/usr/share/gap/lib/csetpc.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 | #############################################################################
##
#W csetpc.gi GAP library Alexander Hulpke
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the operations for cosets of pc groups
##
#############################################################################
##
#M CanonicalRightCosetElement( <U>, <g> ) . . . . . . . . cce for pcgroups
##
## Main part of the computation of a canonical coset representative in a
## PcGroup. This is done by factoring with the canonical generators of the
## subgroup to set the appropriate exponents to zero. Since the
## representation as an PcWord is "from left to right", we can multiply with
## subgroup elements from _right_, without changing exponents of the
## generators with lower depth (that are supposedly in canonical form yet).
## Since we want _right_ cosets, everything is done with the _inverse_
## elements, which are representatives for the left cosets. The routine
## supposes, that an Cgs has been set up and the relative orders of the
## generators have been computed by the calling routine.
##
InstallMethod(CanonicalRightCosetElement,"Pc",IsCollsElms,
[IsPcGroup,IsObject],0,
function(U,g)
local p,ro,a,d1,d,u,e;
p:=HomePcgs(U);
ro:=RelativeOrders(p);
a:=g^(-1);
d1:=DepthOfPcElement(p,a);
for u in CanonicalPcgsWrtHomePcgs(U) do
d:=DepthOfPcElement(p,u);
if d>=d1 then
e:=ExponentOfPcElement(p,a,d);
a:=a*u^(ro[d]-e);
d1:=DepthOfPcElement(p,a);
fi;
od;
return a^(-1);
end);
#############################################################################
##
#F DoubleCosetsPcGroup( <G>, <L>, <R> ) .. . . . double cosets for Pcgroups
##
## Double Coset calculation for PcGroups, inductive scheme, according to
## Mike Slattery
##
BindGlobal("DoubleCosetsPcGroup",function(G,A,B)
local r,st,nr,nst,ind,sff,f,m,i,j,ao,Npcgs,v,isi,
wbase,neubas,wproj,wg,W,x,mats,U,flip,dr,en,sf,u,
Hpcgs,Upcgs,prime,dim,one,zero,affsp,
wgr,sp,lgf,ll,Aind;
Info(InfoCoset,1,"Affine version");
# if a is small and b large, compute cosets b\G/a and take inverses of the
# representatives: Since we compute stabilizers in B and a chain down to
# A, this is remarkable faster
if 3*Size(A)<2*Size(B) then
m:=B;
B:=A;
A:=m;
flip:=true;
Info(InfoCoset,1,"DoubleCosetFlip");
else
flip:=false;
fi;
# force elementary abelian Series
sp:=PcgsElementaryAbelianSeries(G);
lgf:=IndicesEANormalSteps(sp);
ll:=Length(lgf);
#eas:=[];
#for i in [1..Length(lgf)] do
# Add(eas,Subgroup(G,sp{[lgf[i]..Length(sp)]}));
#od;
r:=[One(G)];
st:=[B];
Aind:=InducedPcgs(sp,A);
for ind in [2..ll] do
Info(InfoCoset,2,"step ",ind);
#kpcgs:=InducedPcgsByPcSequenceNC(sp,sp{[lgf[ind]..Length(sp)]});
#Npcgs:=InducedPcgsByPcSequenceNC(sp,sp{[lgf[ind-1]..Length(sp)]}) mod kpcgs;
Npcgs:=ModuloTailPcgsByList(sp,sp{[lgf[ind-1]..lgf[ind]-1]},
[lgf[ind]..Length(sp)]);
#Hpcgs:=InducedPcgsByGenerators(sp,Concatenation(GeneratorsOfGroup(A),
# kpcgs));
#Hpcgs:=CanonicalPcgs(Hpcgs) mod kpcgs;
Hpcgs:=Filtered(Aind,i->DepthOfPcElement(sp,i)<lgf[ind]);
sff:=SumFactorizationFunctionPcgs(sp,Hpcgs,Npcgs,
#negative depth: clean out
-lgf[ind]);
#fsn:=Factors(Index(eas[ind-1],eas[ind]));
dim:=lgf[ind]-lgf[ind-1];
prime:=RelativeOrders(sp)[lgf[ind-1]];
f:=GF(prime);
one:=One(f);
zero:=Zero(f);
v:= Immutable( IdentityMat(dim,one) );
# compute complement W
if Length(sff.intersection)=0 then
isi:=[];
wbase:=v;
else
isi:=List(sff.intersection,
i->ExponentsOfPcElement(Npcgs,i)*one);
wbase:=BaseSteinitzVectors(v,isi).factorspace;
fi;
if Length(wbase)>0 then
dr:=[1..Length(wbase)]; # 3 for stripping the affine 1
neubas:=Concatenation(wbase, isi );
wproj:=List(neubas^(-1), i -> i{[1..Length(wbase)]} );
wg:=[];
for i in wbase do
Add(wg,PcElementByExponentsNC(Npcgs,i));
od;
W:=false;
nr:=[];
nst:=[];
for i in [1..Length(r)] do
x:=r[i];#FactorAgWord(r[i],fgi);
U:=ConjugateGroup(st[i],x^(-1));
# build matrices
mats:=[];
Upcgs:=InducedPcgs(sp,U);
for u in Upcgs do
m:=[];
for j in wg do
Add(m,Concatenation((ExponentsConjugateLayer(Npcgs,j,u)*one)*wproj,
[zero]));
od;
Add(m,Concatenation((ExponentsOfPcElement(Npcgs,
sff.factorization(u).n)*one)*wproj,[one]));
m:=ImmutableMatrix(prime,m);
Add(mats,m);
od;
# modify later: if U trivial
if Length(mats)>0 then
affsp:=ExtendedVectors(FullRowSpace(f,Length(wg)));
ao:=ExternalSet(U,affsp,Upcgs,mats);
ao:=ExternalOrbits(ao);
ao:=rec(representatives:=List(ao,i->
PcElementByExponentsNC(Npcgs,(Representative(i){dr})*wbase)),
stabilizers:=List(ao,StabilizerOfExternalSet));
else
if W=false then
if Length(wg)=0 then
W:=[One(G)];
else
en:=Enumerator(FullRowSpace(f,Length(wg)));
W:=[];
wgr:=[1..Length(wg)];
for u in en do
Add(W,Product(wgr,j->wg[j]^IntFFE(u[j])));
od;
fi;
fi;
ao:=rec(
representatives:=W,
stabilizers:=List(W,i->U)
);
fi;
for j in [1..Length(ao.representatives)] do
Add(nr,ao.representatives[j]*x);
# we will finally just need the stabilizers size and not the
# stabilizer
if ind<ll then
Add(nst,ConjugateGroup(ao.stabilizers[j],x));
else
Add(nst,ao.stabilizers[j]);
fi;
od;
od;
r:=nr;
st:=nst;
#else
# Print(ind,"\n");
fi;
od;
sf:=Size(A)*Size(B);
for i in [1..Length(r)] do
if flip then
f:=[r[i]^(-1),sf/Size(st[i])];
else
f:=[r[i],sf/Size(st[i])];
fi;
r[i]:=f;
od;
return r;
end);
InstallMethod(DoubleCosetRepsAndSizes,"Pc",true,
[IsPcGroup,IsPcGroup,IsPcGroup],0,
function(G,U,V)
if Size(G)<=500 then
TryNextMethod();
else
return DoubleCosetsPcGroup(G,U,V);
fi;
end);
#############################################################################
##
#R IsRightTransversalPcGroupRep . . . . . . . right transversal of pc group
##
DeclareRepresentation( "IsRightTransversalPcGroupRep", IsRightTransversalRep,
[ "transversal", "canonReps" ] );
#############################################################################
##
#M RightTransversal( <G>, <U> ) . . . . . . . . . for pc groups
##
DoRightTransversalPc:=function( G, U )
local elements, g, u, e, i,t,depths,gens,p;
t := Objectify( NewType( FamilyObj( G ),
IsList and IsDuplicateFreeList
and IsRightTransversalPcGroupRep ),
rec( group :=G,
subgroup :=U,
canonReps:=[]));
elements := [One(G)];
p := Pcgs( G );
depths:=List( InducedPcgs( p, U ),
i->DepthOfPcElement(p,i));
gens:=Filtered(p, i->not DepthOfPcElement(p,i) in depths);
for g in Reversed(gens ) do
u := One(G);
e := ShallowCopy( elements );
for i in [1..RelativeOrderOfPcElement(p,g)-1] do
u := u * g;
UniteSet( elements, e * u );
od;
od;
Assert(1,Length(elements)=Index(G,U));
t!.transversal:=elements;
return t;
end;
InstallMethod(RightTransversalOp,"pc groups",IsIdenticalObj,
[ IsPcGroup, IsGroup ],0,DoRightTransversalPc);
InstallMethod(RightTransversalOp,"pc groups",IsIdenticalObj,
[ CanEasilyComputePcgs and HasPcgs, IsGroup ],0,DoRightTransversalPc);
InstallMethod(\[\],"for Pc transversals",true,
[ IsList and IsRightTransversalPcGroupRep, IsPosInt ],0,
function(t,num)
return t!.transversal[num];
end );
InstallMethod(AsList,"for Pc transversals",true,
[ IsList and IsRightTransversalPcGroupRep ],0,
function(t)
return t!.transversal;
end );
InstallMethod(PositionCanonical,"RT",IsCollsElms,
[ IsList and IsRightTransversalPcGroupRep,
IsMultiplicativeElementWithInverse ],0,
function(t,elm)
local i;
elm:=CanonicalRightCosetElement(t!.subgroup,elm);
i:=1;
while i<=Length(t) do
if not IsBound(t!.canonReps[i]) then
t!.canonReps[i]:=
CanonicalRightCosetElement(t!.subgroup,t!.transversal[i]);
fi;
if elm=t!.canonReps[i] then
return i;
fi;
i:=i+1;
od;
return fail;
end);
#############################################################################
##
#E csetpc.gi . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##
|