refineChainActionLimit</C> can be
## used to give an upper limit up to which index guaranteed refinement
## should be tried.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("RefinedChain");
#############################################################################
##
#O CanonicalRightCosetElement( U, g ) canonical representative of U*g
##
## <#GAPDoc Label="CanonicalRightCosetElement">
## <ManSection>
## <Oper Name="CanonicalRightCosetElement" Arg='U, g'/>
##
## <Description>
## returns a <Q>canonical</Q> representative of the right coset
## <A>U</A> <A>g</A>
## which is independent of the given representative <A>g</A>.
## This can be used to compare cosets by comparing their canonical
## representatives.
## <P/>
## The representative chosen to be the <Q>canonical</Q> one
## is representation dependent and only guaranteed to remain the same
## within one &GAP; session.
## <Example><![CDATA[
## gap> CanonicalRightCosetElement(u,(2,4,3));
## (3,4)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("CanonicalRightCosetElement",
[IsGroup,IsObject]);
#############################################################################
##
#C IsDoubleCoset(<obj>)
##
## <#GAPDoc Label="IsDoubleCoset">
## <ManSection>
## <Filt Name="IsDoubleCoset" Arg='obj' Type='Category' Label="operation"/>
##
## <Description>
## The category of double cosets.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory("IsDoubleCoset",
IsDomain and IsExtLSet and IsExtRSet);
#############################################################################
##
#A LeftActingGroup(<dcos>)
#A RightActingGroup(<dcos>)
##
## <ManSection>
## <Attr Name="LeftActingGroup" Arg='dcos'/>
## <Attr Name="RightActingGroup" Arg='dcos'/>
##
## <Description>
## return the two groups that define a double coset <A>dcos</A>.
## </Description>
## </ManSection>
##
DeclareAttribute("LeftActingGroup",IsDoubleCoset);
DeclareAttribute("RightActingGroup",IsDoubleCoset);
#############################################################################
##
#O DoubleCoset(<U>,<g>,<V>)
##
## <#GAPDoc Label="DoubleCoset">
## <ManSection>
## <Oper Name="DoubleCoset" Arg='U, g, V'/>
##
## <Description>
## The groups <A>U</A> and <A>V</A> must be subgroups of a common supergroup
## <A>G</A> of which <A>g</A> is an element.
## This command constructs the double coset <A>U</A> <A>g</A> <A>V</A>
## which is the set of all elements of the form <M>ugv</M> for any
## <M>u \in <A>U</A></M>, <M>v \in <A>V</A></M>.
## For element operations such as <K>in</K>, a double coset behaves
## like a set of group elements. The double coset stores <A>U</A> in the
## attribute <C>LeftActingGroup</C>,
## <A>g</A> as <Ref Func="Representative"/>,
## and <A>V</A> as <C>RightActingGroup</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("DoubleCoset",[IsGroup,IsObject,IsGroup]);
#############################################################################
##
#O DoubleCosets(<G>,<U>,<V>)
#O DoubleCosetsNC(<G>,<U>,<V>)
##
## <#GAPDoc Label="DoubleCosets">
## <ManSection>
## <Oper Name="DoubleCosets" Arg='G, U, V'/>
## <Oper Name="DoubleCosetsNC" Arg='G, U, V'/>
##
## <Description>
## computes a duplicate free list of all double cosets
## <A>U</A> <M>g</M> <A>V</A> for <M>g \in <A>G</A></M>.
## The groups <A>U</A> and <A>V</A> must be subgroups of the group <A>G</A>.
## The <C>NC</C> version does not check whether <A>U</A> and <A>V</A> are
## subgroups of <A>G</A>.
## <Example><![CDATA[
## gap> dc:=DoubleCosets(g,u,v);
## [ DoubleCoset(Group( [ (1,2,3), (1,2) ] ),(),Group( [ (3,4) ] )),
## DoubleCoset(Group( [ (1,2,3), (1,2) ] ),(1,3)(2,4),Group(
## [ (3,4) ] )), DoubleCoset(Group( [ (1,2,3), (1,2) ] ),(1,4)
## (2,3),Group( [ (3,4) ] )) ]
## gap> List(dc,Representative);
## [ (), (1,3)(2,4), (1,4)(2,3) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("DoubleCosets");
DeclareOperation("DoubleCosetsNC",[IsGroup,IsGroup,IsGroup]);
#############################################################################
##
#O DoubleCosetRepsAndSizes(<G>,<U>,<V>)
##
## <#GAPDoc Label="DoubleCosetRepsAndSizes">
## <ManSection>
## <Oper Name="DoubleCosetRepsAndSizes" Arg='G, U, V'/>
##
## <Description>
## returns a list of double coset representatives and their sizes,
## the entries are lists of the form <M>[ r, n ]</M>
## where <M>r</M> and <M>n</M> are an element of the double coset and the
## size of the coset, respectively.
## This operation is faster than <Ref Func="DoubleCosetsNC"/> because no
## double coset objects have to be created.
## <Example><![CDATA[
## gap> dc:=DoubleCosetRepsAndSizes(g,u,v);
## [ [ (), 12 ], [ (1,3)(2,4), 6 ], [ (1,4)(2,3), 6 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("DoubleCosetRepsAndSizes",[IsGroup,IsGroup,IsGroup]);
#############################################################################
##
#A RepresentativesContainedRightCosets(<D>)
##
## <#GAPDoc Label="RepresentativesContainedRightCosets">
## <ManSection>
## <Attr Name="RepresentativesContainedRightCosets" Arg='D'/>
##
## <Description>
## A double coset <M><A>D</A> = U g V</M> can be considered as a union of
## right cosets <M>U h_i</M>.
## (It is the union of the orbit of <M>U g</M> under right multiplication by
## <M>V</M>.)
## For a double coset <A>D</A> this function returns a set
## of representatives <M>h_i</M> such that
## <A>D</A> <M>= \bigcup_{{h_i}} U h_i</M>.
## The representatives returned are canonical for <M>U</M> (see
## <Ref Func="CanonicalRightCosetElement"/>) and form a set.
## <Example><![CDATA[
## gap> u:=Subgroup(g,[(1,2,3),(1,2)]);;v:=Subgroup(g,[(3,4)]);;
## gap> c:=DoubleCoset(u,(2,4),v);
## DoubleCoset(Group( [ (1,2,3), (1,2) ] ),(2,4),Group( [ (3,4) ] ))
## gap> (1,2,3) in c;
## false
## gap> (2,3,4) in c;
## true
## gap> LeftActingGroup(c);
## Group([ (1,2,3), (1,2) ])
## gap> RightActingGroup(c);
## Group([ (3,4) ])
## gap> RepresentativesContainedRightCosets(c);
## [ (2,3,4) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "RepresentativesContainedRightCosets", IsDoubleCoset );
#############################################################################
##
#C IsRightCoset(<obj>)
##
## <#GAPDoc Label="IsRightCoset">
## <ManSection>
## <Filt Name="IsRightCoset" Arg='obj' Type='Category'/>
##
## <Description>
## The category of right cosets.
## <P/>
## <Index>left cosets</Index>
## &GAP; does not provide left cosets as a separate data type, but as the
## left coset <M>gU</M> consists of exactly the inverses of the elements of
## the right coset <M>Ug^{{-1}}</M> calculations with left cosets can be
## emulated using right cosets by inverting the representatives.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory("IsRightCoset", IsDomain and IsExternalOrbit and
IsMultiplicativeElementWithInverse);
#############################################################################
##
#O RightCoset( <U>, <g> )
##
## <#GAPDoc Label="RightCoset">
## <ManSection>
## <Oper Name="RightCoset" Arg='U, g'/>
##
## <Description>
## returns the right coset of <A>U</A> with representative <A>g</A>,
## which is the set of all elements of the form <M>ug</M> for all
## <M>u \in <A>U</A></M>. <A>g</A> must be an
## element of a larger group <A>G</A> which contains <A>U</A>.
## For element operations such as <K>in</K> a right coset behaves like a set of
## group elements.
## <P/>
## Right cosets are
## external orbits for the action of <A>U</A> which acts via
## <Ref Func="OnLeftInverse"/>.
## Of course the action of a larger group <A>G</A> on right cosets is via
## <Ref Func="OnRight"/>.
## <Example><![CDATA[
## gap> u:=Group((1,2,3), (1,2));;
## gap> c:=RightCoset(u,(2,3,4));
## RightCoset(Group( [ (1,2,3), (1,2) ] ),(2,3,4))
## gap> ActingDomain(c);
## Group([ (1,2,3), (1,2) ])
## gap> Representative(c);
## (2,3,4)
## gap> Size(c);
## 6
## gap> AsList(c);
## [ (2,3,4), (1,4,2), (1,3,4,2), (1,3)(2,4), (2,4), (1,4,2,3) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("RightCoset",[IsGroup,IsObject]);
#############################################################################
##
#F RightCosets(<G>,<U>)
#O RightCosetsNC(<G>,<U>)
##
## <#GAPDoc Label="RightCosets">
## <ManSection>
## <Func Name="RightCosets" Arg='G, U'/>
## <Oper Name="RightCosetsNC" Arg='G, U'/>
##
## <Description>
## computes a duplicate free list of right cosets <A>U</A> <M>g</M> for
## <M>g \in</M> <A>G</A>.
## A set of representatives for the elements in this list forms a right
## transversal of <A>U</A> in <A>G</A>.
## (By inverting the representatives one obtains
## a list of representatives of the left cosets of <A>U</A>.)
## The <C>NC</C> version does not check whether <A>U</A> is a subgroup of
## <A>G</A>.
## <Example><![CDATA[
## gap> RightCosets(g,u);
## [ RightCoset(Group( [ (1,2,3), (1,2) ] ),()),
## RightCoset(Group( [ (1,2,3), (1,2) ] ),(1,3)(2,4)),
## RightCoset(Group( [ (1,2,3), (1,2) ] ),(1,4)(2,3)),
## RightCoset(Group( [ (1,2,3), (1,2) ] ),(1,2)(3,4)) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("RightCosets");
DeclareOperation("RightCosetsNC",[IsGroup,IsGroup]);
#############################################################################
##
#F IntermediateGroup(<G>,<U>) . . . . . . . . . subgroup of G containing U
##
## <#GAPDoc Label="IntermediateGroup">
## <ManSection>
## <Func Name="IntermediateGroup" Arg='G, U'/>
##
## <Description>
## This routine tries to find a subgroup <M>E</M> of <A>G</A>,
## such that <M><A>G</A> > E > <A>U</A></M> holds.
## If <A>U</A> is maximal in <A>G</A>, the function returns <K>fail</K>.
## This is done by finding minimal blocks for
## the operation of <A>G</A> on the right cosets of <A>U</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("IntermediateGroup");
|