This file is indexed.

/usr/share/gap/lib/csetpc.gi is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
#############################################################################
##
#W  csetpc.gi                       GAP library              Alexander Hulpke
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the operations for cosets of pc groups
##

#############################################################################
##
#M  CanonicalRightCosetElement( <U>, <g> )  . . . . . . . .  cce for pcgroups
##
##  Main part of the computation of a canonical coset representative in a
##  PcGroup. This is done by factoring with the canonical generators of the
##  subgroup to set the appropriate exponents to zero. Since the
##  representation as an PcWord is "from left to right", we can multiply with
##  subgroup elements from _right_, without changing exponents of the
##  generators with lower depth (that are supposedly in canonical form yet).
##  Since we want _right_ cosets, everything is done with the _inverse_
##  elements, which are representatives for the left cosets.  The routine
##  supposes, that an Cgs has been set up and the relative orders of the
##  generators have been computed by the calling routine.
##
InstallMethod(CanonicalRightCosetElement,"Pc",IsCollsElms,
  [IsPcGroup,IsObject],0,
function(U,g)
local p,ro,a,d1,d,u,e;
  p:=HomePcgs(U);
  ro:=RelativeOrders(p);
  a:=g^(-1);
  d1:=DepthOfPcElement(p,a);
  for u in CanonicalPcgsWrtHomePcgs(U) do
    d:=DepthOfPcElement(p,u);
    if d>=d1 then
      e:=ExponentOfPcElement(p,a,d);
      a:=a*u^(ro[d]-e);
      d1:=DepthOfPcElement(p,a);
    fi;
  od;
  return a^(-1);
end);

#############################################################################
##
#F  DoubleCosetsPcGroup( <G>, <L>, <R> ) .. . . .  double cosets for Pcgroups
##
##  Double Coset calculation for PcGroups, inductive scheme, according to
##  Mike Slattery
##
BindGlobal("DoubleCosetsPcGroup",function(G,A,B)
local r,st,nr,nst,ind,sff,f,m,i,j,ao,Npcgs,v,isi,
      wbase,neubas,wproj,wg,W,x,mats,U,flip,dr,en,sf,u,
      Hpcgs,Upcgs,prime,dim,one,zero,affsp,
      wgr,sp,lgf,ll,Aind;

  Info(InfoCoset,1,"Affine version");
  # if a is small and b large, compute cosets b\G/a and take inverses of the
  # representatives: Since we compute stabilizers in B and a chain down to
  # A, this is remarkable faster

  if 3*Size(A)<2*Size(B) then
    m:=B;
    B:=A;
    A:=m;
    flip:=true;
    Info(InfoCoset,1,"DoubleCosetFlip");
  else
    flip:=false;
  fi;

  # force elementary abelian Series

  sp:=PcgsElementaryAbelianSeries(G);
  lgf:=IndicesEANormalSteps(sp);
  ll:=Length(lgf);
  #eas:=[];
  #for i in [1..Length(lgf)] do
  #  Add(eas,Subgroup(G,sp{[lgf[i]..Length(sp)]}));
  #od;

  r:=[One(G)];
  st:=[B];
  Aind:=InducedPcgs(sp,A);
  for ind in [2..ll] do
    Info(InfoCoset,2,"step ",ind);
    #kpcgs:=InducedPcgsByPcSequenceNC(sp,sp{[lgf[ind]..Length(sp)]});
    #Npcgs:=InducedPcgsByPcSequenceNC(sp,sp{[lgf[ind-1]..Length(sp)]}) mod kpcgs;
    Npcgs:=ModuloTailPcgsByList(sp,sp{[lgf[ind-1]..lgf[ind]-1]},
                                   [lgf[ind]..Length(sp)]);

    #Hpcgs:=InducedPcgsByGenerators(sp,Concatenation(GeneratorsOfGroup(A),
    #                                                kpcgs));
    #Hpcgs:=CanonicalPcgs(Hpcgs) mod kpcgs;

    Hpcgs:=Filtered(Aind,i->DepthOfPcElement(sp,i)<lgf[ind]);

    sff:=SumFactorizationFunctionPcgs(sp,Hpcgs,Npcgs,
       #negative depth: clean out
       -lgf[ind]);

    #fsn:=Factors(Index(eas[ind-1],eas[ind]));
    dim:=lgf[ind]-lgf[ind-1];
    prime:=RelativeOrders(sp)[lgf[ind-1]];

    f:=GF(prime);
    one:=One(f);
    zero:=Zero(f);
    v:= Immutable( IdentityMat(dim,one) );

    # compute complement W
    if Length(sff.intersection)=0 then
      isi:=[];
      wbase:=v;
    else
      isi:=List(sff.intersection,
			    i->ExponentsOfPcElement(Npcgs,i)*one);
      wbase:=BaseSteinitzVectors(v,isi).factorspace;
    fi;

    if Length(wbase)>0 then

      dr:=[1..Length(wbase)]; # 3 for stripping the affine 1
      neubas:=Concatenation(wbase, isi );
      wproj:=List(neubas^(-1), i -> i{[1..Length(wbase)]} );

      wg:=[];
      for i in wbase do
	Add(wg,PcElementByExponentsNC(Npcgs,i));
      od;

      W:=false;

      nr:=[];
      nst:=[];
      for i in [1..Length(r)] do
	x:=r[i];#FactorAgWord(r[i],fgi);
        U:=ConjugateGroup(st[i],x^(-1));

	# build matrices
	mats:=[];
	Upcgs:=InducedPcgs(sp,U);
        for u in Upcgs do
          m:=[]; 
          for j in wg do
	    Add(m,Concatenation((ExponentsConjugateLayer(Npcgs,j,u)*one)*wproj,
	                        [zero])); 
	  od;
	  Add(m,Concatenation((ExponentsOfPcElement(Npcgs,
	                         sff.factorization(u).n)*one)*wproj,[one])); 
	  m:=ImmutableMatrix(prime,m);
	  Add(mats,m);
	od;
	# modify later: if U trivial
	if Length(mats)>0 then

	  affsp:=ExtendedVectors(FullRowSpace(f,Length(wg)));
	  ao:=ExternalSet(U,affsp,Upcgs,mats);
	  ao:=ExternalOrbits(ao);
	  ao:=rec(representatives:=List(ao,i->
	    PcElementByExponentsNC(Npcgs,(Representative(i){dr})*wbase)),
	          stabilizers:=List(ao,StabilizerOfExternalSet));

	else

	  if W=false then
	    if Length(wg)=0 then
	      W:=[One(G)];
	    else
	      en:=Enumerator(FullRowSpace(f,Length(wg)));
	      W:=[];
	      wgr:=[1..Length(wg)];
	      for u in en do
		Add(W,Product(wgr,j->wg[j]^IntFFE(u[j])));
	      od;
	    fi;
	  fi;

	  ao:=rec(
                  representatives:=W,
                  stabilizers:=List(W,i->U)
	      ); 
	fi;

	for j in [1..Length(ao.representatives)] do
	  Add(nr,ao.representatives[j]*x);
	  # we will finally just need the stabilizers size and not the
	  # stabilizer
	  if ind<ll then
	    Add(nst,ConjugateGroup(ao.stabilizers[j],x));
	  else
	    Add(nst,ao.stabilizers[j]);
	  fi;
	od;
      od;
      r:=nr;
      st:=nst;
    #else
    #  Print(ind,"\n");
    fi;
  od;
  sf:=Size(A)*Size(B);

  for i in [1..Length(r)] do
    if flip then
      f:=[r[i]^(-1),sf/Size(st[i])];
    else
      f:=[r[i],sf/Size(st[i])];
    fi;
    r[i]:=f;
  od;
  return r;
end);

InstallMethod(DoubleCosetRepsAndSizes,"Pc",true,
  [IsPcGroup,IsPcGroup,IsPcGroup],0,
function(G,U,V)
  if Size(G)<=500 then
    TryNextMethod();
  else
    return DoubleCosetsPcGroup(G,U,V);
  fi;
end);


#############################################################################
##
#R  IsRightTransversalPcGroupRep  . . . . . . . right transversal of pc group
##
DeclareRepresentation( "IsRightTransversalPcGroupRep", IsRightTransversalRep,
    [ "transversal", "canonReps" ] );


#############################################################################
##
#M  RightTransversal( <G>, <U> ) . . . . . . . . . for pc groups
##
DoRightTransversalPc:=function( G, U )
local elements, g, u, e, i,t,depths,gens,p;

  t := Objectify( NewType( FamilyObj( G ),
                               IsList and IsDuplicateFreeList
                           and IsRightTransversalPcGroupRep ),
          rec( group :=G,
            subgroup :=U,
	    canonReps:=[]));

  elements := [One(G)];
  p := Pcgs( G );
  depths:=List( InducedPcgs( p,  U  ),
                i->DepthOfPcElement(p,i));
  gens:=Filtered(p, i->not DepthOfPcElement(p,i) in depths);
  for g in Reversed(gens ) do
      u := One(G);
      e := ShallowCopy( elements );
      for i  in [1..RelativeOrderOfPcElement(p,g)-1]  do
	  u := u * g;
	  UniteSet( elements, e * u );
      od;
  od;
  Assert(1,Length(elements)=Index(G,U));
  t!.transversal:=elements;
  return t;
end;

InstallMethod(RightTransversalOp,"pc groups",IsIdenticalObj,
        [ IsPcGroup, IsGroup ],0,DoRightTransversalPc);

InstallMethod(RightTransversalOp,"pc groups",IsIdenticalObj,
        [ CanEasilyComputePcgs and HasPcgs, IsGroup ],0,DoRightTransversalPc);

InstallMethod(\[\],"for Pc transversals",true,
    [ IsList and IsRightTransversalPcGroupRep, IsPosInt ],0,
function(t,num)
  return t!.transversal[num];
end );

InstallMethod(AsList,"for Pc transversals",true,
    [ IsList and IsRightTransversalPcGroupRep ],0,
function(t)
  return t!.transversal;
end );

InstallMethod(PositionCanonical,"RT",IsCollsElms,
    [ IsList and IsRightTransversalPcGroupRep,
    IsMultiplicativeElementWithInverse ],0,
function(t,elm)
local i;
  elm:=CanonicalRightCosetElement(t!.subgroup,elm);
  i:=1;
  while i<=Length(t) do
    if not IsBound(t!.canonReps[i]) then
      t!.canonReps[i]:=
        CanonicalRightCosetElement(t!.subgroup,t!.transversal[i]);
    fi;
    if elm=t!.canonReps[i] then
      return i;
    fi;
    i:=i+1;
  od;
  return fail;
end);


#############################################################################
##
#E  csetpc.gi . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##