/usr/share/gap/lib/ctblgrp.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 | #############################################################################
##
#W ctblgrp.gd GAP library Alexander Hulpke
##
##
#Y Copyright (C) 1997
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations for the Dixon-Schneider algorithm
##
#############################################################################
##
## <#GAPDoc Label="[1]{ctblgrp}">
## <Index>Dixon-Schneider algorithm</Index>
## The &GAP; library implementation of the Dixon-Schneider algorithm
## first computes the linear characters, using the commutator factor group.
## If irreducible characters are missing afterwards,
## they are computed using the techniques described in <Cite Key="Dix67"/>,
## <Cite Key="Sch90"/> and <Cite Key="Hulpke93"/>.
## <P/>
## Called with a group <M>G</M>, the function
## <Ref Func="CharacterTable" Label="for a group"/> returns a character
## table object that stores already information such as class lengths,
## but not the irreducible characters.
## The routines that compute the irreducibles may use the information that
## is already contained in this table object.
## In particular the ordering of classes in the computed characters
## coincides with the ordering of classes in the character table of <A>G</A>
## (see <Ref Sect="The Interface between Character Tables and Groups"/>).
## Thus it is possible to combine computations using the group
## with character theoretic computations
## (see <Ref Sect="Advanced Methods for Dixon-Schneider Calculations"/>
## for details),
## for example one can enter known characters.
## Note that the user is responsible for the correctness of the characters.
## (There is little use in providing the trivial character to the routine.)
## <P/>
## The computation of irreducible characters from the group needs to
## identify the classes of group elements very often,
## so it can be helpful to store a class list of all group elements.
## Since this is obviously limited by the group order,
## it is controlled by the global function <Ref Func="IsDxLargeGroup"/>.
## <P/>
## The routines compute in a prime field of size <M>p</M>,
## such that the exponent of the group divides <M>(p-1)</M> and such that
## <M>2 \sqrt{{|G|}} < p</M>.
## Currently prime fields of size smaller than <M>65\,536</M> are handled more
## efficiently than larger prime fields,
## so the runtime of the character calculation depends on how large the
## chosen prime is.
## <P/>
## The routine stores a Dixon record (see <Ref Func="DixonRecord"/>)
## in the group that helps routines that identify classes,
## for example <Ref Func="FusionConjugacyClasses" Label="for two groups"/>,
## to work much faster.
## Note that interrupting Dixon-Schneider calculations will prevent &GAP;
## from cleaning up the Dixon record;
## when the computation by <Ref Func="IrrDixonSchneider"/> is complete,
## the possibly large record is shrunk to an acceptable size.
## <#/GAPDoc>
##
#############################################################################
##
#F IsDxLargeGroup( <G> )
##
## <#GAPDoc Label="IsDxLargeGroup">
## <ManSection>
## <Func Name="IsDxLargeGroup" Arg='G'/>
##
## <Description>
## returns <K>true</K> if the order of the group <A>G</A> is smaller than
## the current value of the global variable <C>DXLARGEGROUPORDER</C>,
## and <K>false</K> otherwise.
## In Dixon-Schneider calculations, for small groups in the above sense a
## class map is stored, whereas for large groups,
## each occurring element is identified individually.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "IsDxLargeGroup" );
#############################################################################
##
#F DxModularValuePol
#F DxDegreeCandidates
##
## <ManSection>
## <Func Name="DxModularValuePol" Arg='...'/>
## <Func Name="DxDegreeCandidates" Arg='...'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction("DxModularValuePol");
DeclareGlobalFunction("DxDegreeCandidates");
#############################################################################
##
#A DixonRecord( <G> )
##
## <#GAPDoc Label="DixonRecord">
## <ManSection>
## <Attr Name="DixonRecord" Arg='G'/>
##
## <Description>
## The <Ref Attr="DixonRecord"/> of a group contains information used by the
## routines to compute the irreducible characters and related information
## via the Dixon-Schneider algorithm such as class arrangement and character
## spaces split obtained so far.
## Usually this record is passed as argument to all subfunctions to avoid a
## long argument list.
## It has a component <C>conjugacyClasses</C> which contains the classes of
## <A>G</A> <E>ordered as the algorithm needs them</E>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("DixonRecord",IsGroup,"mutable");
#############################################################################
##
#O DxPreparation(<G>,<D>)
##
## <ManSection>
## <Oper Name="DxPreparation" Arg='G,D'/>
##
## <Description>
## Creates enttries in the dixon record <A>D</A> of the group <A>G</A>
## which are representation dependent,
## like functions to identify the class of elements.
## </Description>
## </ManSection>
##
DeclareOperation("DxPreparation",[IsGroup,IsRecord]);
#############################################################################
##
#F ClassComparison(<c>,<d>) . . . . . . . . . . . . compare classes c and d
##
## <ManSection>
## <Func Name="ClassComparison" Arg='c,d'/>
##
## <Description>
## Comparison function for conjugacy classes,
## used by <Ref Func="Sort"/>.
## Comparison is based first on the size of the class and then on the
## order of the representatives.
## Thus the class containing the identity element is in the first position,
## as required. Since sorting is primary by the class sizes,smaller
## classes are in earlier positions, making the active columns those to
## smaller classes, thus reducing the work for calculating class matrices.
## Additionally, galois conjugated classes are kept together, thus increasing
## the chance,that with one columns of them active to be several active,
## again reducing computation time.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "ClassComparison");
#############################################################################
##
#F DxIncludeIrreducibles( <D>, <new>[, <newmod>] )
##
## <#GAPDoc Label="DxIncludeIrreducibles">
## <ManSection>
## <Func Name="DxIncludeIrreducibles" Arg='D, new[, newmod]'/>
##
## <Description>
## This function takes a list of irreducible characters <A>new</A>,
## each given as a list of values (corresponding to the class arrangement in
## <A>D</A>), and adds these to a partial computed list of irreducibles as
## maintained by the Dixon record <A>D</A>.
## This permits one to add characters in interactive use obtained from other
## sources and to continue the Dixon-Schneider calculation afterwards.
## If the optional argument <A>newmod</A> is given, it must be a
## list of reduced characters, corresponding to <A>new</A>.
## (Otherwise the function has to reduce the characters itself.)
## <P/>
## The function closes the new characters under the action of Galois
## automorphisms and tensor products with linear characters.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "DxIncludeIrreducibles" );
#############################################################################
##
#F SplitCharacters( <D>, <list> ) split characters according to the spaces
##
## <#GAPDoc Label="SplitCharacters">
## <ManSection>
## <Func Name="SplitCharacters" Arg='D, list'/>
##
## <Description>
## This routine decomposes the characters given in <A>list</A> according to
## the character spaces found up to this point. By applying this routine to
## tensor products etc., it may result in characters with smaller norm,
## even irreducible ones. Since the recalculation of characters is only
## possible if the degree is small enough, the splitting process is
## applied only to characters of sufficiently small degree.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "SplitCharacters" );
#############################################################################
##
#F OrbitSplit(<D>) . . . . . . . . . . . . . . try to split two-orbit-spaces
##
## <ManSection>
## <Func Name="OrbitSplit" Arg='D'/>
##
## <Description>
## Tries to split two-orbit character spaces.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("OrbitSplit");
#############################################################################
##
#F DxSplitDegree(<D>,<space>,<r>) local
##
## <ManSection>
## <Func Name="DxSplitDegree" Arg='D,space,r'/>
##
## <Description>
## estimates the number of parts obtained when splitting the character space
## <A>space</A> with matrix number <A>r</A>.
## This estimate is obtained using charcter morphisms.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("DxSplitDegree");
#############################################################################
##
#F BestSplittingMatrix(<D>)
##
## <#GAPDoc Label="BestSplittingMatrix">
## <ManSection>
## <Func Name="BestSplittingMatrix" Arg='D'/>
##
## <Description>
## returns the number of the class sum matrix that is assumed to yield the
## best (cost/earning ration) split. This matrix then will be the next one
## computed and used.
## <P/>
## The global option <C>maxclasslen</C>
## (defaulting to <Ref Var="infinity"/>) is recognized
## by <Ref Func="BestSplittingMatrix"/>:
## Only classes whose length is limited by the value of this option will be
## considered for splitting. If no usable class remains,
## <K>fail</K> is returned.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("BestSplittingMatrix");
#############################################################################
##
#F DixonInit( <G> ) . . . . . . . . . . initialize Dixon-Schneider algorithm
##
## <#GAPDoc Label="DixonInit">
## <ManSection>
## <Func Name="DixonInit" Arg='G'/>
##
## <Description>
## This function does all the initializations for the Dixon-Schneider
## algorithm. This includes calculation of conjugacy classes, power maps,
## linear characters and character morphisms.
## It returns a record (see <Ref Func="DixonRecord"/> and
## Section <Ref Sect="Components of a Dixon Record"/>)
## that can be used when calculating the irreducible characters of <A>G</A>
## interactively.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "DixonInit" );
#############################################################################
##
#F DixonSplit( <D> ) . calculate matrix, split spaces and obtain characters
##
## <#GAPDoc Label="DixonSplit">
## <ManSection>
## <Func Name="DixonSplit" Arg='D'/>
##
## <Description>
## This function performs one splitting step in the Dixon-Schneider
## algorithm. It selects a class, computes the (partial) class sum matrix,
## uses it to split character spaces and stores all the irreducible
## characters obtained that way.
## <P/>
## The class to use for splitting is chosen via
## <Ref Func="BestSplittingMatrix"/> and the options described for this
## function apply here.
## <P/>
## <Ref Func="DixonSplit"/> returns <K>true</K> if a split was performed,
## and <K>fail</K> otherwise.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "DixonSplit" );
DeclareGlobalFunction( "SplitStep" );
#############################################################################
##
#F DixontinI( <D> ) . . . . . . . . . . . . . . . . reverse initialisation
##
## <#GAPDoc Label="DixontinI">
## <ManSection>
## <Func Name="DixontinI" Arg='D'/>
##
## <Description>
## This function ends a Dixon-Schneider calculation.
## It sorts the characters according to the degree and
## unbinds components in the Dixon record that are not of use any longer.
## It returns a list of irreducible characters.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "DixontinI" );
#############################################################################
##
#A IrrDixonSchneider( <G> ) . . . . irreducible characters of finite group G
##
## <#GAPDoc Label="IrrDixonSchneider">
## <ManSection>
## <Attr Name="IrrDixonSchneider" Arg='G'/>
##
## <Description>
## computes the irreducible characters of the finite group <A>G</A>,
## using the Dixon-Schneider method
## (see <Ref Sect="The Dixon-Schneider Algorithm"/>).
## It calls <Ref Func="DixonInit"/> and <Ref Func="DixonSplit"/>,
## <!-- and <C>OrbitSplit</C>, % is not documented! -->
## and finally returns the list returned by <Ref Func="DixontinI"/>.
## See also the sections
## <Ref Sect="Components of a Dixon Record"/> and
## <Ref Sect="An Example of Advanced Dixon-Schneider Calculations"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "IrrDixonSchneider", IsGroup );
DeclareOperation( "IrrDixonSchneider", [ IsGroup, IsRecord ] );
#############################################################################
##
#F IrreducibleRepresentationsDixon( <G>[,<chi>] )
##
## <#GAPDoc Label="IrreducibleRepresentationsDixon">
## <ManSection>
## <Func Name="IrreducibleRepresentationsDixon" Arg='G[, chi]'/>
##
## <Description>
## Called with one argument, a group <A>G</A>,
## <Ref Func="IrreducibleRepresentationsDixon"/>
## computes (representatives of) all irreducible complex representations for
## the finite group <A>G</A>, using the method of <Cite Key="Dix93"/>,
## which computes the character table and computes the representation
## as constituent of an induced monomial representation of a subgroup.
## <P/>
## This method can be quite expensive for larger groups, for example it
## might involve calculation of the subgroup lattice of <A>G</A>.
## <P/>
## A character <A>chi</A> of <A>G</A> can be given as the second argument,
## in this case only a representation affording <A>chi</A> is returned.
## <P/>
## The second argument can also be a list of characters of <A>G</A>,
## in this case only representations for characters in this list are
## computed.
## <P/>
## Note that this method might fail if for an irreducible representation
## there is no subgroup in which its reduction has a linear constituent
## with multiplicity one.
## <P/>
## <Example><![CDATA[
## gap> a5:= AlternatingGroup( 5 );
## Alt( [ 1 .. 5 ] )
## gap> char:= First( Irr( a5 ), x -> x[1] = 4 );
## Character( CharacterTable( Alt( [ 1 .. 5 ] ) ), [ 4, 0, 1, -1, -1 ] )
## gap> hom:=IrreducibleRepresentationsDixon( a5, char );;
## gap> Order( a5.1*a5.2 ) = Order( Image( hom, a5.1 )*Image( hom, a5.2 ) );
## true
## gap> reps:= List( ConjugacyClasses( a5 ), Representative );;
## gap> List( reps, g -> TraceMat( Image( hom, g ) ) );
## [ 4, 0, 1, -1, -1 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("IrreducibleRepresentationsDixon");
#############################################################################
##
#F RepresentationsPermutationIrreducibleCharacters(<G>,<chars>,<reps>)
##
## <ManSection>
## <Func Name="RepresentationsPermutationIrreducibleCharacters"
## Arg='G,chars,reps'/>
##
## <Description>
## Given a group <A>G</A> and a list of characters and representations of
## <A>G</A>, this function returns a permutation of the representations
## (via <Ref Func="Permuted"/>),
## that will ensure characters and representations are ordered compatibly.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("RepresentationsPermutationIrreducibleCharacters");
# the following function is in this file only for dependency reasons.
#############################################################################
##
#F NthRootsInGroup( <G>, <e>, <n> )
##
## <#GAPDoc Label="NthRootsInGroup">
## <ManSection>
## <Func Name="NthRootsInGroup" Arg='G, e, n'/>
##
## <Description>
## Let <A>e</A> be an element in the group <A>G</A>.
## This function returns a list of all those elements in <A>G</A>
## whose <A>n</A>-th power is <A>e</A>.
## <P/>
## <Example><![CDATA[
## gap> NthRootsInGroup(g,(1,2)(3,4),2);
## [ (1,3,2,4), (1,4,2,3) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("NthRootsInGroup");
#############################################################################
##
#E
|