/usr/share/gap/lib/ctblfuns.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 | #############################################################################
##
#W ctblfuns.gd GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the definition of categories of class functions,
## and the corresponding properties, attributes, and operations.
##
## 1. Why Class Functions?
## 2. Basic Operations for Class Functions
## 3. Comparison of Class Functions
## 4. Arithmetic Operations for Class Functions
## 5. Printing Class Functions
## 6. Creating Class Functions from Values Lists
## 7. Creating Class Functions using Groups
## 8. Operations for Class Functions
## 9. Restricted and Induced Class Functions
## 10. Reducing Virtual Characters
## 11. Symmetrizations of Class Functions
## 12. Operations for Brauer Characters
## 13. Domains Generated by Class Functions
## 14. Auxiliary operations
##
#############################################################################
##
#C IsClassFunction( <obj> )
##
## <#GAPDoc Label="IsClassFunction">
## <ManSection>
## <Filt Name="IsClassFunction" Arg='obj' Type='Category'/>
##
## <Description>
## <Index>class function</Index><Index>class function objects</Index>
## A <E>class function</E> (in characteristic <M>p</M>) of a finite group
## <M>G</M> is a map from the set of (<M>p</M>-regular) elements in <M>G</M>
## to the field of cyclotomics
## that is constant on conjugacy classes of <M>G</M>.
## <P/>
## Each class function in &GAP; is represented by an <E>immutable list</E>,
## where at the <M>i</M>-th position the value on the <M>i</M>-th conjugacy
## class of the character table of <M>G</M> is stored.
## The ordering of the conjugacy classes is the one used in the underlying
## character table.
## Note that if the character table has access to its underlying group then
## the ordering of conjugacy classes in the group and in the character table
## may differ
## (see <Ref Sect="The Interface between Character Tables and Groups"/>);
## class functions always refer to the ordering of classes in the character
## table.
## <P/>
## <E>Class function objects</E> in &GAP; are not just plain lists,
## they store the character table of the group <M>G</M> as value of the
## attribute <Ref Func="UnderlyingCharacterTable"/>.
## The group <M>G</M> itself is accessible only via the character table
## and thus only if the character table stores its group, as value of the
## attribute <Ref Attr="UnderlyingGroup" Label="for character tables"/>.
## The reason for this is that many computations with class functions are
## possible without using their groups,
## for example class functions of character tables in the &GAP;
## character table library do in general not have access to their
## underlying groups.
## <P/>
## There are (at least) two reasons why class functions in &GAP; are
## <E>not</E> implemented as mappings.
## First, we want to distinguish class functions in different
## characteristics, for example to be able to define the Frobenius character
## of a given Brauer character;
## viewed as mappings, the trivial characters in all characteristics coprime
## to the order of <M>G</M> are equal.
## Second, the product of two class functions shall be again a class
## function, whereas the product of general mappings is defined as
## composition.
## <P/>
## A further argument is that the typical operations for mappings such as
## <Ref Func="Image" Label="set of images of the source of a general mapping"/>
## and
## <Ref Func="PreImage" Label="set of preimages of the range of a general mapping"/>
## play no important role for class functions.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsClassFunction",
IsScalar and IsCommutativeElement and IsAssociativeElement
and IsHomogeneousList and IsScalarCollection and IsFinite
and IsGeneralizedRowVector );
#############################################################################
##
#F CharacterString( <char>, <str> )
##
## <ManSection>
## <Func Name="CharacterString" Arg='char, str'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "CharacterString" );
#############################################################################
##
## 1. Why Class Functions?
##
## <#GAPDoc Label="[1]{ctblfuns}">
## In principle it is possible to represent group characters or more general
## class functions by the plain lists of their values,
## and in fact many operations for class functions work with plain lists of
## class function values.
## But this has two disadvantages.
## <P/>
## First, it is then necessary to regard a values list explicitly as a class
## function of a particular character table, by supplying this character
## table as an argument.
## In practice this means that with this setup,
## the user has the task to put the objects into the right context.
## For example, forming the scalar product or the tensor product of two
## class functions or forming an induced class function or a conjugate
## class function then needs three arguments in this case;
## this is particularly inconvenient in cases where infix operations cannot
## be used because of the additional argument, as for tensor products and
## induced class functions.
## <P/>
## Second, when one says that
## <Q><M>\chi</M> is a character of a group <M>G</M></Q>
## then this object <M>\chi</M> carries a lot of information.
## <M>\chi</M> has certain properties such as being irreducible or not.
## Several subgroups of <M>G</M> are related to <M>\chi</M>,
## such as the kernel and the centre of <M>\chi</M>.
## Other attributes of characters are the determinant and the central
## character.
## This knowledge cannot be stored in a plain list.
## <P/>
## For dealing with a group together with its characters, and maybe also
## subgroups and their characters, it is desirable that &GAP; keeps track
## of the interpretation of characters.
## On the other hand, for using characters without accessing their groups,
## such as characters of tables from the &GAP; table library,
## dealing just with values lists is often sufficient.
## In particular, if one deals with incomplete character tables then it is
## often necessary to specify the arguments explicitly,
## for example one has to choose a fusion map or power map from a set of
## possibilities.
## <P/>
## The main idea behind class function objects is that a class function
## object is equal to its values list in the sense of <Ref Func="\="/>,
## so class function objects can be used wherever their values lists
## can be used,
## but there are operations for class function objects that do not work
## just with values lists.
## <!-- Note that a class function object lies in the same family as its list of-->
## <!-- values.-->
## <!-- As a consequence, there is no filter <C>IsClassFunctionCollection</C>,-->
## <!-- so we have no special treatment of spaces and algebras without hacks.-->
## &GAP; library functions prefer to return class function objects
## rather than returning just values lists,
## for example <Ref Attr="Irr" Label="for a group"/> lists
## consist of class function objects,
## and <Ref Func="TrivialCharacter" Label="for a group"/>
## returns a class function object.
## <P/>
## Here is an <E>example</E> that shows both approaches.
## First we define some groups.
## <P/>
## <Example><![CDATA[
## gap> S4:= SymmetricGroup( 4 );; SetName( S4, "S4" );
## gap> D8:= SylowSubgroup( S4, 2 );; SetName( D8, "D8" );
## ]]></Example>
## <P/>
## We do some computations using the functions described later in this
## Chapter, first with class function objects.
## <P/>
## <Example><![CDATA[
## gap> irrS4:= Irr( S4 );;
## gap> irrD8:= Irr( D8 );;
## gap> chi:= irrD8[4];
## Character( CharacterTable( D8 ), [ 1, -1, 1, -1, 1 ] )
## gap> chi * chi;
## Character( CharacterTable( D8 ), [ 1, 1, 1, 1, 1 ] )
## gap> ind:= chi ^ S4;
## Character( CharacterTable( S4 ), [ 3, -1, -1, 0, 1 ] )
## gap> List( irrS4, x -> ScalarProduct( x, ind ) );
## [ 0, 1, 0, 0, 0 ]
## gap> det:= Determinant( ind );
## Character( CharacterTable( S4 ), [ 1, 1, 1, 1, 1 ] )
## gap> cent:= CentralCharacter( ind );
## ClassFunction( CharacterTable( S4 ), [ 1, -2, -1, 0, 2 ] )
## gap> rest:= Restricted( cent, D8 );
## ClassFunction( CharacterTable( D8 ), [ 1, -2, -1, -1, 2 ] )
## ]]></Example>
## <P/>
## Now we repeat these calculations with plain lists of character values.
## Here we need the character tables in some places.
## <P/>
## <Example><![CDATA[
## gap> tS4:= CharacterTable( S4 );;
## gap> tD8:= CharacterTable( D8 );;
## gap> chi:= ValuesOfClassFunction( irrD8[4] );
## [ 1, -1, 1, -1, 1 ]
## gap> Tensored( [ chi ], [ chi ] )[1];
## [ 1, 1, 1, 1, 1 ]
## gap> ind:= InducedClassFunction( tD8, chi, tS4 );
## ClassFunction( CharacterTable( S4 ), [ 3, -1, -1, 0, 1 ] )
## gap> List( Irr( tS4 ), x -> ScalarProduct( tS4, x, ind ) );
## [ 0, 1, 0, 0, 0 ]
## gap> det:= DeterminantOfCharacter( tS4, ind );
## ClassFunction( CharacterTable( S4 ), [ 1, 1, 1, 1, 1 ] )
## gap> cent:= CentralCharacter( tS4, ind );
## ClassFunction( CharacterTable( S4 ), [ 1, -2, -1, 0, 2 ] )
## gap> rest:= Restricted( tS4, cent, tD8 );
## ClassFunction( CharacterTable( D8 ), [ 1, -2, -1, -1, 2 ] )
## ]]></Example>
## <P/>
## If one deals with character tables from the &GAP; table library then
## one has no access to their groups,
## but often the tables provide enough information for computing induced or
## restricted class functions, symmetrizations etc.,
## because the relevant class fusions and power maps are often stored on
## library tables.
## In these cases it is possible to use the tables instead of the groups
## as arguments.
## (If necessary information is not uniquely determined by the tables then
## an error is signalled.)
## <P/>
## <Example><![CDATA[
## gap> s5 := CharacterTable( "A5.2" );; irrs5 := Irr( s5 );;
## gap> m11:= CharacterTable( "M11" );; irrm11:= Irr( m11 );;
## gap> chi:= TrivialCharacter( s5 );
## Character( CharacterTable( "A5.2" ), [ 1, 1, 1, 1, 1, 1, 1 ] )
## gap> chi ^ m11;
## Character( CharacterTable( "M11" ), [ 66, 10, 3, 2, 1, 1, 0, 0, 0, 0
## ] )
## gap> Determinant( irrs5[4] );
## Character( CharacterTable( "A5.2" ), [ 1, 1, 1, 1, -1, -1, -1 ] )
## ]]></Example>
## <P/>
## Functions that compute <E>normal</E> subgroups related to characters
## have counterparts that return the list of class positions corresponding
## to these groups.
## <P/>
## <Example><![CDATA[
## gap> ClassPositionsOfKernel( irrs5[2] );
## [ 1, 2, 3, 4 ]
## gap> ClassPositionsOfCentre( irrs5[2] );
## [ 1, 2, 3, 4, 5, 6, 7 ]
## ]]></Example>
## <P/>
## Non-normal subgroups cannot be described this way,
## so for example inertia subgroups (see <Ref Func="InertiaSubgroup"/>)
## can in general not be computed from character tables without access to
## their groups.
## <#/GAPDoc>
##
#############################################################################
##
## 2. Basic Operations for Class Functions
##
## <#GAPDoc Label="[2]{ctblfuns}">
## Basic operations for class functions are
## <Ref Func="UnderlyingCharacterTable"/>,
## <Ref Func="ValuesOfClassFunction"/>,
## and the basic operations for lists
## (see <Ref Sect="Basic Operations for Lists"/>).
## <#/GAPDoc>
##
#############################################################################
##
#A UnderlyingCharacterTable( <psi> )
##
## <#GAPDoc Label="UnderlyingCharacterTable">
## <ManSection>
## <Attr Name="UnderlyingCharacterTable" Arg='psi'/>
##
## <Description>
## For a class function <A>psi</A> of the group <M>G</M>, say,
## the character table of <M>G</M> is stored as value of
## <Ref Attr="UnderlyingCharacterTable"/>.
## The ordering of entries in the list <A>psi</A>
## (see <Ref Func="ValuesOfClassFunction"/>)
## refers to the ordering of conjugacy classes in this character table.
## <P/>
## If <A>psi</A> is an ordinary class function then the underlying character
## table is the ordinary character table of <M>G</M>
## (see <Ref Func="OrdinaryCharacterTable" Label="for a group"/>),
## if <A>psi</A> is a class function in characteristic <M>p \neq 0</M> then
## the underlying character table is the <M>p</M>-modular Brauer table of
## <M>G</M>
## (see <Ref Func="BrauerTable"
## Label="for a group, and a prime integer"/>).
## So the underlying characteristic of <A>psi</A> can be read off from the
## underlying character table.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "UnderlyingCharacterTable", IsClassFunction );
#############################################################################
##
#A ValuesOfClassFunction( <psi> ) . . . . . . . . . . . . . . list of values
##
## <#GAPDoc Label="ValuesOfClassFunction">
## <ManSection>
## <Attr Name="ValuesOfClassFunction" Arg='psi'/>
##
## <Description>
## is the list of values of the class function <A>psi</A>,
## the <M>i</M>-th entry being the value on the <M>i</M>-th conjugacy class
## of the underlying character table
## (see <Ref Func="UnderlyingCharacterTable"/>).
## <P/>
## <Example><![CDATA[
## gap> g:= SymmetricGroup( 4 );
## Sym( [ 1 .. 4 ] )
## gap> psi:= TrivialCharacter( g );
## Character( CharacterTable( Sym( [ 1 .. 4 ] ) ), [ 1, 1, 1, 1, 1 ] )
## gap> UnderlyingCharacterTable( psi );
## CharacterTable( Sym( [ 1 .. 4 ] ) )
## gap> ValuesOfClassFunction( psi );
## [ 1, 1, 1, 1, 1 ]
## gap> IsList( psi );
## true
## gap> psi[1];
## 1
## gap> Length( psi );
## 5
## gap> IsBound( psi[6] );
## false
## gap> Concatenation( psi, [ 2, 3 ] );
## [ 1, 1, 1, 1, 1, 2, 3 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "ValuesOfClassFunction", IsClassFunction );
#############################################################################
##
## 3. Comparison of Class Functions
##
## <#GAPDoc Label="[3]{ctblfuns}">
## With respect to <Ref Func="\="/> and <Ref Func="\<"/>,
## class functions behave equally to their lists of values
## (see <Ref Func="ValuesOfClassFunction"/>).
## So two class functions are equal if and only if their lists of values are
## equal, no matter whether they are class functions of the same character
## table, of the same group but w.r.t. different class ordering,
## or of different groups.
## <P/>
## <Example><![CDATA[
## gap> grps:= Filtered( AllSmallGroups( 8 ), g -> not IsAbelian( g ) );
## [ <pc group of size 8 with 3 generators>,
## <pc group of size 8 with 3 generators> ]
## gap> t1:= CharacterTable( grps[1] ); SetName( t1, "t1" );
## CharacterTable( <pc group of size 8 with 3 generators> )
## gap> t2:= CharacterTable( grps[2] ); SetName( t2, "t2" );
## CharacterTable( <pc group of size 8 with 3 generators> )
## gap> irr1:= Irr( grps[1] );
## [ Character( t1, [ 1, 1, 1, 1, 1 ] ),
## Character( t1, [ 1, -1, -1, 1, 1 ] ),
## Character( t1, [ 1, -1, 1, 1, -1 ] ),
## Character( t1, [ 1, 1, -1, 1, -1 ] ),
## Character( t1, [ 2, 0, 0, -2, 0 ] ) ]
## gap> irr2:= Irr( grps[2] );
## [ Character( t2, [ 1, 1, 1, 1, 1 ] ),
## Character( t2, [ 1, -1, -1, 1, 1 ] ),
## Character( t2, [ 1, -1, 1, 1, -1 ] ),
## Character( t2, [ 1, 1, -1, 1, -1 ] ),
## Character( t2, [ 2, 0, 0, -2, 0 ] ) ]
## gap> irr1 = irr2;
## true
## gap> IsSSortedList( irr1 );
## false
## gap> irr1[1] < irr1[2];
## false
## gap> irr1[2] < irr1[3];
## true
## ]]></Example>
## <#/GAPDoc>
##
#############################################################################
##
## 4. Arithmetic Operations for Class Functions
##
## <#GAPDoc Label="[4]{ctblfuns}">
## Class functions are <E>row vectors</E> of cyclotomics.
## The <E>additive</E> behaviour of class functions is defined such that
## they are equal to the plain lists of class function values except that
## the results are represented again as class functions whenever this makes
## sense.
## The <E>multiplicative</E> behaviour, however, is different.
## This is motivated by the fact that the tensor product of class functions
## is a more interesting operation than the vector product of plain lists.
## (Another candidate for a multiplication of compatible class functions
## would have been the inner product, which is implemented via the function
## <Ref Func="ScalarProduct" Label="for characters"/>.
## In terms of filters, the arithmetic of class functions is based on the
## decision that they lie in <Ref Func="IsGeneralizedRowVector"/>,
## with additive nesting depth <M>1</M>, but they do <E>not</E> lie in
## <Ref Func="IsMultiplicativeGeneralizedRowVector"/>.
## <P/>
## More specifically, the scalar multiple of a class function with a
## cyclotomic is a class function,
## and the sum and the difference of two class functions
## of the same underlying character table
## (see <Ref Func="UnderlyingCharacterTable"/>)
## are again class functions of this table.
## The sum and the difference of a class function and a list that is
## <E>not</E> a class function are plain lists,
## as well as the sum and the difference of two class functions of different
## character tables.
## <P/>
## <Example><![CDATA[
## gap> g:= SymmetricGroup( 4 );; tbl:= CharacterTable( g );;
## gap> SetName( tbl, "S4" ); irr:= Irr( g );
## [ Character( S4, [ 1, -1, 1, 1, -1 ] ),
## Character( S4, [ 3, -1, -1, 0, 1 ] ),
## Character( S4, [ 2, 0, 2, -1, 0 ] ),
## Character( S4, [ 3, 1, -1, 0, -1 ] ),
## Character( S4, [ 1, 1, 1, 1, 1 ] ) ]
## gap> 2 * irr[5];
## Character( S4, [ 2, 2, 2, 2, 2 ] )
## gap> irr[1] / 7;
## ClassFunction( S4, [ 1/7, -1/7, 1/7, 1/7, -1/7 ] )
## gap> lincomb:= irr[3] + irr[1] - irr[5];
## VirtualCharacter( S4, [ 2, -2, 2, -1, -2 ] )
## gap> lincomb:= lincomb + 2 * irr[5];
## VirtualCharacter( S4, [ 4, 0, 4, 1, 0 ] )
## gap> IsCharacter( lincomb );
## true
## gap> lincomb;
## Character( S4, [ 4, 0, 4, 1, 0 ] )
## gap> irr[5] + 2;
## [ 3, 3, 3, 3, 3 ]
## gap> irr[5] + [ 1, 2, 3, 4, 5 ];
## [ 2, 3, 4, 5, 6 ]
## gap> zero:= 0 * irr[1];
## VirtualCharacter( S4, [ 0, 0, 0, 0, 0 ] )
## gap> zero + Z(3);
## [ Z(3), Z(3), Z(3), Z(3), Z(3) ]
## gap> irr[5] + TrivialCharacter( DihedralGroup( 8 ) );
## [ 2, 2, 2, 2, 2 ]
## ]]></Example>
## <P/>
## <Index Subkey="as ring elements">class functions</Index>
## The product of two class functions of the same character table is the
## tensor product (pointwise product) of these class functions.
## Thus the set of all class functions of a fixed group forms a ring,
## and for any field <M>F</M> of cyclotomics, the <M>F</M>-span of a given
## set of class functions forms an algebra.
## <P/>
## The product of two class functions of <E>different</E> tables and the
## product of a class function and a list that is <E>not</E> a class
## function are not defined, an error is signalled in these cases.
## Note that in this respect, class functions behave differently from their
## values lists, for which the product is defined as the standard scalar
## product.
## <P/>
## <Example><![CDATA[
## gap> tens:= irr[3] * irr[4];
## Character( S4, [ 6, 0, -2, 0, 0 ] )
## gap> ValuesOfClassFunction( irr[3] ) * ValuesOfClassFunction( irr[4] );
## 4
## ]]></Example>
## <P/>
## <Index Subkey="of class function">inverse</Index>
## Class functions without zero values are invertible,
## the <E>inverse</E> is defined pointwise.
## As a consequence, for example groups of linear characters can be formed.
## <P/>
## <Example><![CDATA[
## gap> tens / irr[1];
## Character( S4, [ 6, 0, -2, 0, 0 ] )
## ]]></Example>
## <P/>
## Other (somewhat strange) implications of the definition of arithmetic
## operations for class functions, together with the general rules of list
## arithmetic (see <Ref Sect="Arithmetic for Lists"/>),
## apply to the case of products involving <E>lists</E> of class functions.
## No inverse of the list of irreducible characters as a matrix is defined;
## if one is interested in the inverse matrix then one can compute it from
## the matrix of class function values.
## <P/>
## <Example><![CDATA[
## gap> Inverse( List( irr, ValuesOfClassFunction ) );
## [ [ 1/24, 1/8, 1/12, 1/8, 1/24 ], [ -1/4, -1/4, 0, 1/4, 1/4 ],
## [ 1/8, -1/8, 1/4, -1/8, 1/8 ], [ 1/3, 0, -1/3, 0, 1/3 ],
## [ -1/4, 1/4, 0, -1/4, 1/4 ] ]
## ]]></Example>
## <P/>
## Also the product of a class function with a list of class functions is
## <E>not</E> a vector-matrix product but the list of pointwise products.
## <P/>
## <Example><![CDATA[
## gap> irr[1] * irr{ [ 1 .. 3 ] };
## [ Character( S4, [ 1, 1, 1, 1, 1 ] ),
## Character( S4, [ 3, 1, -1, 0, -1 ] ),
## Character( S4, [ 2, 0, 2, -1, 0 ] ) ]
## ]]></Example>
## <P/>
## And the product of two lists of class functions is <E>not</E> the matrix
## product but the sum of the pointwise products.
## <P/>
## <Example><![CDATA[
## gap> irr * irr;
## Character( S4, [ 24, 4, 8, 3, 4 ] )
## ]]></Example>
## <P/>
## <Index Subkey="of group element using powering operator">character value</Index>
## <Index Subkey="meaning for class functions">power</Index>
## <Index Subkey="for class functions"><C>^</C></Index>
## The <E>powering</E> operator <Ref Func="\^"/> has several meanings
## for class functions.
## The power of a class function by a nonnegative integer is clearly the
## tensor power.
## The power of a class function by an element that normalizes the
## underlying group or by a Galois automorphism is the conjugate class
## function.
## (As a consequence, the application of the permutation induced by such an
## action cannot be denoted by <Ref Func="\^"/>; instead one can use
## <Ref Func="Permuted"/>.)
## The power of a class function by a group or a character table is the
## induced class function (see <Ref Func="InducedClassFunction"
## Label="for the character table of a supergroup"/>).
## The power of a group element by a class function is the class function
## value at (the conjugacy class containing) this element.
## <P/>
## <Example><![CDATA[
## gap> irr[3] ^ 3;
## Character( S4, [ 8, 0, 8, -1, 0 ] )
## gap> lin:= LinearCharacters( DerivedSubgroup( g ) );
## [ Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, 1, 1, 1 ] ),
## Character( CharacterTable( Alt( [ 1 .. 4 ] ) ),
## [ 1, 1, E(3)^2, E(3) ] ),
## Character( CharacterTable( Alt( [ 1 .. 4 ] ) ),
## [ 1, 1, E(3), E(3)^2 ] ) ]
## gap> List( lin, chi -> chi ^ (1,2) );
## [ Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, 1, 1, 1 ] ),
## Character( CharacterTable( Alt( [ 1 .. 4 ] ) ),
## [ 1, 1, E(3), E(3)^2 ] ),
## Character( CharacterTable( Alt( [ 1 .. 4 ] ) ),
## [ 1, 1, E(3)^2, E(3) ] ) ]
## gap> Orbit( GaloisGroup( CF(3) ), lin[2] );
## [ Character( CharacterTable( Alt( [ 1 .. 4 ] ) ),
## [ 1, 1, E(3)^2, E(3) ] ),
## Character( CharacterTable( Alt( [ 1 .. 4 ] ) ),
## [ 1, 1, E(3), E(3)^2 ] ) ]
## gap> lin[1]^g;
## Character( S4, [ 2, 0, 2, 2, 0 ] )
## gap> (1,2,3)^lin[2];
## E(3)^2
## ]]></Example>
##
## <ManSection>
## <Func Name="Characteristic" Arg='chi' Label="for a class function"/>
##
## <Description>
## The <E>characteristic</E> of class functions is zero,
## as for all list of cyclotomics.
## For class functions of a <M>p</M>-modular character table, such as Brauer
## characters, the prime <M>p</M> is given by the
## <Ref Attr="UnderlyingCharacteristic" Label="for a character table"/>
## value of the character table.
## <P/>
## <Example><![CDATA[
## gap> Characteristic( irr[1] );
## 0
## gap> irrmod2:= Irr( g, 2 );
## [ Character( BrauerTable( Sym( [ 1 .. 4 ] ), 2 ), [ 1, 1 ] ),
## Character( BrauerTable( Sym( [ 1 .. 4 ] ), 2 ), [ 2, -1 ] ) ]
## gap> Characteristic( irrmod2[1] );
## 0
## gap> UnderlyingCharacteristic( UnderlyingCharacterTable( irrmod2[1] ) );
## 2
## ]]></Example>
## </Description>
## </ManSection>
##
## <ManSection>
## <Func Name="ComplexConjugate" Arg='chi' Label="for a class function"/>
## <Func Name="GaloisCyc" Arg='chi, k' Label="for a class function"/>
## <Func Name="Permuted" Arg='chi, pi' Label="for a class function"/>
##
## <Description>
## The operations
## <Ref Func="ComplexConjugate" Label="for a class function"/>,
## <Ref Func="GaloisCyc" Label="for a class function"/>,
## and <Ref Func="Permuted" Label="for a class function"/> return
## a class function when they are called with a class function;
## The complex conjugate of a class function that is known to be a (virtual)
## character is again known to be a (virtual) character, and applying an
## arbitrary Galois automorphism to an ordinary (virtual) character yields
## a (virtual) character.
## <P/>
## <Example><![CDATA[
## gap> ComplexConjugate( lin[2] );
## Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, 1, E(3), E(3)^2
## ] )
## gap> GaloisCyc( lin[2], 5 );
## Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, 1, E(3), E(3)^2
## ] )
## gap> Permuted( lin[2], (2,3,4) );
## ClassFunction( CharacterTable( Alt( [ 1 .. 4 ] ) ),
## [ 1, E(3), 1, E(3)^2 ] )
## ]]></Example>
## </Description>
## </ManSection>
## <P/>
## <ManSection>
## <Func Name="Order" Arg='chi' Label="for a class function"/>
##
## <Description>
## By definition of <Ref Func="Order"/> for arbitrary monoid elements,
## the return value of <Ref Func="Order"/> for a character must be its
## multiplicative order.
## The <E>determinantal order</E>
## (see <Ref Func="DeterminantOfCharacter"/>) of a character <A>chi</A>
## can be computed as <C>Order( Determinant( <A>chi</A> ) )</C>.
## <P/>
## <Example><![CDATA[
## gap> det:= Determinant( irr[3] );
## Character( S4, [ 1, -1, 1, 1, -1 ] )
## gap> Order( det );
## 2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
#############################################################################
##
#A GlobalPartitionOfClasses( <tbl> )
##
## <ManSection>
## <Attr Name="GlobalPartitionOfClasses" Arg='tbl'/>
##
## <Description>
## Let <M>n</M> be the number of conjugacy classes of the character table
## <A>tbl</A>.
## <Ref Func="GlobalPartitionOfClasses"/> returns a list of subsets of the
## range <M>[ 1 .. n ]</M> that forms a partition of <M>[ 1 .. n ]</M>.
## This partition is respected by each table automorphism of <A>tbl</A>
## (see <Ref Func="AutomorphismsOfTable"/>);
## <E>note</E> that also fixed points occur.
## <P/>
## This is useful for the computation of table automorphisms
## and of conjugate class functions.
## <P/>
## Since group automorphisms induce table automorphisms, the partition is
## also respected by the permutation group that occurs in the computation
## of inertia groups and conjugate class functions.
## <P/>
## If the group of table automorphisms is already known then its orbits
## form the finest possible global partition.
## <P/>
## Otherwise the subsets in the partition are the sets of classes with
## same centralizer order and same element order, and
## –if more about the character table is known–
## also with the same number of <M>p</M>-th root classes,
## for all <M>p</M> for which the power maps are stored.
## </Description>
## </ManSection>
##
DeclareAttribute( "GlobalPartitionOfClasses", IsNearlyCharacterTable );
#############################################################################
##
#O CorrespondingPermutations( <tbl>[, <chi>], <elms> )
##
## <ManSection>
## <Oper Name="CorrespondingPermutations" Arg='tbl[, chi], elms'/>
##
## <Description>
## Called with two arguments <A>tbl</A> and <A>elms</A>,
## <Ref Oper="CorrespondingPermutations"/> returns the list of those
## permutations of conjugacy classes of the character table <A>tbl</A>
## that are induced by the action of the group elements in the list
## <A>elms</A>.
## If an element of <A>elms</A> does <E>not</E> act on the classes of
## <A>tbl</A> then either <K>fail</K> or a (meaningless) permutation
## is returned.
## <P/>
## In the call with three arguments, the second argument <A>chi</A> must be
## (the values list of) a class function of <A>tbl</A>,
## and the returned permutations will at least yield the same
## conjugate class functions as the permutations of classes that are induced
## by <A>elms</A>,
## that is, the images are not necessarily the same for orbits on which
## <A>chi</A> is constant.
## <P/>
## This function is used for computing conjugate class functions.
## </Description>
## </ManSection>
##
DeclareOperation( "CorrespondingPermutations",
[ IsOrdinaryTable, IsHomogeneousList ] );
DeclareOperation( "CorrespondingPermutations",
[ IsOrdinaryTable, IsClassFunction, IsHomogeneousList ] );
#############################################################################
##
## 5. Printing Class Functions
##
## <#GAPDoc Label="[5]{ctblfuns}">
## <ManSection>
## <Meth Name="ViewObj" Arg='chi' Label="for class functions"/>
##
## <Description>
## The default <Ref Func="ViewObj"/> methods for class functions
## print one of the strings <C>"ClassFunction"</C>,
## <C>"VirtualCharacter"</C>, <C>"Character"</C> (depending on whether the
## class function is known to be a character or virtual character,
## see <Ref Func="IsCharacter"/>, <Ref Func="IsVirtualCharacter"/>),
## followed by the <Ref Func="ViewObj"/> output for the underlying character
## table (see <Ref Sect="Printing Character Tables"/>),
## and the list of values.
## The table is chosen (and not the group) in order to distinguish class
## functions of different underlying characteristic
## (see <Ref Attr="UnderlyingCharacteristic" Label="for a character"/>).
## </Description>
## </ManSection>
##
## <ManSection>
## <Meth Name="PrintObj" Arg='chi' Label="for class functions"/>
##
## <Description>
## The default <Ref Func="PrintObj"/> method for class functions
## does the same as <Ref Func="ViewObj"/>,
## except that the character table is is <Ref Func="Print"/>-ed instead of
## <Ref Func="View"/>-ed.
## <P/>
## <E>Note</E> that if a class function is shown only with one of the
## strings <C>"ClassFunction"</C>, <C>"VirtualCharacter"</C>,
## it may still be that it is in fact a character;
## just this was not known at the time when the class function was printed.
## <P/>
## In order to reduce the space that is needed to print a class function,
## it may be useful to give a name (see <Ref Func="Name"/>) to the
## underlying character table.
## </Description>
## </ManSection>
##
## <ManSection>
## <Meth Name="Display" Arg='chi' Label="for class functions"/>
##
## <Description>
## The default <Ref Func="Display"/> method for a class function <A>chi</A>
## calls <Ref Func="Display"/> for its underlying character table
## (see <Ref Sect="Printing Character Tables"/>),
## with <A>chi</A> as the only entry in the <C>chars</C> list of the options
## record.
## <P/>
## <Example><![CDATA[
## gap> chi:= TrivialCharacter( CharacterTable( "A5" ) );
## Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] )
## gap> Display( chi );
## A5
##
## 2 2 2 . . .
## 3 1 . 1 . .
## 5 1 . . 1 1
##
## 1a 2a 3a 5a 5b
## 2P 1a 1a 3a 5b 5a
## 3P 1a 2a 1a 5b 5a
## 5P 1a 2a 3a 1a 1a
##
## Y.1 1 1 1 1 1
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
#############################################################################
##
## 6. Creating Class Functions from Values Lists
##
#############################################################################
##
#O ClassFunction( <tbl>, <values> )
#O ClassFunction( <G>, <values> )
##
## <#GAPDoc Label="ClassFunction">
## <ManSection>
## <Oper Name="ClassFunction" Arg='tbl, values'
## Label="for a character table and a list"/>
## <Oper Name="ClassFunction" Arg='G, values'
## Label="for a group and a list"/>
##
## <Description>
## In the first form,
## <Ref Oper="ClassFunction" Label="for a character table and a list"/>
## returns the class function of the character table <A>tbl</A> with values
## given by the list <A>values</A> of cyclotomics.
## In the second form, <A>G</A> must be a group,
## and the class function of its ordinary character table is returned.
## <P/>
## Note that <A>tbl</A> determines the underlying characteristic of the
## returned class function
## (see <Ref Attr="UnderlyingCharacteristic" Label="for a character"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ClassFunction", [ IsNearlyCharacterTable, IsDenseList ] );
DeclareOperation( "ClassFunction", [ IsGroup, IsDenseList ] );
#############################################################################
##
#O VirtualCharacter( <tbl>, <values> )
#O VirtualCharacter( <G>, <values> )
##
## <#GAPDoc Label="VirtualCharacter">
## <ManSection>
## <Oper Name="VirtualCharacter" Arg='tbl, values'
## Label="for a character table and a list"/>
## <Oper Name="VirtualCharacter" Arg='G, values'
## Label="for a group and a list"/>
##
## <Description>
## <Ref Oper="VirtualCharacter" Label="for a character table and a list"/>
## returns the virtual character
## (see <Ref Func="IsVirtualCharacter"/>)
## of the character table <A>tbl</A> or the group <A>G</A>,
## respectively, with values given by the list <A>values</A>.
## <P/>
## It is <E>not</E> checked whether the given values really describe a
## virtual character.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "VirtualCharacter",
[ IsNearlyCharacterTable, IsDenseList ] );
DeclareOperation( "VirtualCharacter", [ IsGroup, IsDenseList ] );
#############################################################################
##
#O Character( <tbl>, <values> )
##
## <#GAPDoc Label="Character">
## <ManSection>
## <Oper Name="Character" Arg='tbl, values'
## Label="for a character table and a list"/>
## <Oper Name="Character" Arg='G, values'
## Label="for a group and a list"/>
##
## <Description>
## <Ref Oper="Character" Label="for a character table and a list"/>
## returns the character (see <Ref Func="IsCharacter"/>)
## of the character table <A>tbl</A> or the group <A>G</A>,
## respectively, with values given by the list <A>values</A>.
## <P/>
## It is <E>not</E> checked whether the given values really describe a
## character.
## <Example><![CDATA[
## gap> g:= DihedralGroup( 8 ); tbl:= CharacterTable( g );
## <pc group of size 8 with 3 generators>
## CharacterTable( <pc group of size 8 with 3 generators> )
## gap> SetName( tbl, "D8" );
## gap> phi:= ClassFunction( g, [ 1, -1, 0, 2, -2 ] );
## ClassFunction( D8, [ 1, -1, 0, 2, -2 ] )
## gap> psi:= ClassFunction( tbl,
## > List( Irr( g ), chi -> ScalarProduct( chi, phi ) ) );
## ClassFunction( D8, [ -3/8, 9/8, 5/8, 1/8, -1/4 ] )
## gap> chi:= VirtualCharacter( g, [ 0, 0, 8, 0, 0 ] );
## VirtualCharacter( D8, [ 0, 0, 8, 0, 0 ] )
## gap> reg:= Character( tbl, [ 8, 0, 0, 0, 0 ] );
## Character( D8, [ 8, 0, 0, 0, 0 ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Character", [ IsNearlyCharacterTable, IsDenseList ] );
DeclareOperation( "Character", [ IsGroup, IsDenseList ] );
#############################################################################
##
#F ClassFunctionSameType( <tbl>, <chi>, <values> )
##
## <#GAPDoc Label="ClassFunctionSameType">
## <ManSection>
## <Func Name="ClassFunctionSameType" Arg='tbl, chi, values'/>
##
## <Description>
## Let <A>tbl</A> be a character table, <A>chi</A> a class function object
## (<E>not</E> necessarily a class function of <A>tbl</A>),
## and <A>values</A> a list of cyclotomics.
## <Ref Func="ClassFunctionSameType"/> returns the class function
## <M>\psi</M> of <A>tbl</A> with values list <A>values</A>,
## constructed with
## <Ref Func="ClassFunction" Label="for a character table and a list"/>.
## <P/>
## If <A>chi</A> is known to be a (virtual) character then <M>\psi</M>
## is also known to be a (virtual) character.
## <P/>
## <Example><![CDATA[
## gap> h:= Centre( g );;
## gap> centbl:= CharacterTable( h );; SetName( centbl, "C2" );
## gap> ClassFunctionSameType( centbl, phi, [ 1, 1 ] );
## ClassFunction( C2, [ 1, 1 ] )
## gap> ClassFunctionSameType( centbl, chi, [ 1, 1 ] );
## VirtualCharacter( C2, [ 1, 1 ] )
## gap> ClassFunctionSameType( centbl, reg, [ 1, 1 ] );
## Character( C2, [ 1, 1 ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ClassFunctionSameType" );
#############################################################################
##
## 7. Creating Class Functions using Groups
##
#############################################################################
##
#A TrivialCharacter( <tbl> )
#A TrivialCharacter( <G> )
##
## <#GAPDoc Label="TrivialCharacter">
## <ManSection>
## <Heading>TrivialCharacter</Heading>
## <Attr Name="TrivialCharacter" Arg='tbl' Label="for a character table"/>
## <Attr Name="TrivialCharacter" Arg='G' Label="for a group"/>
##
## <Description>
## is the <E>trivial character</E> of the group <A>G</A>
## or its character table <A>tbl</A>, respectively.
## This is the class function with value equal to <M>1</M> for each class.
## <P/>
## <Example><![CDATA[
## gap> TrivialCharacter( CharacterTable( "A5" ) );
## Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] )
## gap> TrivialCharacter( SymmetricGroup( 3 ) );
## Character( CharacterTable( Sym( [ 1 .. 3 ] ) ), [ 1, 1, 1 ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "TrivialCharacter", IsNearlyCharacterTable );
DeclareAttribute( "TrivialCharacter", IsGroup );
#############################################################################
##
#A NaturalCharacter( <G> )
#A NaturalCharacter( <hom> )
##
## <#GAPDoc Label="NaturalCharacter">
## <ManSection>
## <Attr Name="NaturalCharacter" Arg='G' Label="for a group"/>
## <Attr Name="NaturalCharacter" Arg='hom' Label="for a homomorphism"/>
##
## <Description>
## If the argument is a permutation group <A>G</A> then
## <Ref Attr="NaturalCharacter" Label="for a group"/>
## returns the (ordinary) character of the natural permutation
## representation of <A>G</A> on the set of moved points (see
## <Ref Func="MovedPoints" Label="for a list or collection of permutations"/>),
## that is, the value on each class is the number of points among the moved
## points of <A>G</A> that are fixed by any permutation in that class.
## <P/>
## If the argument is a matrix group <A>G</A> in characteristic zero then
## <Ref Attr="NaturalCharacter" Label="for a group"/> returns the
## (ordinary) character of the natural matrix representation of <A>G</A>,
## that is, the value on each class is the trace of any matrix in that class.
## <P/>
## If the argument is a group homomorphism <A>hom</A> whose image is a
## permutation group or a matrix group then
## <Ref Attr="NaturalCharacter" Label="for a homomorphism"/> returns the
## restriction of the natural character of the image of <A>hom</A> to the
## preimage of <A>hom</A>.
## <P/>
## <Example><![CDATA[
## gap> NaturalCharacter( SymmetricGroup( 3 ) );
## Character( CharacterTable( Sym( [ 1 .. 3 ] ) ), [ 3, 1, 0 ] )
## gap> NaturalCharacter( Group( [ [ 0, -1 ], [ 1, -1 ] ] ) );
## Character( CharacterTable( Group([ [ [ 0, -1 ], [ 1, -1 ] ] ]) ),
## [ 2, -1, -1 ] )
## gap> d8:= DihedralGroup( 8 );; hom:= IsomorphismPermGroup( d8 );;
## gap> NaturalCharacter( hom );
## Character( CharacterTable( <pc group of size 8 with 3 generators> ),
## [ 8, 0, 0, 0, 0 ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "NaturalCharacter", IsGroup );
DeclareAttribute( "NaturalCharacter", IsGeneralMapping );
#############################################################################
##
#O PermutationCharacter( <G>, <D>, <opr> )
#O PermutationCharacter( <G>, <U> )
##
## <#GAPDoc Label="PermutationCharacter">
## <ManSection>
## <Heading>PermutationCharacter</Heading>
## <Oper Name="PermutationCharacter" Arg='G, D, opr'
## Label="for a group, an action domain, and a function"/>
## <Oper Name="PermutationCharacter" Arg='G, U' Label="for two groups"/>
##
## <Description>
## Called with a group <A>G</A>, an action domain or proper set <A>D</A>,
## and an action function <A>opr</A>
## (see Chapter <Ref Chap="Group Actions"/>),
## <Ref Oper="PermutationCharacter"
## Label="for a group, an action domain, and a function"/>
## returns the <E>permutation character</E> of the action
## of <A>G</A> on <A>D</A> via <A>opr</A>,
## that is, the value on each class is the number of points in <A>D</A>
## that are fixed by an element in this class under the action <A>opr</A>.
## <P/>
## If the arguments are a group <A>G</A> and a subgroup <A>U</A> of <A>G</A>
## then <Ref Oper="PermutationCharacter" Label="for two groups"/> returns
## the permutation character of the action of <A>G</A> on the right cosets
## of <A>U</A> via right multiplication.
## <P/>
## To compute the permutation character of a
## <E>transitive permutation group</E>
## <A>G</A> on the cosets of a point stabilizer <A>U</A>,
## the attribute <Ref Func="NaturalCharacter" Label="for a group"/>
## of <A>G</A> can be used instead of
## <C>PermutationCharacter( <A>G</A>, <A>U</A> )</C>.
## <P/>
## More facilities concerning permutation characters are the transitivity
## test (see Section <Ref Sect="Operations for Class Functions"/>)
## and several tools for computing possible permutation characters
## (see <Ref Sect="Possible Permutation Characters"/>,
## <Ref Sect="Computing Possible Permutation Characters"/>).
## <P/>
## <Example><![CDATA[
## gap> PermutationCharacter( GL(2,2), AsSSortedList( GF(2)^2 ), OnRight );
## Character( CharacterTable( SL(2,2) ), [ 4, 2, 1 ] )
## gap> s3:= SymmetricGroup( 3 );; a3:= DerivedSubgroup( s3 );;
## gap> PermutationCharacter( s3, a3 );
## Character( CharacterTable( Sym( [ 1 .. 3 ] ) ), [ 2, 0, 2 ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "PermutationCharacter",
[ IsGroup, IsCollection, IsFunction ] );
DeclareOperation( "PermutationCharacter", [ IsGroup, IsGroup ] );
#############################################################################
##
## 8. Operations for Class Functions
##
## <#GAPDoc Label="[6]{ctblfuns}">
## In the description of the following operations,
## the optional first argument <A>tbl</A> is needed only if the argument
## <A>chi</A> is a plain list and not a class function object.
## In this case, <A>tbl</A> must always be the character table of which
## <A>chi</A> shall be regarded as a class function.
## <#/GAPDoc>
##
#############################################################################
##
#P IsCharacter( [<tbl>, ]<chi> )
##
## <#GAPDoc Label="IsCharacter">
## <ManSection>
## <Prop Name="IsCharacter" Arg='[tbl, ]chi'/>
##
## <Description>
## <Index>ordinary character</Index>
## An <E>ordinary character</E> of a group <M>G</M> is a class function of
## <M>G</M> whose values are the traces of a complex matrix representation
## of <M>G</M>.
## <P/>
## <Index>Brauer character</Index>
## A <E>Brauer character</E> of <M>G</M> in characteristic <M>p</M> is
## a class function of <M>G</M> whose values are the complex lifts of a
## matrix representation of <M>G</M> with image a finite field of
## characteristic <M>p</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsCharacter", IsClassFunction );
DeclareOperation( "IsCharacter", [ IsCharacterTable, IsHomogeneousList ] );
#############################################################################
##
#P IsVirtualCharacter( [<tbl>, ]<chi> )
##
## <#GAPDoc Label="IsVirtualCharacter">
## <ManSection>
## <Prop Name="IsVirtualCharacter" Arg='[tbl, ]chi'/>
##
## <Description>
## <Index>virtual character</Index>
## A <E>virtual character</E> is a class function that can be written as the
## difference of two proper characters (see <Ref Func="IsCharacter"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsVirtualCharacter", IsClassFunction );
DeclareOperation( "IsVirtualCharacter",
[ IsCharacterTable, IsHomogeneousList ] );
#############################################################################
##
#M IsVirtualCharacter( <chi> ) . . . . . . . . . . . . . . . for a character
##
## Each character is of course a virtual character.
##
InstallTrueMethod( IsVirtualCharacter, IsCharacter and IsClassFunction );
#############################################################################
##
#P IsIrreducibleCharacter( [<tbl>, ]<chi> )
##
## <#GAPDoc Label="IsIrreducibleCharacter">
## <ManSection>
## <Prop Name="IsIrreducibleCharacter" Arg='[tbl, ]chi'/>
##
## <Description>
## <Index>irreducible character</Index>
## A character is <E>irreducible</E> if it cannot be written as the sum of
## two characters.
## For ordinary characters this can be checked using the scalar product
## of class functions
## (see <Ref Func="ScalarProduct" Label="for characters"/>).
## For Brauer characters there is no generic method for checking
## irreducibility.
## <P/>
## <Example><![CDATA[
## gap> S4:= SymmetricGroup( 4 );; SetName( S4, "S4" );
## gap> psi:= ClassFunction( S4, [ 1, 1, 1, -2, 1 ] );
## ClassFunction( CharacterTable( S4 ), [ 1, 1, 1, -2, 1 ] )
## gap> IsVirtualCharacter( psi );
## true
## gap> IsCharacter( psi );
## false
## gap> chi:= ClassFunction( S4, SizesCentralizers( CharacterTable( S4 ) ) );
## ClassFunction( CharacterTable( S4 ), [ 24, 4, 8, 3, 4 ] )
## gap> IsCharacter( chi );
## true
## gap> IsIrreducibleCharacter( chi );
## false
## gap> IsIrreducibleCharacter( TrivialCharacter( S4 ) );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsIrreducibleCharacter", IsClassFunction );
DeclareOperation( "IsIrreducibleCharacter",
[ IsCharacterTable, IsHomogeneousList ] );
#############################################################################
##
#O ScalarProduct( [<tbl>, ]<chi>, <psi> )
##
## <#GAPDoc Label="ScalarProduct:ctblfuns">
## <ManSection>
## <Oper Name="ScalarProduct" Arg='[tbl, ]chi, psi' Label="for characters"/>
##
## <Returns>
## the scalar product of the class functions <A>chi</A> and <A>psi</A>,
## which belong to the same character table <A>tbl</A>.
## </Returns>
## <Description>
## <Index Subkey="of a group character">constituent</Index>
## <Index Subkey="a group character">decompose</Index>
## <Index Subkey="of constituents of a group character">multiplicity</Index>
## <Index Subkey="of group characters">inner product</Index>
## If <A>chi</A> and <A>psi</A> are class function objects,
## the argument <A>tbl</A> is not needed,
## but <A>tbl</A> is necessary if at least one of <A>chi</A>, <A>psi</A>
## is just a plain list.
## <P/>
## The scalar product of two <E>ordinary</E> class functions <M>\chi</M>,
## <M>\psi</M> of a group <M>G</M> is defined as
## <P/>
## <M>( \sum_{{g \in G}} \chi(g) \psi(g^{{-1}}) ) / |G|</M>.
## <P/>
## For two <E><M>p</M>-modular</E> class functions,
## the scalar product is defined as
## <M>( \sum_{{g \in S}} \chi(g) \psi(g^{{-1}}) ) / |G|</M>,
## where <M>S</M> is the set of <M>p</M>-regular elements in <M>G</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ScalarProduct",
[ IsCharacterTable, IsRowVector, IsRowVector ] );
#############################################################################
##
#O MatScalarProducts( [<tbl>, ]<list>[, <list2>] )
##
## <#GAPDoc Label="MatScalarProducts">
## <ManSection>
## <Oper Name="MatScalarProducts" Arg='[tbl, ]list[, list2]'/>
##
## <Description>
## Called with two lists <A>list</A>, <A>list2</A> of class functions of the
## same character table (which may be given as the argument <A>tbl</A>),
## <Ref Oper="MatScalarProducts"/> returns the matrix of scalar products
## (see <Ref Oper="ScalarProduct" Label="for characters"/>)
## More precisely, this matrix contains in the <M>i</M>-th row the list of
## scalar products of <M><A>list2</A>[i]</M>
## with the entries of <A>list</A>.
## <P/>
## If only one list <A>list</A> of class functions is given then
## a lower triangular matrix of scalar products is returned,
## containing (for <M>j \leq i</M>) in the <M>i</M>-th row in column
## <M>j</M> the value
## <C>ScalarProduct</C><M>( <A>tbl</A>, <A>list</A>[j], <A>list</A>[i] )</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "MatScalarProducts",
[ IsHomogeneousList, IsHomogeneousList ] );
DeclareOperation( "MatScalarProducts",
[ IsOrdinaryTable, IsHomogeneousList, IsHomogeneousList ] );
DeclareOperation( "MatScalarProducts", [ IsHomogeneousList ] );
DeclareOperation( "MatScalarProducts",
[ IsOrdinaryTable, IsHomogeneousList ] );
#############################################################################
##
#A Norm( [<tbl>, ]<chi> )
##
## <#GAPDoc Label="Norm:ctblfuns">
## <ManSection>
## <Attr Name="Norm" Arg='[tbl, ]chi' Label="for a class function"/>
##
## <Description>
## <Index Subkey="of character" Key="Norm"><C>Norm</C></Index>
## For an ordinary class function <A>chi</A> of the group <M>G</M>, say,
## we have <M><A>chi</A> = \sum_{{\chi \in Irr(G)}} a_{\chi} \chi</M>,
## with complex coefficients <M>a_{\chi}</M>.
## The <E>norm</E> of <A>chi</A> is defined as
## <M>\sum_{{\chi \in Irr(G)}} a_{\chi} \overline{{a_{\chi}}}</M>.
## <P/>
## <Example><![CDATA[
## gap> tbl:= CharacterTable( "A5" );;
## gap> ScalarProduct( TrivialCharacter( tbl ), Sum( Irr( tbl ) ) );
## 1
## gap> ScalarProduct( tbl, [ 1, 1, 1, 1, 1 ], Sum( Irr( tbl ) ) );
## 1
## gap> tbl2:= tbl mod 2;
## BrauerTable( "A5", 2 )
## gap> chi:= Irr( tbl2 )[1];
## Character( BrauerTable( "A5", 2 ), [ 1, 1, 1, 1 ] )
## gap> ScalarProduct( chi, chi );
## 3/4
## gap> ScalarProduct( tbl2, [ 1, 1, 1, 1 ], [ 1, 1, 1, 1 ] );
## 3/4
## gap> chars:= Irr( tbl ){ [ 2 .. 4 ] };;
## gap> chars:= Set( Tensored( chars, chars ) );;
## gap> MatScalarProducts( Irr( tbl ), chars );
## [ [ 0, 0, 0, 1, 1 ], [ 1, 1, 0, 0, 1 ], [ 1, 0, 1, 0, 1 ],
## [ 0, 1, 0, 1, 1 ], [ 0, 0, 1, 1, 1 ], [ 1, 1, 1, 1, 1 ] ]
## gap> MatScalarProducts( tbl, chars );
## [ [ 2 ], [ 1, 3 ], [ 1, 2, 3 ], [ 2, 2, 1, 3 ], [ 2, 1, 2, 2, 3 ],
## [ 2, 3, 3, 3, 3, 5 ] ]
## gap> List( chars, Norm );
## [ 2, 3, 3, 3, 3, 5 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Norm", IsClassFunction );
DeclareOperation( "Norm", [ IsOrdinaryTable, IsHomogeneousList ] );
#############################################################################
##
#A CentreOfCharacter( [<tbl>, ]<chi> )
##
## <#GAPDoc Label="CentreOfCharacter">
## <ManSection>
## <Attr Name="CentreOfCharacter" Arg='[tbl, ]chi'/>
##
## <Description>
## <Index Subkey="of a character">centre</Index>
## For a character <A>chi</A> of the group <M>G</M>, say,
## <Ref Func="CentreOfCharacter"/> returns the <E>centre</E> of <A>chi</A>,
## that is, the normal subgroup of all those elements of <M>G</M> for which
## the quotient of the value of <A>chi</A> by the degree of <A>chi</A> is
## a root of unity.
## <P/>
## If the underlying character table of <A>psi</A> does not store the group
## <M>G</M> then an error is signalled.
## (See <Ref Attr="ClassPositionsOfCentre" Label="for a character"/>
## for a way to handle the centre implicitly,
## by listing the positions of conjugacy classes in the centre.)
## <P/>
## <Example><![CDATA[
## gap> List( Irr( S4 ), CentreOfCharacter );
## [ Group([ (), (1,2), (1,2)(3,4), (1,2,3), (1,2,3,4) ]), Group(()),
## Group([ (1,2)(3,4), (1,3)(2,4) ]), Group(()),
## Group([ (), (1,2), (1,2)(3,4), (1,2,3), (1,2,3,4) ]) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "CentreOfCharacter", IsClassFunction );
DeclareOperation( "CentreOfCharacter",
[ IsOrdinaryTable, IsHomogeneousList ] );
DeclareSynonym( "CenterOfCharacter", CentreOfCharacter );
#############################################################################
##
#A ClassPositionsOfCentre( <chi> )
##
## <#GAPDoc Label="ClassPositionsOfCentre:ctblfuns">
## <ManSection>
## <Attr Name="ClassPositionsOfCentre" Arg='chi' Label="for a character"/>
##
## <Description>
## is the list of positions of classes forming the centre of the character
## <A>chi</A> (see <Ref Func="CentreOfCharacter"/>).
## <P/>
## <Example><![CDATA[
## gap> List( Irr( S4 ), ClassPositionsOfCentre );
## [ [ 1, 2, 3, 4, 5 ], [ 1 ], [ 1, 3 ], [ 1 ], [ 1, 2, 3, 4, 5 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "ClassPositionsOfCentre", IsHomogeneousList );
#############################################################################
##
#A ConstituentsOfCharacter( [<tbl>, ]<chi> )
##
## <#GAPDoc Label="ConstituentsOfCharacter">
## <ManSection>
## <Attr Name="ConstituentsOfCharacter" Arg='[tbl, ]chi'/>
##
## <Description>
## is the set of irreducible characters that occur in the decomposition of
## the (virtual) character <A>chi</A> with nonzero coefficient.
## <P/>
## <Example><![CDATA[
## gap> nat:= NaturalCharacter( S4 );
## Character( CharacterTable( S4 ), [ 4, 2, 0, 1, 0 ] )
## gap> ConstituentsOfCharacter( nat );
## [ Character( CharacterTable( S4 ), [ 1, 1, 1, 1, 1 ] ),
## Character( CharacterTable( S4 ), [ 3, 1, -1, 0, -1 ] ) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "ConstituentsOfCharacter", IsClassFunction );
DeclareOperation( "ConstituentsOfCharacter",
[ IsCharacterTable, IsHomogeneousList ] );
#############################################################################
##
#A DegreeOfCharacter( <chi> )
##
## <#GAPDoc Label="DegreeOfCharacter">
## <ManSection>
## <Attr Name="DegreeOfCharacter" Arg='chi'/>
##
## <Description>
## is the value of the character <A>chi</A> on the identity element.
## This can also be obtained as <A>chi</A><C>[1]</C>.
## <P/>
## <Example><![CDATA[
## gap> List( Irr( S4 ), DegreeOfCharacter );
## [ 1, 3, 2, 3, 1 ]
## gap> nat:= NaturalCharacter( S4 );
## Character( CharacterTable( S4 ), [ 4, 2, 0, 1, 0 ] )
## gap> nat[1];
## 4
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "DegreeOfCharacter", IsClassFunction );
#############################################################################
##
#O InertiaSubgroup( [<tbl>, ]<G>, <chi> )
##
## <#GAPDoc Label="InertiaSubgroup">
## <ManSection>
## <Oper Name="InertiaSubgroup" Arg='[tbl, ]G, chi'/>
##
## <Description>
## Let <A>chi</A> be a character of the group <M>H</M>, say,
## and <A>tbl</A> the character table of <M>H</M>;
## if the argument <A>tbl</A> is not given then the underlying character
## table of <A>chi</A> (see <Ref Func="UnderlyingCharacterTable"/>) is
## used instead.
## Furthermore, let <A>G</A> be a group that contains <M>H</M> as a normal
## subgroup.
## <P/>
## <Ref Func="InertiaSubgroup"/> returns the stabilizer in <A>G</A> of
## <A>chi</A>, w.r.t. the action of <A>G</A> on the classes of <M>H</M>
## via conjugation.
## In other words, <Ref Func="InertiaSubgroup"/> returns the group of all
## those elements <M>g \in <A>G</A></M> that satisfy
## <M><A>chi</A>^g = <A>chi</A></M>.
## <P/>
## <Example><![CDATA[
## gap> der:= DerivedSubgroup( S4 );
## Group([ (1,3,2), (2,4,3) ])
## gap> List( Irr( der ), chi -> InertiaSubgroup( S4, chi ) );
## [ S4, Alt( [ 1 .. 4 ] ), Alt( [ 1 .. 4 ] ), S4 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "InertiaSubgroup", [ IsGroup, IsClassFunction ] );
DeclareOperation( "InertiaSubgroup",
[ IsOrdinaryTable, IsGroup, IsHomogeneousList ] );
#############################################################################
##
#A KernelOfCharacter( [<tbl>, ]<chi> )
##
## <#GAPDoc Label="KernelOfCharacter">
## <ManSection>
## <Attr Name="KernelOfCharacter" Arg='[tbl, ]chi'/>
##
## <Description>
## For a class function <A>chi</A> of the group <M>G</M>, say,
## <Ref Func="KernelOfCharacter"/> returns the normal subgroup of <M>G</M>
## that is formed by those conjugacy classes for which the value of
## <A>chi</A> equals the degree of <A>chi</A>.
## If the underlying character table of <A>chi</A> does not store the group
## <M>G</M> then an error is signalled.
## (See <Ref Func="ClassPositionsOfKernel"/> for a way to handle the
## kernel implicitly,
## by listing the positions of conjugacy classes in the kernel.)
## <P/>
## The returned group is the kernel of any representation of <M>G</M> that
## affords <A>chi</A>.
## <P/>
## <Example><![CDATA[
## gap> List( Irr( S4 ), KernelOfCharacter );
## [ Group([ (), (1,2)(3,4), (1,2,3) ]), Group(()),
## Group([ (1,2)(3,4), (1,3)(2,4) ]), Group(()),
## Group([ (), (1,2), (1,2)(3,4), (1,2,3), (1,2,3,4) ]) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "KernelOfCharacter", IsClassFunction );
DeclareOperation( "KernelOfCharacter",
[ IsOrdinaryTable, IsHomogeneousList ] );
#############################################################################
##
#A ClassPositionsOfKernel( <chi> )
##
## <#GAPDoc Label="ClassPositionsOfKernel">
## <ManSection>
## <Attr Name="ClassPositionsOfKernel" Arg='chi'/>
##
## <Description>
## is the list of positions of those conjugacy classes that form the kernel
## of the character <A>chi</A>, that is, those positions with character
## value equal to the character degree.
## <P/>
## <Example><![CDATA[
## gap> List( Irr( S4 ), ClassPositionsOfKernel );
## [ [ 1, 3, 4 ], [ 1 ], [ 1, 3 ], [ 1 ], [ 1, 2, 3, 4, 5 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "ClassPositionsOfKernel", IsHomogeneousList );
#############################################################################
##
#O CycleStructureClass( [<tbl>, ]<chi>, <class> )
##
## <#GAPDoc Label="CycleStructureClass">
## <ManSection>
## <Oper Name="CycleStructureClass" Arg='[tbl, ]chi, class'/>
##
## <Description>
## Let <A>permchar</A> be a permutation character, and <A>class</A> be the
## position of a conjugacy class of the character table of <A>permchar</A>.
## <Ref Oper="CycleStructureClass"/> returns a list describing
## the cycle structure of each element in class <A>class</A> in the
## underlying permutation representation, in the same format as the result
## of <Ref Func="CycleStructurePerm"/>.
## <P/>
## <Example><![CDATA[
## gap> nat:= NaturalCharacter( S4 );
## Character( CharacterTable( S4 ), [ 4, 2, 0, 1, 0 ] )
## gap> List( [ 1 .. 5 ], i -> CycleStructureClass( nat, i ) );
## [ [ ], [ 1 ], [ 2 ], [ , 1 ], [ ,, 1 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "CycleStructureClass",
[ IsOrdinaryTable, IsHomogeneousList, IsPosInt ] );
DeclareOperation( "CycleStructureClass", [ IsClassFunction, IsPosInt ] );
#############################################################################
##
#P IsTransitive( [<tbl>, ]<chi> )
##
## <#GAPDoc Label="IsTransitive:ctblfuns">
## <ManSection>
## <Prop Name="IsTransitive" Arg='[tbl, ]chi' Label="for a character"/>
##
## <Description>
## For a permutation character <A>chi</A> of the group <M>G</M> that
## corresponds to an action on the <M>G</M>-set <M>\Omega</M>
## (see <Ref Func="PermutationCharacter"
## Label="for a group, an action domain, and a function"/>),
## <Ref Prop="IsTransitive" Label="for a group, an action domain, etc."/>
## returns <K>true</K> if the action of <M>G</M> on <M>\Omega</M> is
## transitive, and <K>false</K> otherwise.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsTransitive", IsClassFunction );
DeclareOperation( "IsTransitive", [ IsCharacterTable, IsHomogeneousList ] );
#############################################################################
##
#A Transitivity( [<tbl>, ]<chi> )
##
## <#GAPDoc Label="Transitivity:ctblfuns">
## <ManSection>
## <Attr Name="Transitivity" Arg='[tbl, ]chi' Label="for a character"/>
##
## <Description>
## For a permutation character <A>chi</A> of the group <M>G</M>
## that corresponds to an action on the <M>G</M>-set <M>\Omega</M>
## (see <Ref Func="PermutationCharacter"
## Label="for a group, an action domain, and a function"/>),
## <Ref Attr="Transitivity" Label="for a character"/> returns the maximal
## nonnegative integer <M>k</M> such that the action of <M>G</M> on
## <M>\Omega</M> is <M>k</M>-transitive.
## <P/>
## <Example><![CDATA[
## gap> IsTransitive( nat ); Transitivity( nat );
## true
## 4
## gap> Transitivity( 2 * TrivialCharacter( S4 ) );
## 0
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Transitivity", IsClassFunction );
DeclareOperation( "Transitivity", [ IsOrdinaryTable, IsHomogeneousList ] );
#############################################################################
##
#A CentralCharacter( [<tbl>, ]<chi> )
##
## <#GAPDoc Label="CentralCharacter">
## <ManSection>
## <Attr Name="CentralCharacter" Arg='[tbl, ]chi'/>
##
## <Description>
## <Index>central character</Index>
## For a character <A>chi</A> of the group <M>G</M>, say,
## <Ref Func="CentralCharacter"/> returns
## the <E>central character</E> of <A>chi</A>.
## <P/>
## The central character of <M>\chi</M> is the class function
## <M>\omega_{\chi}</M> defined by
## <M>\omega_{\chi}(g) = |g^G| \cdot \chi(g)/\chi(1)</M> for each
## <M>g \in G</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "CentralCharacter", IsClassFunction );
DeclareOperation( "CentralCharacter",
[ IsCharacterTable, IsHomogeneousList ] );
#############################################################################
##
#A DeterminantOfCharacter( [<tbl>, ]<chi> )
##
## <#GAPDoc Label="DeterminantOfCharacter">
## <ManSection>
## <Attr Name="DeterminantOfCharacter" Arg='[tbl, ]chi'/>
##
## <Description>
## <Index>determinant character</Index>
## <Ref Func="DeterminantOfCharacter"/> returns the
## <E>determinant character</E> of the character <A>chi</A>.
## This is defined to be the character obtained by taking the determinant of
## representing matrices of any representation affording <A>chi</A>;
## the determinant can be computed using <Ref Func="EigenvaluesChar"/>.
## <P/>
## It is also possible to call <Ref Func="Determinant"/> instead of
## <Ref Func="DeterminantOfCharacter"/>.
## <P/>
## Note that the determinant character is well-defined for virtual
## characters.
## <P/>
## <Example><![CDATA[
## gap> CentralCharacter( TrivialCharacter( S4 ) );
## ClassFunction( CharacterTable( S4 ), [ 1, 6, 3, 8, 6 ] )
## gap> DeterminantOfCharacter( Irr( S4 )[3] );
## Character( CharacterTable( S4 ), [ 1, -1, 1, 1, -1 ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "DeterminantOfCharacter", IsClassFunction );
DeclareOperation( "DeterminantOfCharacter",
[ IsCharacterTable, IsHomogeneousList ] );
#############################################################################
##
#O EigenvaluesChar( [<tbl>, ]<chi>, <class> )
##
## <#GAPDoc Label="EigenvaluesChar">
## <ManSection>
## <Oper Name="EigenvaluesChar" Arg='[tbl, ]chi, class'/>
##
## <Description>
## Let <A>chi</A> be a character of the group <M>G</M>, say.
## For an element <M>g \in G</M> in the <A>class</A>-th conjugacy class,
## of order <M>n</M>, let <M>M</M> be a matrix of a representation affording
## <A>chi</A>.
## <P/>
## <Ref Func="EigenvaluesChar"/> returns the list of length <M>n</M>
## where at position <M>k</M> the multiplicity
## of <C>E</C><M>(n)^k = \exp(2 \pi i k / n)</M>
## as an eigenvalue of <M>M</M> is stored.
## <P/>
## We have
## <C><A>chi</A>[ <A>class</A> ] = List( [ 1 .. n ], k -> E(n)^k )
## * EigenvaluesChar( <A>tbl</A>, <A>chi</A>, <A>class</A> )</C>.
## <P/>
## It is also possible to call <Ref Func="Eigenvalues"/> instead of
## <Ref Func="EigenvaluesChar"/>.
## <P/>
## <Example><![CDATA[
## gap> chi:= Irr( CharacterTable( "A5" ) )[2];
## Character( CharacterTable( "A5" ),
## [ 3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3 ] )
## gap> List( [ 1 .. 5 ], i -> Eigenvalues( chi, i ) );
## [ [ 3 ], [ 2, 1 ], [ 1, 1, 1 ], [ 0, 1, 1, 0, 1 ], [ 1, 0, 0, 1, 1 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "EigenvaluesChar", [ IsClassFunction, IsPosInt ] );
DeclareOperation( "EigenvaluesChar",
[ IsCharacterTable, IsHomogeneousList, IsPosInt ] );
#############################################################################
##
#O Tensored( <chars1>, <chars2> )
##
## <#GAPDoc Label="Tensored">
## <ManSection>
## <Oper Name="Tensored" Arg='chars1, chars2'/>
##
## <Description>
## Let <A>chars1</A> and <A>chars2</A> be lists of (values lists of) class
## functions of the same character table.
## <Ref Func="Tensored"/> returns the list of tensor products of all entries
## in <A>chars1</A> with all entries in <A>chars2</A>.
## <P/>
## <Example><![CDATA[
## gap> irra5:= Irr( CharacterTable( "A5" ) );;
## gap> chars1:= irra5{ [ 1 .. 3 ] };; chars2:= irra5{ [ 2, 3 ] };;
## gap> Tensored( chars1, chars2 );
## [ Character( CharacterTable( "A5" ),
## [ 3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3 ] ),
## Character( CharacterTable( "A5" ),
## [ 3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4 ] ),
## Character( CharacterTable( "A5" ),
## [ 9, 1, 0, -2*E(5)-E(5)^2-E(5)^3-2*E(5)^4,
## -E(5)-2*E(5)^2-2*E(5)^3-E(5)^4 ] ),
## Character( CharacterTable( "A5" ), [ 9, 1, 0, -1, -1 ] ),
## Character( CharacterTable( "A5" ), [ 9, 1, 0, -1, -1 ] ),
## Character( CharacterTable( "A5" ),
## [ 9, 1, 0, -E(5)-2*E(5)^2-2*E(5)^3-E(5)^4,
## -2*E(5)-E(5)^2-E(5)^3-2*E(5)^4 ] ) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Tensored", [ IsHomogeneousList, IsHomogeneousList ] );
#############################################################################
##
## 9. Restricted and Induced Class Functions
##
## <#GAPDoc Label="[7]{ctblfuns}">
## For restricting a class function of a group <M>G</M> to a subgroup
## <M>H</M> and for inducing a class function of <M>H</M> to <M>G</M>,
## the <E>class fusion</E> from <M>H</M> to <M>G</M> must be known
## (see <Ref Sect="Class Fusions between Character Tables"/>).
## <P/>
## <Index>inflated class functions</Index>
## If <M>F</M> is the factor group of <M>G</M> by the normal subgroup
## <M>N</M> then each class function of <M>F</M> can be naturally regarded
## as a class function of <M>G</M>, with <M>N</M> in its kernel.
## For a class function of <M>F</M>, the corresponding class function of
## <M>G</M> is called the <E>inflated</E> class function.
## Restriction and inflation are in principle the same,
## namely indirection of a class function by the appropriate fusion map,
## and thus no extra operation is needed for this process.
## But note that contrary to the case of a subgroup fusion, the factor
## fusion can in general not be computed from the groups <M>G</M> and
## <M>F</M>;
## either one needs the natural homomorphism, or the factor fusion to the
## character table of <M>F</M> must be stored on the table of <M>G</M>.
## This explains the different syntax for computing restricted and inflated
## class functions.
## <P/>
## In the following,
## the meaning of the optional first argument <A>tbl</A> is the same as in
## Section <Ref Sect="Operations for Class Functions"/>.
## <#/GAPDoc>
##
#############################################################################
##
#O RestrictedClassFunction( [<tbl>, ]<chi>, <H> )
#O RestrictedClassFunction( [<tbl>, ]<chi>, <hom> )
#O RestrictedClassFunction( [<tbl>, ]<chi>, <subtbl> )
##
## <#GAPDoc Label="RestrictedClassFunction">
## <ManSection>
## <Oper Name="RestrictedClassFunction" Arg='[tbl, ]chi, target'/>
##
## <Description>
## Let <A>chi</A> be a class function of the group <M>G</M>, say,
## and let <A>target</A> be either a subgroup <M>H</M> of <M>G</M>
## or an injective homomorphism from <M>H</M> to <M>G</M>
## or the character table of <A>H</A>.
## Then <Ref Oper="RestrictedClassFunction"/> returns the class function of
## <M>H</M> obtained by restricting <A>chi</A> to <M>H</M>.
## <P/>
## If <A>chi</A> is a class function of a <E>factor group</E> <M>G</M>of
## <M>H</M>, where <A>target</A> is either the group <M>H</M>
## or a homomorphism from <M>H</M> to <M>G</M>
## or the character table of <M>H</M>
## then the restriction can be computed in the case of the homomorphism;
## in the other cases, this is possible only if the factor fusion from
## <M>H</M> to <M>G</M> is stored on the character table of <M>H</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "RestrictedClassFunction", [ IsClassFunction, IsGroup ] );
DeclareOperation( "RestrictedClassFunction",
[ IsNearlyCharacterTable, IsHomogeneousList, IsGroup ] );
DeclareOperation( "RestrictedClassFunction",
[ IsClassFunction, IsGeneralMapping ] );
DeclareOperation( "RestrictedClassFunction",
[ IsNearlyCharacterTable, IsHomogeneousList, IsGeneralMapping ] );
DeclareOperation( "RestrictedClassFunction",
[ IsClassFunction, IsNearlyCharacterTable ] );
DeclareOperation( "RestrictedClassFunction",
[ IsNearlyCharacterTable, IsHomogeneousList, IsNearlyCharacterTable ] );
#############################################################################
##
#O RestrictedClassFunctions( [<tbl>, ]<chars>, <H> )
#O RestrictedClassFunctions( [<tbl>, ]<chars>, <hom> )
#O RestrictedClassFunctions( [<tbl>, ]<chars>, <subtbl> )
##
## <#GAPDoc Label="RestrictedClassFunctions">
## <ManSection>
## <Oper Name="RestrictedClassFunctions" Arg='[tbl, ]chars, target'/>
##
## <Description>
## <Ref Oper="RestrictedClassFunctions"/> is similar to
## <Ref Oper="RestrictedClassFunction"/>,
## the only difference is that it takes a list <A>chars</A> of class
## functions instead of one class function,
## and returns the list of restricted class functions.
## <P/>
## <Example><![CDATA[
## gap> a5:= CharacterTable( "A5" );; s5:= CharacterTable( "S5" );;
## gap> RestrictedClassFunction( Irr( s5 )[2], a5 );
## Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] )
## gap> RestrictedClassFunctions( Irr( s5 ), a5 );
## [ Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ),
## Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ),
## Character( CharacterTable( "A5" ), [ 6, -2, 0, 1, 1 ] ),
## Character( CharacterTable( "A5" ), [ 4, 0, 1, -1, -1 ] ),
## Character( CharacterTable( "A5" ), [ 4, 0, 1, -1, -1 ] ),
## Character( CharacterTable( "A5" ), [ 5, 1, -1, 0, 0 ] ),
## Character( CharacterTable( "A5" ), [ 5, 1, -1, 0, 0 ] ) ]
## gap> hom:= NaturalHomomorphismByNormalSubgroup( S4, der );;
## gap> RestrictedClassFunctions( Irr( Image( hom ) ), hom );
## [ Character( CharacterTable( S4 ), [ 1, 1, 1, 1, 1 ] ),
## Character( CharacterTable( S4 ), [ 1, -1, 1, 1, -1 ] ) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "RestrictedClassFunctions", [ IsList, IsGroup ] );
DeclareOperation( "RestrictedClassFunctions",
[ IsNearlyCharacterTable, IsList, IsGroup ] );
DeclareOperation( "RestrictedClassFunctions", [ IsList, IsGeneralMapping ] );
DeclareOperation( "RestrictedClassFunctions",
[ IsNearlyCharacterTable, IsList, IsGeneralMapping ] );
DeclareOperation( "RestrictedClassFunctions",
[ IsList, IsNearlyCharacterTable ] );
DeclareOperation( "RestrictedClassFunctions",
[ IsNearlyCharacterTable, IsList, IsNearlyCharacterTable ] );
#############################################################################
##
#O Restricted( <tbl>, <subtbl>, <chars> )
#O Restricted( <tbl>, <subtbl>, <chars>, <specification> )
#O Restricted( <chars>, <fusionmap> )
#O Restricted( [<tbl>, ]<chi>, <H> )
#O Restricted( [<tbl>, ]<chi>, <hom> )
#O Restricted( [<tbl>, ]<chi>, <subtbl> )
#O Restricted( [<tbl>, ]<chars>, <H> )
#O Restricted( [<tbl>, ]<chars>, <hom> )
#O Restricted( [<tbl>, ]<chars>, <subtbl> )
##
## <ManSection>
## <Oper Name="Restricted" Arg='tbl, subtbl, chars'/>
## <Oper Name="Restricted" Arg='tbl, subtbl, chars, specification'/>
## <Oper Name="Restricted" Arg='chars, fusionmap'/>
## <Oper Name="Restricted" Arg='[tbl, ]chi, H'/>
## <Oper Name="Restricted" Arg='[tbl, ]chi, hom'/>
## <Oper Name="Restricted" Arg='[tbl, ]chi, subtbl'/>
## <Oper Name="Restricted" Arg='[tbl, ]chars, H'/>
## <Oper Name="Restricted" Arg='[tbl, ]chars, hom'/>
## <Oper Name="Restricted" Arg='[tbl, ]chars, subtbl'/>
##
## <Description>
## This is mainly for convenience and compatibility with &GAP; 3.
## </Description>
## </ManSection>
##
DeclareOperation( "Restricted", [ IsObject, IsObject ] );
DeclareOperation( "Restricted", [ IsObject, IsObject, IsObject ] );
DeclareOperation( "Restricted", [ IsObject, IsObject, IsObject, IsObject ] );
DeclareSynonym( "Inflated", Restricted );
#############################################################################
##
#O InducedClassFunction( [<tbl>, ]<chi>, <H> )
#O InducedClassFunction( [<tbl>, ]<chi>, <hom> )
#O InducedClassFunction( [<tbl>, ]<chi>, <suptbl> )
##
## <#GAPDoc Label="InducedClassFunction">
## <ManSection>
## <Heading>InducedClassFunction</Heading>
## <Oper Name="InducedClassFunction" Arg='[tbl, ]chi, H'
## Label="for a supergroup"/>
## <Oper Name="InducedClassFunction" Arg='[tbl, ]chi, hom'
## Label="for a given monomorphism"/>
## <Oper Name="InducedClassFunction" Arg='[tbl, ]chi, suptbl'
## Label="for the character table of a supergroup"/>
##
## <Description>
## Let <A>chi</A> be a class function of the group <M>G</M>, say,
## and let <A>target</A> be either a supergroup <M>H</M> of <M>G</M>
## or an injective homomorphism from <M>H</M> to <M>G</M>
## or the character table of <A>H</A>.
## Then <Ref Oper="InducedClassFunction" Label="for a supergroup"/>
## returns the class function of <M>H</M> obtained by inducing <A>chi</A>
## to <M>H</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "InducedClassFunction", [ IsClassFunction, IsGroup ] );
DeclareOperation( "InducedClassFunction",
[ IsNearlyCharacterTable, IsHomogeneousList, IsGroup ] );
DeclareOperation( "InducedClassFunction",
[ IsClassFunction, IsGeneralMapping ] );
DeclareOperation( "InducedClassFunction",
[ IsNearlyCharacterTable, IsHomogeneousList, IsGeneralMapping ] );
DeclareOperation( "InducedClassFunction",
[ IsClassFunction, IsNearlyCharacterTable ] );
DeclareOperation( "InducedClassFunction",
[ IsNearlyCharacterTable, IsHomogeneousList, IsNearlyCharacterTable ] );
#############################################################################
##
#O InducedClassFunctions( [<tbl>, ]<chars>, <H> )
#O InducedClassFunctions( [<tbl>, ]<chars>, <hom> )
#O InducedClassFunctions( [<tbl>, ]<chars>, <suptbl> )
##
## <#GAPDoc Label="InducedClassFunctions">
## <ManSection>
## <Oper Name="InducedClassFunctions" Arg='[tbl, ]chars, target'/>
##
## <Description>
## <Ref Oper="InducedClassFunctions"/> is similar to
## <Ref Oper="InducedClassFunction" Label="for a supergroup"/>,
## the only difference is that it takes a list <A>chars</A> of class
## functions instead of one class function,
## and returns the list of induced class functions.
## <P/>
## <Example><![CDATA[
## gap> InducedClassFunctions( Irr( a5 ), s5 );
## [ Character( CharacterTable( "A5.2" ), [ 2, 2, 2, 2, 0, 0, 0 ] ),
## Character( CharacterTable( "A5.2" ), [ 6, -2, 0, 1, 0, 0, 0 ] ),
## Character( CharacterTable( "A5.2" ), [ 6, -2, 0, 1, 0, 0, 0 ] ),
## Character( CharacterTable( "A5.2" ), [ 8, 0, 2, -2, 0, 0, 0 ] ),
## Character( CharacterTable( "A5.2" ), [ 10, 2, -2, 0, 0, 0, 0 ] ) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "InducedClassFunctions", [ IsList, IsGroup ] );
DeclareOperation( "InducedClassFunctions",
[ IsNearlyCharacterTable, IsList, IsGroup ] );
DeclareOperation( "InducedClassFunctions",
[ IsList, IsGeneralMapping ] );
DeclareOperation( "InducedClassFunctions",
[ IsNearlyCharacterTable, IsList, IsGeneralMapping ] );
DeclareOperation( "InducedClassFunctions",
[ IsList, IsNearlyCharacterTable ] );
DeclareOperation( "InducedClassFunctions",
[ IsNearlyCharacterTable, IsList, IsNearlyCharacterTable ] );
#############################################################################
##
#F InducedClassFunctionsByFusionMap( <subtbl>, <tbl>, <chars>, <fusionmap> )
##
## <#GAPDoc Label="InducedClassFunctionsByFusionMap">
## <ManSection>
## <Func Name="InducedClassFunctionsByFusionMap"
## Arg='subtbl, tbl, chars, fusionmap'/>
##
## <Description>
## Let <A>subtbl</A> and <A>tbl</A> be two character tables of groups
## <M>H</M> and <M>G</M>, such that <M>H</M> is a subgroup of <M>G</M>,
## let <A>chars</A> be a list of class functions of <A>subtbl</A>, and
## let <A>fusionmap</A> be a fusion map from <A>subtbl</A> to <A>tbl</A>.
## The function returns the list of induced class functions of <A>tbl</A>
## that correspond to <A>chars</A>, w.r.t. the given fusion map.
## <P/>
## <Ref Func="InducedClassFunctionsByFusionMap"/> is the function that does
## the work for <Ref Oper="InducedClassFunction"
## Label="for the character table of a supergroup"/> and
## <Ref Oper="InducedClassFunctions"/>.
## <P/>
## <Example><![CDATA[
## gap> fus:= PossibleClassFusions( a5, s5 );
## [ [ 1, 2, 3, 4, 4 ] ]
## gap> InducedClassFunctionsByFusionMap( a5, s5, Irr( a5 ), fus[1] );
## [ Character( CharacterTable( "A5.2" ), [ 2, 2, 2, 2, 0, 0, 0 ] ),
## Character( CharacterTable( "A5.2" ), [ 6, -2, 0, 1, 0, 0, 0 ] ),
## Character( CharacterTable( "A5.2" ), [ 6, -2, 0, 1, 0, 0, 0 ] ),
## Character( CharacterTable( "A5.2" ), [ 8, 0, 2, -2, 0, 0, 0 ] ),
## Character( CharacterTable( "A5.2" ), [ 10, 2, -2, 0, 0, 0, 0 ] ) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "InducedClassFunctionsByFusionMap" );
#############################################################################
##
#O Induced( <subtbl>, <tbl>, <chars> )
#O Induced( <subtbl>, <tbl>, <chars>, <specification> )
#O Induced( <subtbl>, <tbl>, <chars>, <fusionmap> )
#O Induced( [<tbl>, ]<chi>, <H> )
#O Induced( [<tbl>, ]<chi>, <hom> )
#O Induced( [<tbl>, ]<chi>, <suptbl> )
#O Induced( [<tbl>, ]<chars>, <H> )
#O Induced( [<tbl>, ]<chars>, <hom> )
#O Induced( [<tbl>, ]<chars>, <suptbl> )
##
## <ManSection>
## <Oper Name="Induced" Arg='subtbl, tbl, chars'/>
## <Oper Name="Induced" Arg='subtbl, tbl, chars, specification'/>
## <Oper Name="Induced" Arg='subtbl, tbl, chars, fusionmap'/>
## <Oper Name="Induced" Arg='[tbl, ]chi, H'/>
## <Oper Name="Induced" Arg='[tbl, ]chi, hom'/>
## <Oper Name="Induced" Arg='[tbl, ]chi, suptbl'/>
## <Oper Name="Induced" Arg='[tbl, ]chars, H'/>
## <Oper Name="Induced" Arg='[tbl, ]chars, hom'/>
## <Oper Name="Induced" Arg='[tbl, ]chars, suptbl'/>
##
## <Description>
## This is mainly for convenience and compatibility with &GAP; 3.
## </Description>
## </ManSection>
##
DeclareOperation( "Induced", [ IsObject, IsObject ] );
DeclareOperation( "Induced", [ IsObject, IsObject, IsObject ] );
DeclareOperation( "Induced", [ IsObject, IsObject, IsObject, IsObject ] );
#############################################################################
##
#O InducedCyclic( <tbl>[, <classes>][, "all"] )
##
## <#GAPDoc Label="InducedCyclic">
## <ManSection>
## <Oper Name="InducedCyclic" Arg='tbl[, classes][, "all"]'/>
##
## <Description>
## <Ref Oper="InducedCyclic"/> calculates characters induced up from
## cyclic subgroups of the ordinary character table <A>tbl</A>
## to <A>tbl</A>, and returns the strictly sorted list of the induced
## characters.
## <P/>
## If the string <C>"all"</C> is specified then all irreducible characters
## of these subgroups are induced,
## otherwise only the permutation characters are calculated.
## <P/>
## If a list <A>classes</A> is specified then only those cyclic subgroups
## generated by these classes are considered,
## otherwise all classes of <A>tbl</A> are considered.
## <P/>
## <Example><![CDATA[
## gap> InducedCyclic( a5, "all" );
## [ Character( CharacterTable( "A5" ), [ 12, 0, 0, 2, 2 ] ),
## Character( CharacterTable( "A5" ),
## [ 12, 0, 0, E(5)^2+E(5)^3, E(5)+E(5)^4 ] ),
## Character( CharacterTable( "A5" ),
## [ 12, 0, 0, E(5)+E(5)^4, E(5)^2+E(5)^3 ] ),
## Character( CharacterTable( "A5" ), [ 20, 0, -1, 0, 0 ] ),
## Character( CharacterTable( "A5" ), [ 20, 0, 2, 0, 0 ] ),
## Character( CharacterTable( "A5" ), [ 30, -2, 0, 0, 0 ] ),
## Character( CharacterTable( "A5" ), [ 30, 2, 0, 0, 0 ] ),
## Character( CharacterTable( "A5" ), [ 60, 0, 0, 0, 0 ] ) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "InducedCyclic", [ IsOrdinaryTable ] );
DeclareOperation( "InducedCyclic", [ IsOrdinaryTable, IsList ] );
DeclareOperation( "InducedCyclic", [ IsOrdinaryTable, IsList, IsString ] );
#############################################################################
##
## 10. Reducing Virtual Characters
##
## <#GAPDoc Label="[8]{ctblfuns}">
## The following operations are intended for the situation that one is
## given a list of virtual characters of a character table and is interested
## in the irreducible characters of this table.
## The idea is to compute virtual characters of small norm from the given
## ones, hoping to get eventually virtual characters of norm <M>1</M>.
## <#/GAPDoc>
##
#############################################################################
##
#O ReducedClassFunctions( [<tbl>, ][<constituents>, ]<reducibles> )
##
## <#GAPDoc Label="ReducedClassFunctions">
## <ManSection>
## <Oper Name="ReducedClassFunctions"
## Arg='[tbl, ][constituents, ]reducibles'/>
##
## <Description>
## Let <A>reducibles</A> be a list of ordinary virtual characters
## of the group <M>G</M>, say.
## If <A>constituents</A> is given then it must also be a list of ordinary
## virtual characters of <M>G</M>,
## otherwise we have <A>constituents</A> equal to <A>reducibles</A>
## in the following.
## <P/>
## <Ref Oper="ReducedClassFunctions"/> returns a record with the components
## <C>remainders</C> and <C>irreducibles</C>,
## both lists of virtual characters of <M>G</M>.
## These virtual characters are computed as follows.
## <P/>
## Let <C>rems</C> be the set of nonzero class functions obtained by
## subtraction of
## <Display Mode="M">
## \sum_{\chi} ( [<A>reducibles</A>[i], \chi] / [\chi, \chi] ) \cdot \chi
## </Display>
## from <M><A>reducibles</A>[i]</M>,
## where the summation runs over <A>constituents</A>
## and <M>[\chi, \psi]</M> denotes the scalar product of <M>G</M>-class
## functions.
## Let <C>irrs</C> be the list of irreducible characters in <C>rems</C>.
## <P/>
## We project <C>rems</C> into the orthogonal space of <C>irrs</C> and
## all those irreducibles found this way until no new irreducibles arise.
## Then the <C>irreducibles</C> list is the set of all found irreducible
## characters, and the <C>remainders</C> list is the set of all nonzero
## remainders.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ReducedClassFunctions",
[ IsHomogeneousList, IsHomogeneousList ] );
DeclareOperation( "ReducedClassFunctions",
[ IsOrdinaryTable, IsHomogeneousList, IsHomogeneousList ] );
DeclareOperation( "ReducedClassFunctions",
[ IsHomogeneousList ] );
DeclareOperation( "ReducedClassFunctions",
[ IsOrdinaryTable, IsHomogeneousList ] );
DeclareSynonym( "Reduced", ReducedClassFunctions );
#############################################################################
##
#O ReducedCharacters( [<tbl>, ]<constituents>, <reducibles> )
##
## <#GAPDoc Label="ReducedCharacters">
## <ManSection>
## <Oper Name="ReducedCharacters" Arg='[tbl, ]constituents, reducibles'/>
##
## <Description>
## <Ref Oper="ReducedCharacters"/> is similar to
## <Ref Oper="ReducedClassFunctions"/>,
## the only difference is that <A>constituents</A> and <A>reducibles</A>
## are assumed to be lists of characters.
## This means that only those scalar products must be formed where the
## degree of the character in <A>constituents</A> does not exceed the degree
## of the character in <A>reducibles</A>.
## <P/>
## <Example><![CDATA[
## gap> tbl:= CharacterTable( "A5" );;
## gap> chars:= Irr( tbl ){ [ 2 .. 4 ] };;
## gap> chars:= Set( Tensored( chars, chars ) );;
## gap> red:= ReducedClassFunctions( chars );
## rec(
## irreducibles :=
## [ Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ),
## Character( CharacterTable( "A5" ),
## [ 3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3 ] ),
## Character( CharacterTable( "A5" ),
## [ 3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4 ] ),
## Character( CharacterTable( "A5" ), [ 4, 0, 1, -1, -1 ] ),
## Character( CharacterTable( "A5" ), [ 5, 1, -1, 0, 0 ] ) ],
## remainders := [ ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ReducedCharacters",
[ IsHomogeneousList, IsHomogeneousList ] );
DeclareOperation( "ReducedCharacters",
[ IsOrdinaryTable, IsHomogeneousList, IsHomogeneousList ] );
DeclareSynonym( "ReducedOrdinary", ReducedCharacters );
#############################################################################
##
#F IrreducibleDifferences( <tbl>, <reducibles>, <reducibles2>[, <scprmat>] )
#F IrreducibleDifferences( <tbl>, <reducibles>, "triangle"[, <scprmat>] )
##
## <#GAPDoc Label="IrreducibleDifferences">
## <ManSection>
## <Func Name="IrreducibleDifferences"
## Arg='tbl, reducibles, reducibles2[, scprmat]'/>
##
## <Description>
## <Ref Func="IrreducibleDifferences"/> returns the list of irreducible
## characters which occur as difference of an element of <A>reducibles</A>
## and an element of <A>reducibles2</A>,
## where these two arguments are lists of class functions of the character
## table <A>tbl</A>.
## <P/>
## If <A>reducibles2</A> is the string <C>"triangle"</C> then the
## differences of elements in <A>reducibles</A> are considered.
## <P/>
## If <A>scprmat</A> is not specified then it will be calculated,
## otherwise we must have
## <C><A>scprmat</A> =
## MatScalarProducts( <A>tbl</A>, <A>reducibles</A>, <A>reducibles2</A> )</C>
## or <C><A>scprmat</A> =
## MatScalarProducts( <A>tbl</A>, <A>reducibles</A> )</C>,
## respectively.
## <P/>
## <Example><![CDATA[
## gap> IrreducibleDifferences( a5, chars, "triangle" );
## [ Character( CharacterTable( "A5" ),
## [ 3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3 ] ),
## Character( CharacterTable( "A5" ),
## [ 3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4 ] ) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "IrreducibleDifferences" );
#############################################################################
##
## 11. Symmetrizations of Class Functions
##
#############################################################################
##
#O Symmetrizations( [<tbl>, ]<characters>, <n> )
##
## <#GAPDoc Label="Symmetrizations">
## <ManSection>
## <Oper Name="Symmetrizations" Arg='[tbl, ]characters, n'/>
##
## <Description>
## <Index Subkey="symmetrizations of">characters</Index>
## <Ref Oper="Symmetrizations"/> returns the list of symmetrizations
## of the characters <A>characters</A> of the ordinary character table
## <A>tbl</A> with the ordinary irreducible characters of the symmetric
## group of degree <A>n</A>;
## instead of the integer <A>n</A>,
## the character table of the symmetric group can be entered.
## <P/>
## The symmetrization <M>\chi^{[\lambda]}</M> of the character <M>\chi</M>
## of <A>tbl</A> with the character <M>\lambda</M> of the symmetric group
## <M>S_n</M> of degree <M>n</M> is defined by
## <Display Mode="M">
## \chi^{[\lambda]}(g) = \left( \sum_{{\rho \in S_n}}
## \lambda(\rho) \prod_{{k=1}}^n \chi(g^k)^{{a_k(\rho)}} \right) / n! ,
## </Display>
## where <M>a_k(\rho)</M> is the number of cycles of length <M>k</M>
## in <M>\rho</M>.
## <P/>
## For special kinds of symmetrizations,
## see <Ref Func="SymmetricParts"/>, <Ref Func="AntiSymmetricParts"/>,
## <Ref Func="MinusCharacter"/> and <Ref Func="OrthogonalComponents"/>,
## <Ref Func="SymplecticComponents"/>.
## <P/>
## <E>Note</E> that the returned list may contain zero class functions,
## and duplicates are not deleted.
## <!-- describe the succession!!-->
## <P/>
## <Example><![CDATA[
## gap> tbl:= CharacterTable( "A5" );;
## gap> Symmetrizations( Irr( tbl ){ [ 1 .. 3 ] }, 3 );
## [ VirtualCharacter( CharacterTable( "A5" ), [ 0, 0, 0, 0, 0 ] ),
## VirtualCharacter( CharacterTable( "A5" ), [ 0, 0, 0, 0, 0 ] ),
## Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ),
## Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ),
## Character( CharacterTable( "A5" ),
## [ 8, 0, -1, -E(5)-E(5)^4, -E(5)^2-E(5)^3 ] ),
## Character( CharacterTable( "A5" ), [ 10, -2, 1, 0, 0 ] ),
## Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ),
## Character( CharacterTable( "A5" ),
## [ 8, 0, -1, -E(5)^2-E(5)^3, -E(5)-E(5)^4 ] ),
## Character( CharacterTable( "A5" ), [ 10, -2, 1, 0, 0 ] ) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Symmetrizations",
[ IsNearlyCharacterTable, IsHomogeneousList, IsInt ] );
DeclareOperation( "Symmetrizations",
[ IsNearlyCharacterTable, IsHomogeneousList, IsCharacterTable ] );
DeclareOperation( "Symmetrizations", [ IsHomogeneousList, IsInt ] );
DeclareOperation( "Symmetrizations",
[ IsHomogeneousList, IsCharacterTable ] );
DeclareSynonym( "Symmetrisations", Symmetrizations );
#############################################################################
##
#F SymmetricParts( <tbl>, <characters>, <n> )
##
## <#GAPDoc Label="SymmetricParts">
## <ManSection>
## <Func Name="SymmetricParts" Arg='tbl, characters, n'/>
##
## <Description>
## <Index>symmetric power</Index>
## is the list of symmetrizations of the characters <A>characters</A>
## of the character table <A>tbl</A> with the trivial character of
## the symmetric group of degree <A>n</A>
## (see <Ref Oper="Symmetrizations"/>).
## <P/>
## <Example><![CDATA[
## gap> SymmetricParts( tbl, Irr( tbl ), 3 );
## [ Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ),
## Character( CharacterTable( "A5" ), [ 10, -2, 1, 0, 0 ] ),
## Character( CharacterTable( "A5" ), [ 10, -2, 1, 0, 0 ] ),
## Character( CharacterTable( "A5" ), [ 20, 0, 2, 0, 0 ] ),
## Character( CharacterTable( "A5" ), [ 35, 3, 2, 0, 0 ] ) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "SymmetricParts" );
#############################################################################
##
#F AntiSymmetricParts( <tbl>, <characters>, <n> )
##
## <#GAPDoc Label="AntiSymmetricParts">
## <ManSection>
## <Func Name="AntiSymmetricParts" Arg='tbl, characters, n'/>
##
## <Description>
## <Index>exterior power</Index>
## is the list of symmetrizations of the characters <A>characters</A>
## of the character table <A>tbl</A> with the alternating character of
## the symmetric group of degree <A>n</A>
## (see <Ref Oper="Symmetrizations"/>).
## <P/>
## <Example><![CDATA[
## gap> AntiSymmetricParts( tbl, Irr( tbl ), 3 );
## [ VirtualCharacter( CharacterTable( "A5" ), [ 0, 0, 0, 0, 0 ] ),
## Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ),
## Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ),
## Character( CharacterTable( "A5" ), [ 4, 0, 1, -1, -1 ] ),
## Character( CharacterTable( "A5" ), [ 10, -2, 1, 0, 0 ] ) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "AntiSymmetricParts" );
#############################################################################
##
#F RefinedSymmetrizations( <tbl>, <chars>, <m>, <func> )
##
## <ManSection>
## <Func Name="RefinedSymmetrizations" Arg='tbl, chars, m, func'/>
##
## <Description>
## is the list of Murnaghan components for orthogonal
## ('<A>func</A>(x,y)=x', see <Ref Func="OrthogonalComponents"/>)
## or symplectic
## ('<A>func</A>(x,y)=x-y', see <Ref Func="SymplecticComponents"/>)
## symmetrizations.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "RefinedSymmetrizations" );
DeclareSynonym( "RefinedSymmetrisations", RefinedSymmetrizations );
#############################################################################
##
#F OrthogonalComponents( <tbl>, <chars>, <m> )
##
## <#GAPDoc Label="OrthogonalComponents">
## <ManSection>
## <Func Name="OrthogonalComponents" Arg='tbl, chars, m'/>
##
## <Description>
## <Index Subkey="orthogonal">symmetrizations</Index>
## <Index>Frame</Index>
## <Index>Murnaghan components</Index>
## If <M>\chi</M> is a nonlinear character with indicator <M>+1</M>,
## a splitting of the tensor power <M>\chi^m</M> is given by the so-called
## Murnaghan functions (see <Cite Key="Mur58"/>).
## These components in general have fewer irreducible constituents
## than the symmetrizations with the symmetric group of degree <A>m</A>
## (see <Ref Oper="Symmetrizations"/>).
## <P/>
## <Ref Func="OrthogonalComponents"/> returns the Murnaghan components
## of the nonlinear characters of the character table <A>tbl</A>
## in the list <A>chars</A> up to the power <A>m</A>,
## where <A>m</A> is an integer between 2 and 6.
## <P/>
## The Murnaghan functions are implemented as in <Cite Key="Fra82"/>.
## <P/>
## <E>Note</E>:
## If <A>chars</A> is a list of character objects
## (see <Ref Func="IsCharacter"/>) then also
## the result consists of class function objects.
## It is not checked whether all characters in <A>chars</A> do really have
## indicator <M>+1</M>;
## if there are characters with indicator <M>0</M> or <M>-1</M>,
## the result might contain virtual characters
## (see also <Ref Func="SymplecticComponents"/>),
## therefore the entries of the result do in general not know that they are
## characters.
## <P/>
## <Example><![CDATA[
## gap> tbl:= CharacterTable( "A8" );; chi:= Irr( tbl )[2];
## Character( CharacterTable( "A8" ), [ 7, -1, 3, 4, 1, -1, 1, 2, 0, -1,
## 0, 0, -1, -1 ] )
## gap> OrthogonalComponents( tbl, [ chi ], 3 );
## [ ClassFunction( CharacterTable( "A8" ),
## [ 21, -3, 1, 6, 0, 1, -1, 1, -2, 0, 0, 0, 1, 1 ] ),
## ClassFunction( CharacterTable( "A8" ),
## [ 27, 3, 7, 9, 0, -1, 1, 2, 1, 0, -1, -1, -1, -1 ] ),
## ClassFunction( CharacterTable( "A8" ),
## [ 105, 1, 5, 15, -3, 1, -1, 0, -1, 1, 0, 0, 0, 0 ] ),
## ClassFunction( CharacterTable( "A8" ),
## [ 35, 3, -5, 5, 2, -1, -1, 0, 1, 0, 0, 0, 0, 0 ] ),
## ClassFunction( CharacterTable( "A8" ),
## [ 77, -3, 13, 17, 2, 1, 1, 2, 1, 0, 0, 0, 2, 2 ] ) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "OrthogonalComponents" );
#############################################################################
##
#F SymplecticComponents( <tbl>, <chars>, <m> )
##
## <#GAPDoc Label="SymplecticComponents">
## <ManSection>
## <Func Name="SymplecticComponents" Arg='tbl, chars, m'/>
##
## <Description>
## <Index Subkey="symplectic">symmetrizations</Index>
## <Index>Murnaghan components</Index>
## If <M>\chi</M> is a (nonlinear) character with indicator <M>-1</M>,
## a splitting of the tensor power <M>\chi^m</M> is given in terms of the
## so-called Murnaghan functions (see <Cite Key="Mur58"/>).
## These components in general have fewer irreducible constituents
## than the symmetrizations with the symmetric group of degree <A>m</A>
## (see <Ref Oper="Symmetrizations"/>).
## <P/>
## <Ref Func="SymplecticComponents"/> returns the symplectic symmetrizations
## of the nonlinear characters of the character table <A>tbl</A>
## in the list <A>chars</A> up to the power <A>m</A>,
## where <A>m</A> is an integer between <M>2</M> and <M>5</M>.
## <P/>
## <E>Note</E>:
## If <A>chars</A> is a list of character objects
## (see <Ref Func="IsCharacter"/>) then also
## the result consists of class function objects.
## It is not checked whether all characters in <A>chars</A> do really have
## indicator <M>-1</M>;
## if there are characters with indicator <M>0</M> or <M>+1</M>,
## the result might contain virtual characters
## (see also <Ref Func="OrthogonalComponents"/>),
## therefore the entries of the result do in general not know that they are
## characters.
## <P/>
## <Example><![CDATA[
## gap> tbl:= CharacterTable( "U3(3)" );; chi:= Irr( tbl )[2];
## Character( CharacterTable( "U3(3)" ),
## [ 6, -2, -3, 0, -2, -2, 2, 1, -1, -1, 0, 0, 1, 1 ] )
## gap> SymplecticComponents( tbl, [ chi ], 3 );
## [ ClassFunction( CharacterTable( "U3(3)" ),
## [ 14, -2, 5, -1, 2, 2, 2, 1, 0, 0, 0, 0, -1, -1 ] ),
## ClassFunction( CharacterTable( "U3(3)" ),
## [ 21, 5, 3, 0, 1, 1, 1, -1, 0, 0, -1, -1, 1, 1 ] ),
## ClassFunction( CharacterTable( "U3(3)" ),
## [ 64, 0, -8, -2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0 ] ),
## ClassFunction( CharacterTable( "U3(3)" ),
## [ 14, 6, -4, 2, -2, -2, 2, 0, 0, 0, 0, 0, -2, -2 ] ),
## ClassFunction( CharacterTable( "U3(3)" ),
## [ 56, -8, 2, 2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0 ] ) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "SymplecticComponents" );
#############################################################################
##
## 12. Operations for Brauer Characters
##
#############################################################################
##
#F FrobeniusCharacterValue( <value>, <p> )
##
## <#GAPDoc Label="FrobeniusCharacterValue">
## <ManSection>
## <Func Name="FrobeniusCharacterValue" Arg='value, p'/>
##
## <Description>
## Let <A>value</A> be a cyclotomic whose coefficients over the rationals
## are in the ring <M>&ZZ;_{<A>p</A>}</M> of <A>p</A>-local numbers,
## where <A>p</A> is a prime integer.
## Assume that <A>value</A> lies in <M>&ZZ;_{<A>p</A>}[\zeta]</M>
## for <M>\zeta = \exp(<A>p</A>^n-1)</M>,
## for some positive integer <M>n</M>.
## <P/>
## <Ref Func="FrobeniusCharacterValue"/> returns the image of <A>value</A>
## under the ring homomorphism from <M>&ZZ;_{<A>p</A>}[\zeta]</M>
## to the field with <M><A>p</A>^n</M> elements
## that is defined with the help of Conway polynomials
## (see <Ref Func="ConwayPolynomial"/>), more information can be found
## in <Cite Key="JLPW95" Where="Sections 2-5"/>.
## <P/>
## If <A>value</A> is a Brauer character value in characteristic <A>p</A>
## then the result can be described as the corresponding value of the
## Frobenius character, that is, as the trace of a representing matrix
## with the given Brauer character value.
## <P/>
## If the result of <Ref Func="FrobeniusCharacterValue"/> cannot be
## expressed as an element of a finite field in &GAP;
## (see Chapter <Ref Chap="Finite Fields"/>)
## then <Ref Func="FrobeniusCharacterValue"/> returns <K>fail</K>.
## <P/>
## If the Conway polynomial of degree <M>n</M> is required for the
## computation then it is computed only if
## <Ref Func="IsCheapConwayPolynomial"/> returns <K>true</K> when it is
## called with <A>p</A> and <M>n</M>,
## otherwise <K>fail</K> is returned.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "FrobeniusCharacterValue" );
##############################################################################
##
#F ReductionToFiniteField( <value>, <p> )
##
## If this function shall become documented, this can be done in the manual
## section for FrobeniusCharacterValue.
##
## <Func Name="ReductionToFiniteField" Arg='value, p'/>
##
## <Description>
## Let <A>value</A> be a cyclotomic whose coefficients over the rationals
## are in the ring <M>&ZZ;_{<A>p</A>}</M> of <A>p</A>-local numbers,
## where <A>p</A> is a prime integer.
## <Ref Func="ReductionToFiniteField"/> returns a pair <C>[ pol, m ]</C>
## where <C>pol</C> is a polynomial over the field with <A>p</A> elements
## and <C>m</C> is an integer such that the field with <A>p</A><C>^m</C>
## elements is the minimal field that contains the reduction under the ring
## homomorphism defined above.
## The reduction of <A>value</A> is represented by <C>pol</C> modulo
## the ideal spanned by the Conway polynomial
## (see <Ref Func="ConwayPolynomial"/>) of degree <C>m</C>.
## <P/>
## <K>fail</K> is returned if ...
## </Description>
##
DeclareGlobalFunction( "ReductionToFiniteField" );
#############################################################################
##
#A BrauerCharacterValue( <mat> )
##
## <#GAPDoc Label="BrauerCharacterValue">
## <ManSection>
## <Attr Name="BrauerCharacterValue" Arg='mat'/>
##
## <Description>
## For an invertible matrix <A>mat</A> over a finite field <M>F</M>,
## <Ref Attr="BrauerCharacterValue"/> returns the Brauer character value
## of <A>mat</A> if the order of <A>mat</A> is coprime to the characteristic
## of <M>F</M>, and <K>fail</K> otherwise.
## <P/>
## The <E>Brauer character value</E> of a matrix is the sum of complex lifts
## of its eigenvalues.
## <P/>
## <Example><![CDATA[
## gap> g:= SL(2,4);; # 2-dim. irreducible representation of A5
## gap> ccl:= ConjugacyClasses( g );;
## gap> rep:= List( ccl, Representative );;
## gap> List( rep, Order );
## [ 1, 2, 5, 5, 3 ]
## gap> phi:= List( rep, BrauerCharacterValue );
## [ 2, fail, E(5)^2+E(5)^3, E(5)+E(5)^4, -1 ]
## gap> List( phi{ [ 1, 3, 4, 5 ] }, x -> FrobeniusCharacterValue( x, 2 ) );
## [ 0*Z(2), Z(2^2), Z(2^2)^2, Z(2)^0 ]
## gap> List( rep{ [ 1, 3, 4, 5 ] }, TraceMat );
## [ 0*Z(2), Z(2^2), Z(2^2)^2, Z(2)^0 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "BrauerCharacterValue", IsMatrix );
#############################################################################
##
#V ZEV_DATA
#F ZevData( <q>, <n>[, <listofpairs>] )
#F ZevDataValue( <q>, <n> )
##
## <ManSection>
## <Var Name="ZEV_DATA"/>
## <Func Name="ZevData" Arg='q, n[, listofpairs]'/>
## <Func Name="ZevDataValue" Arg='q, n'/>
##
## <Description>
## These variables are used for a database that speeds up the computation of
## Brauer character values.
## <P/>
## <C>ZEV_DATA</C> is a list of length <M>2</M>, at position <M>1</M> storing a list of
## prime powers <M>q</M>, and at position <M>2</M> a corresponding list of lists <M>l</M>.
## For given <M>q</M>, the list <M>l</M> is again a list of length <M>2</M>,
## at position <M>1</M> storing a list of positive integers <M>n</M>, at position <M>2</M>
## a corresponding list of lists, the entry for fixed (<M>q</M> and) <M>n</M> being
## a list of pairs <M>[ c, y ]</M> as needed by <C>ZevData</C>.
## <P/>
## For a prime power <A>q</A> and a positive integer <A>n</A>, <C>ZevData</C> returns
## a list of pairs <M>[ c, y ]</M> where <M>c</M> is the coefficient list of a
## polynomial <M>f</M> over the field <M>F</M> with <A>q</A> elements,
## and <M>y</M> a complex value.
## These pairs are used to compute Brauer character values of matrices <M>M</M>
## over <M>F</M>, of order <A>n</A>;
## a <M>d</M>-dimensional nullspace of the matrix obtained by evaluating <M>f</M> at
## <M>M</M> contributes the summand <M>y</M> with multiplicity <M>d / <C>Degree</C>( f )</M>.
## <P/>
## <C>ZevData</C> checks whether the required data are already stored in the
## global list <C>ZEV_DATA</C>;
## if not then <C>ZevDataValue</C> is called, which does the real work.
## <P/>
## Called with three arguments, <C>ZevData</C> <E>stores</E> the third argument in the
## global list <C>ZEV_DATA</C>, at the position where the call with the first two
## arguments will fetch it.
## <P/>
## (The names of these functions reflect that the corresponding command in
## the C-&MeatAxe; is <C>zev</C>.)
## </Description>
## </ManSection>
##
DeclareGlobalVariable( "ZEV_DATA", "nested list of length 2" );
DeclareGlobalFunction( "ZevData" );
DeclareGlobalFunction( "ZevDataValue" );
#############################################################################
##
#F SizeOfFieldOfDefinition( <val>, <p> )
##
## <#GAPDoc Label="SizeOfFieldOfDefinition">
## <ManSection>
## <Func Name="SizeOfFieldOfDefinition" Arg='val, p'/>
##
## <Description>
## For a cyclotomic or a list of cyclotomics <A>val</A>,
## and a prime integer <A>p</A>, <Ref Func="SizeOfFieldOfDefinition"/>
## returns the size of the smallest finite field
## in characteristic <A>p</A> that contains the <A>p</A>-modular reduction
## of <A>val</A>.
## <P/>
## The reduction map is defined as in <Cite Key="JLPW95"/>,
## that is, the complex <M>(<A>p</A>^d-1)</M>-th root of unity
## <M>\exp(<A>p</A>^d-1)</M> is mapped to the residue class of the
## indeterminate, modulo the ideal spanned by the Conway polynomial
## (see <Ref Func="ConwayPolynomial"/>) of degree <M>d</M> over the
## field with <M>p</M> elements.
## <P/>
## If <A>val</A> is a Brauer character then the value returned is the size
## of the smallest finite field in characteristic <A>p</A> over which the
## corresponding representation lives.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "SizeOfFieldOfDefinition" );
#############################################################################
##
#F RealizableBrauerCharacters( <matrix>, <q> )
##
## <#GAPDoc Label="RealizableBrauerCharacters">
## <ManSection>
## <Func Name="RealizableBrauerCharacters" Arg='matrix, q'/>
##
## <Description>
## For a list <A>matrix</A> of absolutely irreducible Brauer characters
## in characteristic <M>p</M>, and a power <A>q</A> of <M>p</M>,
## <Ref Func="RealizableBrauerCharacters"/> returns a duplicate-free list of
## sums of Frobenius conjugates of the rows of <A>matrix</A>,
## each irreducible over the field with <A>q</A> elements.
## <P/>
## <Example><![CDATA[
## gap> irr:= Irr( CharacterTable( "A5" ) mod 2 );
## [ Character( BrauerTable( "A5", 2 ), [ 1, 1, 1, 1 ] ),
## Character( BrauerTable( "A5", 2 ),
## [ 2, -1, E(5)+E(5)^4, E(5)^2+E(5)^3 ] ),
## Character( BrauerTable( "A5", 2 ),
## [ 2, -1, E(5)^2+E(5)^3, E(5)+E(5)^4 ] ),
## Character( BrauerTable( "A5", 2 ), [ 4, 1, -1, -1 ] ) ]
## gap> List( irr, phi -> SizeOfFieldOfDefinition( phi, 2 ) );
## [ 2, 4, 4, 2 ]
## gap> RealizableBrauerCharacters( irr, 2 );
## [ Character( BrauerTable( "A5", 2 ), [ 1, 1, 1, 1 ] ),
## ClassFunction( BrauerTable( "A5", 2 ), [ 4, -2, -1, -1 ] ),
## Character( BrauerTable( "A5", 2 ), [ 4, 1, -1, -1 ] ) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "RealizableBrauerCharacters" );
#############################################################################
##
## 13. Domains Generated by Class Functions
##
## <#GAPDoc Label="[9]{ctblfuns}">
## &GAP; supports groups, vector spaces, and algebras generated by class
## functions.
## <!-- add examples:
## gap> d8:= DihedralGroup( 8 );
## <pc group of size 8 with 3 generators>
## gap> lin:= LinearCharacters( d8 );;
## gap> irr:= Irr( d8 );;
## gap> g:= Group( lin, lin[1] );
## <group with 4 generators>
## gap> Size( g );
## 4
## gap> IdGroup( g );
## [ 4, 2 ]
## gap> v:= VectorSpace( Rationals, lin );;
## gap> w:= VectorSpace( Rationals, irr );;
## gap> Dimension( v );
## 4
## gap> Dimension( w );
## 5
##
## Note that for generating a group of class functions,
## one should use the two-argument version of
## <Ref Func="Group" Label="for a list of generators (and an identity element)"/>,
## because a call of the one-argument version will return the cyclic matrix
## group generated by the matrix of the intended generating class functions
## if this matrix is invertible.
## % Otherwise it seems to work, but why?
##
## gap> g:= CyclicGroup( 4 );;
## gap> irr:= Irr( g );;
## gap> Size( Group( irr ) );
## infinity
## gap> Size( Group( irr, TrivialCharacter( g ) ) );
## 4
## -->
## <#/GAPDoc>
##
#############################################################################
##
#F IsClassFunctionsSpace( <V> )
##
## <ManSection>
## <Func Name="IsClassFunctionsSpace" Arg='V'/>
##
## <Description>
## If an <M>F</M>-vector space <A>V</A> is in the filter
## <Ref Func="IsClassFunctionsSpace"/> then this expresses that <A>V</A>
## consists of class functions, and that <A>V</A> is
## handled via the mechanism of nice bases (see <Ref ???="..."/>),
## in the following way.
## Let <M>T</M> be the underlying character table of the elements of <A>V</A>.
## Then the <C>NiceFreeLeftModuleInfo</C> value of <A>V</A> is <M>T</M>,
## and the <C>NiceVector</C> value of <M>v \in <A>V</A></M> is defined as
## <C>ValueOfClassFunction</C><M>( v )</M>.
## </Description>
## </ManSection>
##
DeclareHandlingByNiceBasis( "IsClassFunctionsSpace",
"for free left modules of class functions" );
#############################################################################
##
## 14. Auxiliary operations
##
##############################################################################
##
#F OrbitChar( <chi>, <linear> )
##
## <ManSection>
## <Func Name="OrbitChar" Arg='chi, linear'/>
##
## <Description>
## is the orbit of the character values list <A>chi</A> under the action of
## Galois automorphisms and multiplication with the linear characters in
## the list <A>linear</A>.
## <P/>
## It is assumed that <A>linear</A> is closed under Galois automorphisms and
## tensoring.
## (This means that we can first form the orbit under Galois action, and
## then apply the linear characters to all Galois conjugates.)
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "OrbitChar" );
##############################################################################
##
#F OrbitsCharacters( <chars> )
##
## <ManSection>
## <Func Name="OrbitsCharacters" Arg='chars'/>
##
## <Description>
## is a list of orbits of the characters in the list <A>chars</A>
## under the action of Galois automorphisms
## and multiplication with the linear characters in <A>chars</A>.
## <P/>
## (Note that the image of an ordinary character under a Galois automorphism
## is always a character; this is in general not true for Brauer characters.)
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "OrbitsCharacters" );
##############################################################################
##
#F OrbitRepresentativesCharacters( <irr> )
##
## <ManSection>
## <Func Name="OrbitRepresentativesCharacters" Arg='irr'/>
##
## <Description>
## is a list of representatives of the orbits of the characters <A>irr</A>
## under the action of Galois automorphisms and multiplication with linear
## characters.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "OrbitRepresentativesCharacters" );
#T where to put the following two functions?
#############################################################################
##
#F CollapsedMat( <mat>, <maps> )
##
## <#GAPDoc Label="CollapsedMat">
## <ManSection>
## <Func Name="CollapsedMat" Arg='mat, maps'/>
##
## <Description>
## is a record with the components
## <P/>
## <List>
## <Mark><C>fusion</C></Mark>
## <Item>
## fusion that collapses those columns of <A>mat</A> that are equal in
## <A>mat</A> and also for all maps in the list <A>maps</A>,
## </Item>
## <Mark><C>mat</C></Mark>
## <Item>
## the image of <A>mat</A> under that fusion.
## </Item>
## </List>
## <P/>
## <Example><![CDATA[
## gap> mat:= [ [ 1, 1, 1, 1 ], [ 2, -1, 0, 0 ], [ 4, 4, 1, 1 ] ];;
## gap> coll:= CollapsedMat( mat, [] );
## rec( fusion := [ 1, 2, 3, 3 ],
## mat := [ [ 1, 1, 1 ], [ 2, -1, 0 ], [ 4, 4, 1 ] ] )
## gap> List( last.mat, x -> x{ last.fusion } ) = mat;
## true
## gap> coll:= CollapsedMat( mat, [ [ 1, 1, 1, 2 ] ] );
## rec( fusion := [ 1, 2, 3, 4 ],
## mat := [ [ 1, 1, 1, 1 ], [ 2, -1, 0, 0 ], [ 4, 4, 1, 1 ] ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "CollapsedMat" );
#############################################################################
##
#F CharacterTableQuaternionic( <4n> )
##
## <ManSection>
## <Func Name="CharacterTableQuaternionic" Arg='4n'/>
##
## <Description>
## is the ordinary character table of the generalized quaternion group
## of order <A>4n</A>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "CharacterTableQuaternionic" );
#############################################################################
##
#E
|