This file is indexed.

/usr/share/gap/lib/ctblmaps.gd is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
#############################################################################
##
#W  ctblmaps.gd                 GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declaration of those functions that are used
##  to construct maps (mostly fusion maps and power maps).
##
##  1. Maps Concerning Character Tables
##  2. Power Maps
##  3. Class Fusions between Character Tables
##  4. Utilities for Parametrized Maps
##  5. Subroutines for the Construction of Power Maps
##  6. Subroutines for the Construction of Class Fusions
##


#############################################################################
##
##  1. Maps Concerning Character Tables
##
##  <#GAPDoc Label="[1]{ctblmaps}">
##  Besides the characters, <E>power maps</E> are an important part of a
##  character table, see Section&nbsp;<Ref Sect="Power Maps"/>.
##  Often their computation is not easy, and if the table has no access to
##  the underlying group then in general they cannot be obtained from the
##  matrix of irreducible characters;
##  so it is useful to store them on the table.
##  <P/>
##  If not only a single table is considered but different tables of a group
##  and a subgroup or of a group and a factor group are used,
##  also <E>class fusion maps</E>
##  (see Section&nbsp;<Ref Sect="Class Fusions between Character Tables"/>)
##  must be known to get information about the embedding or simply to induce
##  or restrict characters,
##  see Section&nbsp;<Ref Sect="Restricted and Induced Class Functions"/>).
##  <P/>
##  These are examples of functions from conjugacy classes which will be
##  called <E>maps</E> in the following.
##  (This should not be confused with the term mapping,
##  cf. Chapter&nbsp;<Ref Chap="Mappings"/>.)
##  In &GAP;, maps are represented by lists.
##  Also each character, each list of element orders, of centralizer orders,
##  or of class lengths are maps,
##  and the list returned by <Ref Func="ListPerm"/>,
##  when this function is called with a permutation of classes, is a map.
##  <P/>
##  When maps are constructed without access to a group, often one only knows
##  that the image of a given class is contained in a set of possible images,
##  e. g., that the image of a class under a subgroup fusion is in the set of
##  all classes with the same element order.
##  Using further information, such as centralizer orders, power maps and the
##  restriction of characters, the sets of possible images can be restricted
##  further.
##  In many cases, at the end the images are uniquely determined.
##  <P/>
##  Because of this approach, many functions in this chapter work not only
##  with maps but with <E>parametrized maps</E>
##  (or <E>paramaps</E> for short).
##  More about parametrized maps can be found
##  in Section&nbsp;<Ref Sect="Parametrized Maps"/>.
##  <P/>
##  The implementation follows&nbsp;<Cite Key="Bre91"/>,
##  a description of the main ideas together with several examples
##  can be found in&nbsp;<Cite Key="Bre99"/>.
##  <#/GAPDoc>
##


#############################################################################
##
##  2. Power Maps
##
##  <#GAPDoc Label="[2]{ctblmaps}">
##  The <M>n</M>-th power map of a character table is represented by a list
##  that stores at position <M>i</M> the position of the class containing
##  the <M>n</M>-th powers of the elements in the <M>i</M>-th class.
##  The <M>n</M>-th power map can be composed from the power maps of the
##  prime divisors of <M>n</M>,
##  so usually only power maps for primes are actually stored in the
##  character table.
##  <P/>
##  For an ordinary character table <A>tbl</A> with access to its underlying
##  group <M>G</M>,
##  the <M>p</M>-th power map of <A>tbl</A> can be computed using the
##  identification of the conjugacy classes of <M>G</M> with the classes of
##  <A>tbl</A>.
##  For an ordinary character table without access to a group,
##  in general the <M>p</M>-th power maps (and hence also the element orders)
##  for prime divisors <M>p</M> of the group order are not uniquely
##  determined by the matrix of irreducible characters.
##  So only necessary conditions can be checked in this case,
##  which in general yields only a list of several possibilities for the
##  desired power map.
##  Character tables of the &GAP; character table library store all
##  <M>p</M>-th power maps for prime divisors <M>p</M> of the group order.
##  <P/>
##  Power maps of Brauer tables can be derived from the power maps of the
##  underlying ordinary tables.
##  <P/>
##  For (computing and) accessing the <M>n</M>-th power map of a character
##  table, <Ref Func="PowerMap"/> can be used;
##  if the <M>n</M>-th power map cannot be uniquely determined then
##  <Ref Func="PowerMap"/> returns <K>fail</K>.
##  <P/>
##  The list of all possible <M>p</M>-th power maps of a table in the sense
##  that certain necessary conditions are satisfied can be computed with
##  <Ref Func="PossiblePowerMaps"/>.
##  This provides a default strategy, the subroutines are listed in
##  Section&nbsp;<Ref Sect="Subroutines for the Construction of Power Maps"/>.
##  <#/GAPDoc>
##


#############################################################################
##
#O  PowerMap( <tbl>, <n>[, <class>] )
#O  PowerMapOp( <tbl>, <n>[, <class>] )
#A  ComputedPowerMaps( <tbl> )
##
##  <#GAPDoc Label="PowerMap">
##  <ManSection>
##  <Oper Name="PowerMap" Arg='tbl, n[, class]'/>
##  <Oper Name="PowerMapOp" Arg='tbl, n[, class]'/>
##  <Attr Name="ComputedPowerMaps" Arg='tbl'/>
##
##  <Description>
##  Called with first argument a character table <A>tbl</A>
##  and second argument an integer <A>n</A>,
##  <Ref Oper="PowerMap"/> returns the <A>n</A>-th power map of <A>tbl</A>.
##  This is a list containing at position <M>i</M> the position of the class
##  of <A>n</A>-th powers of the elements in the <M>i</M>-th class of
##  <A>tbl</A>.
##  <P/>
##  If the additional third argument <A>class</A> is present then the
##  position of <A>n</A>-th powers of the <A>class</A>-th class is returned.
##  <P/>
##  If the <A>n</A>-th power map is not uniquely determined by <A>tbl</A>
##  then <K>fail</K> is returned.
##  This can happen only if <A>tbl</A> has no access to its underlying group.
##  <P/>
##  The power maps of <A>tbl</A> that were computed already by
##  <Ref Oper="PowerMap"/> are stored in <A>tbl</A> as value of the attribute
##  <Ref Attr="ComputedPowerMaps"/>,
##  the <M>n</M>-th power map at position <M>n</M>.
##  <Ref Oper="PowerMap"/> checks whether the desired power map is already
##  stored, computes it using the operation <Ref Oper="PowerMapOp"/> if it is
##  not yet known, and stores it.
##  So methods for the computation of power maps can be installed for
##  the operation <Ref Oper="PowerMapOp"/>.
##  <!-- % For power maps of groups, see&nbsp;<Ref Attr="PowerMapOfGroup"/>. -->
##  <P/>
##  <Example><![CDATA[
##  gap> tbl:= CharacterTable( "L3(2)" );;
##  gap> ComputedPowerMaps( tbl );
##  [ , [ 1, 1, 3, 2, 5, 6 ], [ 1, 2, 1, 4, 6, 5 ],,,, 
##    [ 1, 2, 3, 4, 1, 1 ] ]
##  gap> PowerMap( tbl, 5 );
##  [ 1, 2, 3, 4, 6, 5 ]
##  gap> ComputedPowerMaps( tbl );
##  [ , [ 1, 1, 3, 2, 5, 6 ], [ 1, 2, 1, 4, 6, 5 ],, [ 1, 2, 3, 4, 6, 5 ],
##    , [ 1, 2, 3, 4, 1, 1 ] ]
##  gap> PowerMap( tbl, 137, 2 );
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "PowerMap", [ IsNearlyCharacterTable, IsInt ] );
DeclareOperation( "PowerMap", [ IsNearlyCharacterTable, IsInt, IsInt ] );

DeclareOperation( "PowerMapOp", [ IsNearlyCharacterTable, IsInt ] );
DeclareOperation( "PowerMapOp", [ IsNearlyCharacterTable, IsInt, IsInt ] );

DeclareAttributeSuppCT( "ComputedPowerMaps",
    IsNearlyCharacterTable, "mutable", [ "class" ] );


#############################################################################
##
#O  PossiblePowerMaps( <tbl>, <p>[, <options>] )
##
##  <#GAPDoc Label="PossiblePowerMaps">
##  <ManSection>
##  <Oper Name="PossiblePowerMaps" Arg='tbl, p[, options]'/>
##
##  <Description>
##  For the ordinary character table <A>tbl</A> of the group <M>G</M>, say,
##  and a prime integer <A>p</A>,
##  <Ref Oper="PossiblePowerMaps"/> returns the list of all maps that have
##  the following properties of the <M>p</M>-th power map of <A>tbl</A>.
##  (Representative orders are used only if the
##  <Ref Func="OrdersClassRepresentatives"/> value of <A>tbl</A> is known.
##
##  <Enum>
##  <Item>
##    For class <M>i</M>, the centralizer order of the image is a multiple of
##    the <M>i</M>-th centralizer order;
##    if the elements in the <M>i</M>-th class have order coprime to <M>p</M>
##    then the centralizer orders of class <M>i</M> and its image are equal.
##  </Item>
##  <Item>
##    Let <M>n</M> be the order of elements in class <M>i</M>.
##    If <A>prime</A> divides <M>n</M> then the images have order <M>n/p</M>;
##    otherwise the images have order <M>n</M>.
##    These criteria are checked in <Ref Func="InitPowerMap"/>.
##  </Item>
##  <Item>
##    For each character <M>\chi</M> of <M>G</M> and each element <M>g</M>
##    in <M>G</M>, the values <M>\chi(g^p)</M> and
##    <C>GaloisCyc</C><M>( \chi(g), p )</M> are
##    algebraic integers that are congruent modulo <M>p</M>;
##    if <M>p</M> does not divide the element order of <M>g</M>
##    then the two values are equal.
##    This congruence is checked for the characters specified below in
##    the discussion of the <A>options</A> argument;
##    For linear characters <M>\lambda</M> among these characters,
##    the condition <M>\chi(g)^p = \chi(g^p)</M> is checked.
##    The corresponding function is
##    <Ref Func="Congruences" Label="for character tables"/>.
##  </Item>
##  <Item>
##    For each character <M>\chi</M> of <M>G</M>, the kernel is a normal
##    subgroup <M>N</M>, and <M>g^p \in N</M> for all <M>g \in N</M>;
##    moreover, if <M>N</M> has index <M>p</M> in <M>G</M> then
##    <M>g^p \in N</M> for all <M>g \in G</M>,
##    and if the index of <M>N</M> in <M>G</M> is coprime to <M>p</M> then
##    <M>g^p \not \in N</M> for each <M>g \not \in N</M>.
##    These conditions are checked for the kernels of all characters
##    <M>\chi</M> specified below,
##    the corresponding function is <Ref Func="ConsiderKernels"/>.
##  </Item>
##  <Item>
##    If <M>p</M> is larger than the order <M>m</M> of an element
##    <M>g \in G</M> then the class of <M>g^p</M> is determined by the power
##    maps for primes dividing the residue of <M>p</M> modulo <M>m</M>.
##    If these power maps are stored in the <Ref Func="ComputedPowerMaps"/>
##    value of <A>tbl</A> then this information is used.
##    This criterion is checked in <Ref Func="ConsiderSmallerPowerMaps"/>.
##  </Item>
##  <Item>
##    For each character <M>\chi</M> of <M>G</M>,
##    the symmetrization <M>\psi</M> defined by
##    <M>\psi(g) = (\chi(g)^p - \chi(g^p))/p</M> is a character.
##    This condition is checked for the kernels of all characters
##    <M>\chi</M> specified below,
##    the corresponding function is
##    <Ref Func="PowerMapsAllowedBySymmetrizations"/>.
##  </Item>
##  </Enum>
##  <P/>
##  If <A>tbl</A> is a Brauer table, the possibilities are computed
##  from those for the underlying ordinary table.
##  <P/>
##  The optional argument <A>options</A>, if given, must be a record that may
##  have the following components:
##  <List>
##  <Mark><C>chars</C>:</Mark>
##  <Item>
##    a list of characters which are used for the check of the criteria
##    3., 4., and 6.;
##    the default is <C>Irr( <A>tbl</A> )</C>,
##  </Item>
##  <Mark><C>powermap</C>:</Mark>
##  <Item>
##    a parametrized map which is an approximation of the desired map
##  </Item>
##  <Mark><C>decompose</C>:</Mark>
##  <Item>
##    a Boolean;
##    a <K>true</K> value indicates that all constituents of the
##    symmetrizations of <C>chars</C> computed for criterion 6. lie in
##    <C>chars</C>,
##    so the symmetrizations can be decomposed into elements of <C>chars</C>;
##    the default value of <C>decompose</C> is <K>true</K> if <C>chars</C>
##    is not bound and <C>Irr( <A>tbl</A> )</C> is known,
##    otherwise <K>false</K>,
##  </Item>
##  <Mark><C>quick</C>:</Mark>
##  <Item>
##    a Boolean;
##    if <K>true</K> then the subroutines are called with value <K>true</K>
##    for the argument <A>quick</A>;
##    especially, as soon as only one candidate remains
##    this candidate is returned immediately;
##    the default value is <K>false</K>,
##  </Item>
##  <Mark><C>parameters</C>:</Mark>
##  <Item>
##    a record with components <C>maxamb</C>, <C>minamb</C> and <C>maxlen</C>
##    which control the subroutine
##    <Ref Func="PowerMapsAllowedBySymmetrizations"/>;
##    it only uses characters with current indeterminateness up to
##    <C>maxamb</C>,
##    tests decomposability only for characters with current
##    indeterminateness at least <C>minamb</C>,
##    and admits a branch according to a character only if there is one
##    with at most <C>maxlen</C> possible symmetrizations.
##  </Item>
##  </List>
##  <P/>
##  <Example><![CDATA[
##  gap> tbl:= CharacterTable( "U4(3).4" );;
##  gap> PossiblePowerMaps( tbl, 2 );
##  [ [ 1, 1, 3, 4, 5, 2, 2, 8, 3, 4, 11, 12, 6, 14, 9, 1, 1, 2, 2, 3, 4, 
##        5, 6, 8, 9, 9, 10, 11, 12, 16, 16, 16, 16, 17, 17, 18, 18, 18, 
##        18, 20, 20, 20, 20, 22, 22, 24, 24, 25, 26, 28, 28, 29, 29 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "PossiblePowerMaps", [ IsCharacterTable, IsInt ] );
DeclareOperation( "PossiblePowerMaps", [ IsCharacterTable, IsInt,
    IsRecord ] );


#############################################################################
##
#F  ElementOrdersPowerMap( <powermap> )
##
##  <#GAPDoc Label="ElementOrdersPowerMap">
##  <ManSection>
##  <Func Name="ElementOrdersPowerMap" Arg='powermap'/>
##
##  <Description>
##  Let <A>powermap</A> be a nonempty list containing at position <M>p</M>,
##  if bound, the <M>p</M>-th power map of a character table or group.
##  <Ref Func="ElementOrdersPowerMap"/> returns a list of the same length as
##  each entry in <A>powermap</A>, with entry at position <M>i</M> equal to
##  the order of elements in class <M>i</M> if this order is uniquely
##  determined by <A>powermap</A>,
##  and equal to an unknown (see Chapter&nbsp;<Ref Chap="Unknowns"/>)
##  otherwise.
##  <P/>
##  <Example><![CDATA[
##  gap> tbl:= CharacterTable( "U4(3).4" );;
##  gap> known:= ComputedPowerMaps( tbl );;
##  gap> Length( known );
##  7
##  gap> sub:= ShallowCopy( known );;  Unbind( sub[7] );
##  gap> ElementOrdersPowerMap( sub );
##  [ 1, 2, 3, 3, 3, 4, 4, 5, 6, 6, Unknown(1), Unknown(2), 8, 9, 12, 2, 
##    2, 4, 4, 6, 6, 6, 8, 10, 12, 12, 12, Unknown(3), Unknown(4), 4, 4, 
##    4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 12, 12, 20, 20, 24, 24, 
##    Unknown(5), Unknown(6), Unknown(7), Unknown(8) ]
##  gap> ord:= ElementOrdersPowerMap( known );
##  [ 1, 2, 3, 3, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 12, 2, 2, 4, 4, 6, 6, 6, 
##    8, 10, 12, 12, 12, 14, 14, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 
##    12, 12, 12, 12, 20, 20, 24, 24, 28, 28, 28, 28 ]
##  gap> ord = OrdersClassRepresentatives( tbl );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ElementOrdersPowerMap" );


#############################################################################
##
#F  PowerMapByComposition( <tbl>, <n> ) . .  for char. table and pos. integer
##
##  <#GAPDoc Label="PowerMapByComposition">
##  <ManSection>
##  <Func Name="PowerMapByComposition" Arg='tbl, n'/>
##
##  <Description>
##  <A>tbl</A> must be a nearly character table,
##  and <A>n</A> a positive integer.
##  If the power maps for all prime divisors of <A>n</A> are stored in the
##  <Ref Attr="ComputedPowerMaps"/> list of <A>tbl</A> then
##  <Ref Func="PowerMapByComposition"/> returns
##  the <A>n</A>-th power map of <A>tbl</A>.
##  Otherwise <K>fail</K> is returned.
##  <P/>
##  <Example><![CDATA[
##  gap> tbl:= CharacterTable( "U4(3).4" );;  exp:= Exponent( tbl );
##  2520
##  gap> PowerMapByComposition( tbl, exp );
##  [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
##    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
##    1, 1, 1, 1, 1, 1, 1, 1, 1 ]
##  gap> Length( ComputedPowerMaps( tbl ) );
##  7
##  gap> PowerMapByComposition( tbl, 11 );
##  fail
##  gap> PowerMap( tbl, 11 );;
##  gap> PowerMapByComposition( tbl, 11 );
##  [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 
##    20, 21, 22, 23, 24, 26, 25, 27, 28, 29, 31, 30, 33, 32, 35, 34, 37, 
##    36, 39, 38, 41, 40, 43, 42, 45, 44, 47, 46, 49, 48, 51, 50, 53, 52 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "PowerMapByComposition" );


#############################################################################
##
##  <#GAPDoc Label="[3]{ctblmaps}">
##  The permutation group of matrix automorphisms
##  (see&nbsp;<Ref Func="MatrixAutomorphisms"/>)
##  acts on the possible power maps returned by
##  <Ref Func="PossiblePowerMaps"/>
##  by permuting a list via <Ref Func="Permuted"/>
##  and then mapping the images via <Ref Func="OnPoints"/>.
##  Note that by definition, the group of <E>table</E> automorphisms
##  acts trivially.
##  <#/GAPDoc>
##


#############################################################################
##
#F  OrbitPowerMaps( <map>, <permgrp> )
##
##  <#GAPDoc Label="OrbitPowerMaps">
##  <ManSection>
##  <Func Name="OrbitPowerMaps" Arg='map, permgrp'/>
##
##  <Description>
##  returns the orbit of the power map <A>map</A> under the action of the
##  permutation group <A>permgrp</A>
##  via a combination of <Ref Func="Permuted"/> and <Ref Func="OnPoints"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "OrbitPowerMaps" );


#############################################################################
##
#F  RepresentativesPowerMaps( <listofmaps>, <permgrp> )
##
##  <#GAPDoc Label="RepresentativesPowerMaps">
##  <ManSection>
##  <Func Name="RepresentativesPowerMaps" Arg='listofmaps, permgrp'/>
##
##  <Description>
##  <Index>matrix automorphisms</Index>
##  returns a list of orbit representatives of the power maps in the list
##  <A>listofmaps</A> under the action of the permutation group
##  <A>permgrp</A>
##  via a combination of <Ref Func="Permuted"/> and <Ref Func="OnPoints"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> tbl:= CharacterTable( "3.McL" );;
##  gap> grp:= MatrixAutomorphisms( Irr( tbl ) );  Size( grp );
##  <permutation group with 5 generators>
##  32
##  gap> poss:= PossiblePowerMaps( CharacterTable( "3.McL" ), 3 );
##  [ [ 1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17, 
##        4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 9, 8, 37, 
##        37, 37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49, 
##        49, 14, 14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37 ], 
##    [ 1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17, 
##        4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 8, 9, 37, 
##        37, 37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49, 
##        49, 14, 14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37 ] ]
##  gap> reps:= RepresentativesPowerMaps( poss, grp );
##  [ [ 1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17, 
##        4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 8, 9, 37, 
##        37, 37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49, 
##        49, 14, 14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37 ] ]
##  gap> orb:= OrbitPowerMaps( reps[1], grp );
##  [ [ 1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17, 
##        4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 8, 9, 37, 
##        37, 37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49, 
##        49, 14, 14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37 ], 
##    [ 1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17, 
##        4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 9, 8, 37, 
##        37, 37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49, 
##        49, 14, 14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37 ] ]
##  gap> Parametrized( orb );
##  [ 1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17, 
##    4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, [ 8, 9 ], 
##    [ 8, 9 ], 37, 37, 37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 
##    52, 49, 49, 49, 14, 14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "RepresentativesPowerMaps" );


#############################################################################
##
##  3. Class Fusions between Character Tables
##
##  <#GAPDoc Label="[4]{ctblmaps}">
##  <Index>fusions</Index><Index>subgroup fusions</Index>
##  For a group <M>G</M> and a subgroup <M>H</M> of <M>G</M>,
##  the fusion map between the character table of <M>H</M> and the character
##  table of <M>G</M> is represented by a list that stores at position
##  <M>i</M> the position of the <M>i</M>-th class of the table of <M>H</M>
##  in the classes list of the table of <M>G</M>.
##  <P/>
##  For ordinary character tables <A>tbl1</A> and <A>tbl2</A> of <M>H</M> and
##  <M>G</M>, with access to the groups <M>H</M> and <M>G</M>,
##  the class fusion between <A>tbl1</A> and <A>tbl2</A> can be computed
##  using the identifications of the conjugacy classes of <M>H</M> with the
##  classes of <A>tbl1</A> and the conjugacy classes of <M>G</M> with the
##  classes of <A>tbl2</A>.
##  For two ordinary character tables without access to an underlying group,
##  or in the situation that the group stored in <A>tbl1</A> is not
##  physically a subgroup of the group stored in <A>tbl2</A> but an
##  isomorphic copy, in general the class fusion is not uniquely determined
##  by the information stored on the tables such as irreducible characters
##  and power maps.
##  So only necessary conditions can be checked in this case,
##  which in general yields only a list of several possibilities for the
##  desired class fusion.
##  Character tables of the &GAP; character table library store various
##  class fusions that are regarded as important,
##  for example fusions from maximal subgroups
##  (see&nbsp;<Ref Func="ComputedClassFusions"/>
##  and <Ref Attr="Maxes" BookName="ctbllib"/> in the manual for the &GAP;
##  Character Table Library).
##  <P/>
##  Class fusions between Brauer tables can be derived from the class fusions
##  between the underlying ordinary tables.
##  The class fusion from a Brauer table to the underlying ordinary table is
##  stored when the Brauer table is constructed from the ordinary table,
##  so no method is needed to compute such a fusion.
##  <P/>
##  For (computing and) accessing the class fusion between two character
##  tables,
##  <Ref Func="FusionConjugacyClasses" Label="for two character tables"/>
##  can be used;
##  if the class fusion cannot be uniquely determined then
##  <Ref Func="FusionConjugacyClasses" Label="for two character tables"/>
##  returns <K>fail</K>.
##  <P/>
##  The list of all possible class fusion between two tables in the sense
##  that certain necessary conditions are satisfied can be computed with
##  <Ref Func="PossibleClassFusions"/>.
##  This provides a default strategy, the subroutines are listed in
##  Section <Ref Sect="Subroutines for the Construction of Class Fusions"/>.
##  <P/>
##  It should be noted that all the following functions except
##  <Ref Func="FusionConjugacyClasses" Label="for two character tables"/>
##  deal only with the situation of class fusions from subgroups.
##  The computation of <E>factor fusions</E> from a character table to the
##  table of a factor group is not dealt with here.
##  Since the ordinary character table of a group <M>G</M> determines the
##  character tables of all factor groups of <M>G</M>, the factor fusion to a
##  given character table of a factor group of <M>G</M> is determined up to
##  table automorphisms (see&nbsp;<Ref Func="AutomorphismsOfTable"/>) once
##  the class positions of the kernel of the natural epimorphism have been
##  fixed.
##  <#/GAPDoc>
##


#############################################################################
##
#O  FusionConjugacyClasses( <tbl1>, <tbl2> )
#O  FusionConjugacyClasses( <H>, <G> )
#O  FusionConjugacyClasses( <hom>[, <tbl1>, <tbl2>] )
#O  FusionConjugacyClassesOp( <tbl1>, <tbl2> )
#A  FusionConjugacyClassesOp( <hom> )
##
##  <#GAPDoc Label="FusionConjugacyClasses">
##  <ManSection>
##  <Heading>FusionConjugacyClasses</Heading>
##  <Oper Name="FusionConjugacyClasses" Arg='tbl1, tbl2'
##   Label="for two character tables"/>
##  <Oper Name="FusionConjugacyClasses" Arg='H, G'
##   Label="for two groups"/>
##  <Oper Name="FusionConjugacyClasses" Arg='hom[, tbl1, tbl2]'
##   Label="for a homomorphism"/>
##  <Oper Name="FusionConjugacyClassesOp" Arg='tbl1, tbl2'
##   Label="for two character tables"/>
##  <Attr Name="FusionConjugacyClassesOp" Arg='hom'
##   Label="for a homomorphism"/>
##
##  <Description>
##  Called with two character tables <A>tbl1</A> and <A>tbl2</A>,
##  <Ref Oper="FusionConjugacyClasses" Label="for two character tables"/>
##  returns the fusion of conjugacy classes between <A>tbl1</A> and
##  <A>tbl2</A>.
##  (If one of the tables is a Brauer table,
##  it will delegate this task to the underlying ordinary table.)
##  <P/>
##  Called with two groups <A>H</A> and <A>G</A> where <A>H</A> is a subgroup
##  of <A>G</A>,
##  <Ref Oper="FusionConjugacyClasses" Label="for two groups"/> returns
##  the fusion of conjugacy classes between <A>H</A> and <A>G</A>.
##  This is done by delegating to the ordinary character tables of <A>H</A>
##  and <A>G</A>,
##  since class fusions are stored only for character tables and not for
##  groups.
##  <P/>
##  Note that the returned class fusion refers to the ordering of conjugacy
##  classes in the character tables if the arguments are character tables
##  and to the ordering of conjugacy classes in the groups if the arguments
##  are groups
##  (see&nbsp;<Ref Attr="ConjugacyClasses" Label="for character tables"/>).
##  <P/>
##  Called with a group homomorphism <A>hom</A>,
##  <Ref Oper="FusionConjugacyClasses" Label="for a homomorphism"/> returns
##  the fusion of conjugacy classes between the preimage and the image of
##  <A>hom</A>;
##  contrary to the two cases above,
##  also factor fusions can be handled by this variant.
##  If <A>hom</A> is the only argument then the class fusion refers to the
##  ordering of conjugacy classes in the groups.
##  If the character tables of preimage and image are given as <A>tbl1</A>
##  and <A>tbl2</A>, respectively (each table with its group stored),
##  then the fusion refers to the ordering of classes in these tables.
##  <P/>
##  If no class fusion exists or if the class fusion is not uniquely
##  determined, <K>fail</K> is returned; this may happen when
##  <Ref Oper="FusionConjugacyClasses" Label="for two character tables"/> is
##  called with two character tables that do not know compatible underlying
##  groups.
##  <P/>
##  Methods for the computation of class fusions can be installed for
##  the operation
##  <Ref Oper="FusionConjugacyClassesOp" Label="for two character tables"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> s4:= SymmetricGroup( 4 );
##  Sym( [ 1 .. 4 ] )
##  gap> tbls4:= CharacterTable( s4 );;
##  gap> d8:= SylowSubgroup( s4, 2 );
##  Group([ (1,2), (3,4), (1,3)(2,4) ])
##  gap> FusionConjugacyClasses( d8, s4 );
##  [ 1, 2, 3, 3, 5 ]
##  gap> tbls5:= CharacterTable( "S5" );;
##  gap> FusionConjugacyClasses( CharacterTable( "A5" ), tbls5 );
##  [ 1, 2, 3, 4, 4 ]
##  gap> FusionConjugacyClasses(CharacterTable("A5"), CharacterTable("J1"));
##  fail
##  gap> PossibleClassFusions(CharacterTable("A5"), CharacterTable("J1"));
##  [ [ 1, 2, 3, 4, 5 ], [ 1, 2, 3, 5, 4 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "FusionConjugacyClasses",
    [ IsNearlyCharacterTable, IsNearlyCharacterTable ] );
DeclareOperation( "FusionConjugacyClasses", [ IsGroup, IsGroup ] );
DeclareOperation( "FusionConjugacyClasses", [ IsGeneralMapping ] );
DeclareOperation( "FusionConjugacyClasses",
    [ IsGeneralMapping, IsNearlyCharacterTable, IsNearlyCharacterTable ] );

DeclareAttribute( "FusionConjugacyClassesOp", IsGeneralMapping );

DeclareOperation( "FusionConjugacyClassesOp",
    [ IsNearlyCharacterTable, IsNearlyCharacterTable ] );
DeclareOperation( "FusionConjugacyClassesOp",
    [ IsGeneralMapping, IsNearlyCharacterTable, IsNearlyCharacterTable ] );


#############################################################################
##
#A  ComputedClassFusions( <tbl> )
##
##  <#GAPDoc Label="ComputedClassFusions">
##  <ManSection>
##  <Attr Name="ComputedClassFusions" Arg='tbl'/>
##
##  <Description>
##  The class fusions from the character table <A>tbl</A> that have been
##  computed already by
##  <Ref Oper="FusionConjugacyClasses" Label="for two character tables"/> or
##  explicitly stored by <Ref Func="StoreFusion"/>
##  are stored in the <Ref Attr="ComputedClassFusions"/> list of <A>tbl1</A>.
##  Each entry of this list is a record with the following components.
##
##  <List>
##  <Mark><C>name</C></Mark>
##  <Item>
##    the <Ref Attr="Identifier" Label="for character tables"/> value
##    of the character table to which the fusion maps,
##  </Item>
##  <Mark><C>map</C></Mark>
##  <Item>
##    the list of positions of image classes,
##  </Item>
##  <Mark><C>text</C> (optional)</Mark>
##  <Item>
##    a string giving additional information about the fusion map,
##    for example whether the map is uniquely determined by the character
##    tables,
##  </Item>
##  <Mark><C>specification</C> (optional, rarely used)</Mark>
##  <Item>
##    a value that distinguishes different fusions between the same tables.
##  </Item>
##  </List>
##  <P/>
##  Note that stored fusion maps may differ from the maps returned by
##  <Ref Func="GetFusionMap"/> and the maps entered by
##  <Ref Func="StoreFusion"/> if the table <A>destination</A> has a
##  nonidentity <Ref Attr="ClassPermutation"/> value.
##  So if one fetches a fusion map from a table <A>tbl1</A> to a table
##  <A>tbl2</A> via access to the data in the
##  <Ref Attr="ComputedClassFusions"/> list of <A>tbl1</A> then the stored
##  value must be composed with the <Ref Attr="ClassPermutation"/> value of
##  <A>tbl2</A> in order to obtain the correct class fusion.
##  (If one handles fusions only via <Ref Func="GetFusionMap"/> and
##  <Ref Func="StoreFusion"/> then this adjustment is made automatically.)
##  <P/>
##  Fusions are identified via the
##  <Ref Attr="Identifier" Label="for character tables"/> value of the
##  destination table and not by this table itself because many fusions
##  between character tables in the &GAP; character table library are stored
##  on library tables,
##  and it is not desirable to load together with a library table also all
##  those character tables that occur as destinations of fusions from this
##  table.
##  <P/>
##  For storing fusions and accessing stored fusions,
##  see also&nbsp;<Ref Func="GetFusionMap"/>, <Ref Func="StoreFusion"/>.
##  For accessing the identifiers of tables that store a fusion into a
##  given character table, see&nbsp;<Ref Func="NamesOfFusionSources"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttributeSuppCT( "ComputedClassFusions",
    IsNearlyCharacterTable, "mutable", [ "class" ] );


#############################################################################
##
#F  GetFusionMap( <source>, <destination>[, <specification>] )
##
##  <#GAPDoc Label="GetFusionMap">
##  <ManSection>
##  <Func Name="GetFusionMap" Arg='source, destination[, specification]'/>
##
##  <Description>
##  For two ordinary character tables <A>source</A> and <A>destination</A>,
##  <Ref Func="GetFusionMap"/> checks whether the
##  <Ref Attr="ComputedClassFusions"/> list of <A>source</A>
##  contains a record with <C>name</C> component
##  <C>Identifier( <A>destination</A> )</C>,
##  and returns returns the <C>map</C> component of the first such record.
##  <C>GetFusionMap( <A>source</A>, <A>destination</A>,
##  <A>specification</A> )</C> fetches
##  that fusion map for which the record additionally has the
##  <C>specification</C> component <A>specification</A>.
##  <P/>
##  If both <A>source</A> and <A>destination</A> are Brauer tables,
##  first the same is done, and if no fusion map was found then
##  <Ref Func="GetFusionMap"/> looks whether a fusion map between the
##  ordinary tables is stored;
##  if so then the fusion map between <A>source</A> and <A>destination</A>
##  is stored on <A>source</A>, and then returned.
##  <P/>
##  If no appropriate fusion is found, <Ref Func="GetFusionMap"/> returns
##  <K>fail</K>.
##  For the computation of class fusions, see
##  <Ref Func="FusionConjugacyClasses" Label="for two character tables"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "GetFusionMap" );


#############################################################################
##
#F  StoreFusion( <source>, <fusion>, <destination> )
##
##  <#GAPDoc Label="StoreFusion">
##  <ManSection>
##  <Func Name="StoreFusion" Arg='source, fusion, destination'/>
##
##  <Description>
##  For two character tables <A>source</A> and <A>destination</A>,
##  <Ref Func="StoreFusion"/> stores the fusion <A>fusion</A> from
##  <A>source</A> to <A>destination</A> in the
##  <Ref Attr="ComputedClassFusions"/> list of <A>source</A>,
##  and adds the <Ref Attr="Identifier" Label="for character tables"/> string
##  of <A>destination</A> to the <Ref Attr="NamesOfFusionSources"/> list of
##  <A>destination</A>.
##  <P/>
##  <A>fusion</A> can either be a fusion map (that is, the list of positions
##  of the image classes) or a record as described
##  in&nbsp;<Ref Func="ComputedClassFusions"/>.
##  <P/>
##  If fusions to <A>destination</A> are already stored on <A>source</A> then
##  another fusion can be stored only if it has a record component
##  <C>specification</C> that distinguishes it from the stored fusions.
##  In the case of such an ambiguity, <Ref Func="StoreFusion"/> raises an
##  error.
##  <P/>
##  <Example><![CDATA[
##  gap> tbld8:= CharacterTable( d8 );;
##  gap> ComputedClassFusions( tbld8 );
##  [ rec( map := [ 1, 2, 3, 3, 5 ], name := "CT1" ) ]
##  gap> Identifier( tbls4 );
##  "CT1"
##  gap> GetFusionMap( tbld8, tbls4 );
##  [ 1, 2, 3, 3, 5 ]
##  gap> GetFusionMap( tbls4, tbls5 );
##  fail
##  gap> poss:= PossibleClassFusions( tbls4, tbls5 );
##  [ [ 1, 5, 2, 3, 6 ] ]
##  gap> StoreFusion( tbls4, poss[1], tbls5 );
##  gap> GetFusionMap( tbls4, tbls5 );
##  [ 1, 5, 2, 3, 6 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "StoreFusion" );


#############################################################################
##
#A  NamesOfFusionSources( <tbl> )
##
##  <#GAPDoc Label="NamesOfFusionSources">
##  <ManSection>
##  <Attr Name="NamesOfFusionSources" Arg='tbl'/>
##
##  <Description>
##  For a character table <A>tbl</A>,
##  <Ref Attr="NamesOfFusionSources"/> returns the list of identifiers of all
##  those character tables that are known to have fusions to <A>tbl</A>
##  stored.
##  The <Ref Attr="NamesOfFusionSources"/> value is updated whenever a fusion
##  to <A>tbl</A> is stored using <Ref Func="StoreFusion"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> NamesOfFusionSources( tbls4 );
##  [ "CT2" ]
##  gap> Identifier( CharacterTable( d8 ) );
##  "CT2"
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttributeSuppCT( "NamesOfFusionSources",
    IsNearlyCharacterTable, "mutable", [] );


#############################################################################
##
#O  PossibleClassFusions( <subtbl>, <tbl>[, <options>] )
##
##  <#GAPDoc Label="PossibleClassFusions">
##  <ManSection>
##  <Oper Name="PossibleClassFusions" Arg='subtbl, tbl[, options]'/>
##
##  <Description>
##  For two ordinary character tables <A>subtbl</A> and <A>tbl</A> of the
##  groups <M>H</M> and <M>G</M>, say,
##  <Ref Oper="PossibleClassFusions"/> returns the list of all maps that have
##  the following properties of class fusions from <A>subtbl</A> to
##  <A>tbl</A>.
##
##  <Enum>
##  <Item>
##    For class <M>i</M>, the centralizer order of the image in <M>G</M> is a
##    multiple of the <M>i</M>-th centralizer order in <M>H</M>,
##    and the element orders in the <M>i</M>-th class and its image are
##    equal.
##    These criteria are checked in <Ref Func="InitFusion"/>.
##  </Item>
##  <Item>
##    The class fusion commutes with power maps.
##    This is checked using <Ref Func="TestConsistencyMaps"/>.
##  </Item>
##  <Item>
##    If the permutation character of <M>G</M> corresponding to the action of
##    <M>G</M> on the cosets of <M>H</M> is specified (see the discussion of
##    the <A>options</A> argument below)
##    then it prescribes for each class <M>C</M> of
##    <M>G</M> the number of elements of <M>H</M> fusing into <M>C</M>.
##    The corresponding function is <Ref Func="CheckPermChar"/>.
##  </Item>
##  <Item>
##    The table automorphisms of <A>tbl</A>
##    (see&nbsp;<Ref Func="AutomorphismsOfTable"/>) are
##    used in order to compute only orbit representatives.
##    (But note that the list returned by <Ref Oper="PossibleClassFusions"/>
##    contains the full orbits.)
##  </Item>
##  <Item>
##    For each character <M>\chi</M> of <M>G</M>, the restriction to <M>H</M>
##    via the class fusion is a character of <M>H</M>.
##    This condition is checked for all characters specified below,
##    the corresponding function is
##    <Ref Func="FusionsAllowedByRestrictions"/>.
##  </Item>
##  <Item>
##    The class multiplication coefficients in <A>subtbl</A> do not exceed
##    the corresponding coefficients in <A>tbl</A>.
##    This is checked in <Ref Func="ConsiderStructureConstants"/>,
##    see also the comment on the parameter <C>verify</C> below.
##  </Item>
##  </Enum>
##  <P/>
##  If <A>subtbl</A> and <A>tbl</A> are Brauer tables then the possibilities
##  are computed from those for the underlying ordinary tables.
##  <P/>
##  The optional argument <A>options</A> must be a record that may have the
##  following components:
##
##  <List>
##  <Mark><C>chars</C></Mark>
##  <Item>
##    a list of characters of <A>tbl</A> which are used for the check
##    of&nbsp;5.; the default is <C>Irr( <A>tbl</A> )</C>,
##  </Item>
##  <Mark><C>subchars</C></Mark>
##  <Item>
##    a list of characters of <A>subtbl</A> which are constituents of the
##    restrictions of <C>chars</C>,
##    the default is <C>Irr( <A>subtbl</A> )</C>,
##  </Item>
##  <Mark><C>fusionmap</C></Mark>
##  <Item>
##    a parametrized map which is an approximation of the desired map,
##  </Item>
##  <Mark><C>decompose</C></Mark>
##  <Item>
##    a Boolean;
##    a <K>true</K> value indicates that all constituents of the restrictions
##    of <C>chars</C> computed for criterion 5. lie in <C>subchars</C>,
##    so the restrictions can be decomposed into elements of <C>subchars</C>;
##    the default value of <C>decompose</C> is <K>true</K> if <C>subchars</C>
##    is not bound and <C>Irr( <A>subtbl</A> )</C> is known,
##    otherwise <K>false</K>,
##  </Item>
##  <Mark><C>permchar</C></Mark>
##  <Item>
##    (a values list of) a permutation character; only those fusions
##    affording that permutation character are computed,
##  </Item>
##  <Mark><C>quick</C></Mark>
##  <Item>
##    a Boolean;
##    if <K>true</K> then the subroutines are called with value <K>true</K>
##    for the argument <A>quick</A>;
##    especially, as soon as only one possibility remains
##    then this possibility is returned immediately;
##    the default value is <K>false</K>,
##  </Item>
##  <Mark><C>verify</C></Mark>
##  <Item>
##    a Boolean;
##    if <K>false</K> then <Ref Func="ConsiderStructureConstants"/> is called
##    only if more than one orbit of possible class fusions exists,
##    under the action of the groups of table automorphisms;
##    the default value is <K>false</K> (because the computation of the
##    structure constants is usually very time consuming, compared with
##    checking the other criteria),
##  </Item>
##  <Mark><C>parameters</C></Mark>
##  <Item>
##    a record with components <C>maxamb</C>, <C>minamb</C> and <C>maxlen</C>
##    which control the subroutine
##    <Ref Func="FusionsAllowedByRestrictions"/>;
##    it only uses characters with current indeterminateness up to
##    <C>maxamb</C>,
##    tests decomposability only for characters with current
##    indeterminateness at least <C>minamb</C>,
##    and admits a branch according to a character only if there is one
##    with at most <C>maxlen</C> possible restrictions.
##  </Item>
##  </List>
##  <P/>
##  <Example><![CDATA[
##  gap> subtbl:= CharacterTable( "U3(3)" );;  tbl:= CharacterTable( "J4" );;
##  gap> PossibleClassFusions( subtbl, tbl );
##  [ [ 1, 2, 4, 4, 5, 5, 6, 10, 12, 13, 14, 14, 21, 21 ], 
##    [ 1, 2, 4, 4, 5, 5, 6, 10, 13, 12, 14, 14, 21, 21 ], 
##    [ 1, 2, 4, 4, 6, 6, 6, 10, 12, 13, 15, 15, 22, 22 ], 
##    [ 1, 2, 4, 4, 6, 6, 6, 10, 12, 13, 16, 16, 22, 22 ], 
##    [ 1, 2, 4, 4, 6, 6, 6, 10, 13, 12, 15, 15, 22, 22 ], 
##    [ 1, 2, 4, 4, 6, 6, 6, 10, 13, 12, 16, 16, 22, 22 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "PossibleClassFusions",
    [ IsNearlyCharacterTable, IsNearlyCharacterTable ] );
DeclareOperation( "PossibleClassFusions",
    [ IsNearlyCharacterTable, IsNearlyCharacterTable, IsRecord ] );


#############################################################################
##
##  <#GAPDoc Label="[5]{ctblmaps}">
##  The permutation groups of table automorphisms
##  (see&nbsp;<Ref Func="AutomorphismsOfTable"/>)
##  of the subgroup table <A>subtbl</A> and the supergroup table <A>tbl</A>
##  act on the possible class fusions from <A>subtbl</A> to <A>tbl</A>
##  that are returned by <Ref Func="PossibleClassFusions"/>,
##  the former by permuting a list via <Ref Func="Permuted"/>,
##  the latter by mapping the images via <Ref Func="OnPoints"/>.
##  <P/>
##  If a set of possible fusions with certain properties was computed
##  that are not invariant under the full groups of table automorphisms
##  then only a smaller group acts on this set.
##  This may happen for example if a permutation character or if an explicit
##  approximation of the fusion map was prescribed in the call of
##  <Ref Oper="PossibleClassFusions"/>.
##  <#/GAPDoc>
##


#############################################################################
##
#F  OrbitFusions( <subtblautomorphisms>, <fusionmap>, <tblautomorphisms> )
##
##  <#GAPDoc Label="OrbitFusions">
##  <ManSection>
##  <Func Name="OrbitFusions"
##   Arg='subtblautomorphisms, fusionmap, tblautomorphisms'/>
##
##  <Description>
##  returns the orbit of the class fusion map <A>fusionmap</A> under the
##  actions of the permutation groups <A>subtblautomorphisms</A> and
##  <A>tblautomorphisms</A> of automorphisms of the character table of the
##  subgroup and the supergroup, respectively.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "OrbitFusions" );


#############################################################################
##
#F  RepresentativesFusions( <subtbl>, <listofmaps>, <tbl> )
##
##  <#GAPDoc Label="RepresentativesFusions">
##  <ManSection>
##  <Func Name="RepresentativesFusions" Arg='subtbl, listofmaps, tbl'/>
##
##  <Description>
##  <Index>table automorphisms</Index>
##  Let <A>listofmaps</A> be a list of class fusions from the character table
##  <A>subtbl</A> to the character table <A>tbl</A>.
##  <Ref Func="RepresentativesFusions"/> returns a list of orbit
##  representatives of the class fusions under the action of maximal
##  admissible subgroups of the table automorphism groups of these character
##  tables.
##  <P/>
##  Instead of the character tables <A>subtbl</A> and <A>tbl</A>,
##  also the permutation groups of their table automorphisms
##  (see <Ref Attr="AutomorphismsOfTable"/>) may be entered.
##  <P/>
##  <Example><![CDATA[
##  gap> fus:= GetFusionMap( subtbl, tbl );
##  [ 1, 2, 4, 4, 5, 5, 6, 10, 12, 13, 14, 14, 21, 21 ]
##  gap> orb:= OrbitFusions( AutomorphismsOfTable( subtbl ), fus,
##  >              AutomorphismsOfTable( tbl ) );
##  [ [ 1, 2, 4, 4, 5, 5, 6, 10, 12, 13, 14, 14, 21, 21 ], 
##    [ 1, 2, 4, 4, 5, 5, 6, 10, 13, 12, 14, 14, 21, 21 ] ]
##  gap> rep:= RepresentativesFusions( subtbl, orb, tbl );
##  [ [ 1, 2, 4, 4, 5, 5, 6, 10, 12, 13, 14, 14, 21, 21 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "RepresentativesFusions" );


#############################################################################
##
##  4. Utilities for Parametrized Maps
##
##  <#GAPDoc Label="[6]{ctblmaps}">
##  <Index Subkey="parametrized">map</Index>
##  <Index>class functions</Index>
##  A <E>parametrized map</E> is a list whose <M>i</M>-th entry is either
##  unbound (which means that nothing is known about the image(s) of the
##  <M>i</M>-th class) or the image of the <M>i</M>-th class
##  (i.e., an integer for fusion maps, power maps, element orders etc.,
##  and a cyclotomic for characters),
##  or a list of possible images of the <M>i</M>-th class.
##  In this sense, maps are special parametrized maps.
##  We often identify a parametrized map <A>paramap</A> with the set of all
##  maps <A>map</A> with the property that either
##  <C><A>map</A>[i] = <A>paramap</A>[i]</C> or
##  <C><A>map</A>[i]</C> is contained in the list <C><A>paramap</A>[i]</C>;
##  we say then that <A>map</A> is contained in <A>paramap</A>.
##  <P/>
##  This definition implies that parametrized maps cannot be used to describe
##  sets of maps where lists are possible images.
##  An exception are strings which naturally arise as images when class names
##  are considered.
##  So strings and lists of strings are allowed in parametrized maps,
##  and character constants
##  (see Chapter&nbsp;<Ref Chap="Strings and Characters"/>)
##  are not allowed in maps.
##  <#/GAPDoc>
##


#############################################################################
##
#F  CompositionMaps( <paramap2>, <paramap1>[, <class>] )
##
##  <#GAPDoc Label="CompositionMaps">
##  <ManSection>
##  <Func Name="CompositionMaps" Arg='paramap2, paramap1[, class]'/>
##
##  <Description>
##  The composition of two parametrized maps <A>paramap1</A>, <A>paramap2</A>
##  is defined as the parametrized map <A>comp</A> that contains
##  all compositions <M>f_2 \circ f_1</M> of elements <M>f_1</M> of
##  <A>paramap1</A> and <M>f_2</M> of <A>paramap2</A>.
##  For example, the composition of a character <M>\chi</M> of a group
##  <M>G</M> by a parametrized class fusion map from a subgroup <M>H</M> to
##  <M>G</M> is the parametrized map that contains all restrictions of
##  <M>\chi</M> by elements of the parametrized fusion map.
##  <P/>
##  <C>CompositionMaps(<A>paramap2</A>, <A>paramap1</A>)</C>
##  is a parametrized map with entry
##  <C>CompositionMaps(<A>paramap2</A>, <A>paramap1</A>, <A>class</A>)</C>
##  at position <A>class</A>.
##  If <C><A>paramap1</A>[<A>class</A>]</C> is an integer then
##  <C>CompositionMaps(<A>paramap2</A>, <A>paramap1</A>, <A>class</A>)</C>
##  is equal to <C><A>paramap2</A>[ <A>paramap1</A>[ <A>class</A> ] ]</C>.
##  Otherwise it is the union of <C><A>paramap2</A>[<A>i</A>]</C> for
##  <A>i</A> in <C><A>paramap1</A>[ <A>class</A> ]</C>.
##  <P/>
##  <Example><![CDATA[
##  gap> map1:= [ 1, [ 2 .. 4 ], [ 4, 5 ], 1 ];;
##  gap> map2:= [ [ 1, 2 ], 2, 2, 3, 3 ];;
##  gap> CompositionMaps( map2, map1 );
##  [ [ 1, 2 ], [ 2, 3 ], 3, [ 1, 2 ] ]
##  gap> CompositionMaps( map1, map2 );
##  [ [ 1, 2, 3, 4 ], [ 2, 3, 4 ], [ 2, 3, 4 ], [ 4, 5 ], [ 4, 5 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "CompositionMaps" );


#############################################################################
##
#F  InverseMap( <paramap> ) . . . . . . . . . . inverse of a parametrized map
##
##  <#GAPDoc Label="InverseMap">
##  <ManSection>
##  <Func Name="InverseMap" Arg='paramap'/>
##
##  <Description>
##  For a parametrized map <A>paramap</A>,
##  <Ref Func="InverseMap"/> returns a mutable parametrized map whose
##  <M>i</M>-th entry is unbound if <M>i</M> is not in the image of
##  <A>paramap</A>, equal to <M>j</M> if <M>i</M> is (in) the image of
##  <C><A>paramap</A>[<A>j</A>]</C> exactly for <M>j</M>,
##  and equal to the set of all preimages of <M>i</M> under <A>paramap</A>
##  otherwise.
##  <P/>
##  We have
##  <C>CompositionMaps( <A>paramap</A>, InverseMap( <A>paramap</A> ) )</C>
##  the identity map.
##  <P/>
##  <Example><![CDATA[
##  gap> tbl:= CharacterTable( "2.A5" );;  f:= CharacterTable( "A5" );;
##  gap> fus:= GetFusionMap( tbl, f );
##  [ 1, 1, 2, 3, 3, 4, 4, 5, 5 ]
##  gap> inv:= InverseMap( fus );
##  [ [ 1, 2 ], 3, [ 4, 5 ], [ 6, 7 ], [ 8, 9 ] ]
##  gap> CompositionMaps( fus, inv );
##  [ 1, 2, 3, 4, 5 ]
##  gap> # transfer a power map ``up'' to the factor group
##  gap> pow:= PowerMap( tbl, 2 );
##  [ 1, 1, 2, 4, 4, 8, 8, 6, 6 ]
##  gap> CompositionMaps( fus, CompositionMaps( pow, inv ) );
##  [ 1, 1, 3, 5, 4 ]
##  gap> last = PowerMap( f, 2 );
##  true
##  gap> # transfer a power map of the factor group ``down'' to the group
##  gap> CompositionMaps( inv, CompositionMaps( PowerMap( f, 2 ), fus ) );
##  [ [ 1, 2 ], [ 1, 2 ], [ 1, 2 ], [ 4, 5 ], [ 4, 5 ], [ 8, 9 ], 
##    [ 8, 9 ], [ 6, 7 ], [ 6, 7 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "InverseMap" );


#############################################################################
##
#F  ProjectionMap( <fusionmap> ) . . . .  projection corresp. to a fusion map
##
##  <#GAPDoc Label="ProjectionMap">
##  <ManSection>
##  <Func Name="ProjectionMap" Arg='fusionmap'/>
##
##  <Description>
##  For a map <A>fusionmap</A>,
##  <Ref Func="ProjectionMap"/> returns a parametrized map
##  whose <M>i</M>-th entry is unbound if <M>i</M> is not in the image of
##  <A>fusionmap</A>,
##  and equal to <M>j</M> if <M>j</M> is the smallest position such that
##  <M>i</M> is the image of <A>fusionmap</A><C>[</C><M>j</M><C>]</C>.
##  <P/>
##  We have
##  <C>CompositionMaps( <A>fusionmap</A>, ProjectionMap( <A>fusionmap</A> ) )</C>
##  the identity map, i.e., first projecting and then fusing yields the
##  identity.
##  Note that <A>fusionmap</A> must <E>not</E> be a parametrized map.
##  <P/>
##  <Example><![CDATA[
##  gap> ProjectionMap( [ 1, 1, 1, 2, 2, 2, 3, 4, 5, 5, 5, 6, 6, 6 ] );
##  [ 1, 4, 7, 8, 9, 12 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ProjectionMap" );


#############################################################################
##
#F  Indirected( <character>, <paramap> )
##
##  <#GAPDoc Label="Indirected">
##  <ManSection>
##  <Func Name="Indirected" Arg='character, paramap'/>
##
##  <Description>
##  For a map <A>character</A> and a parametrized map <A>paramap</A>,
##  <Ref Func="Indirected"/> returns a parametrized map whose entry at
##  position <M>i</M> is
##  <A>character</A><C>[ </C><A>paramap</A><C>[</C><M>i</M><C>] ]</C>
##  if <A>paramap</A><C>[</C><M>i</M><C>]</C> is an integer,
##  and an unknown (see Chapter&nbsp;<Ref Chap="Unknowns"/>) otherwise.
##  <P/>
##  <Example><![CDATA[
##  gap> tbl:= CharacterTable( "M12" );;
##  gap> fus:= [ 1, 3, 4, [ 6, 7 ], 8, 10, [ 11, 12 ], [ 11, 12 ],
##  >            [ 14, 15 ], [ 14, 15 ] ];;
##  gap> List( Irr( tbl ){ [ 1 .. 6 ] }, x -> Indirected( x, fus ) );
##  [ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], 
##    [ 11, 3, 2, Unknown(9), 1, 0, Unknown(10), Unknown(11), 0, 0 ], 
##    [ 11, 3, 2, Unknown(12), 1, 0, Unknown(13), Unknown(14), 0, 0 ], 
##    [ 16, 0, -2, 0, 1, 0, 0, 0, Unknown(15), Unknown(16) ], 
##    [ 16, 0, -2, 0, 1, 0, 0, 0, Unknown(17), Unknown(18) ], 
##    [ 45, -3, 0, 1, 0, 0, -1, -1, 1, 1 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Indirected" );


#############################################################################
##
#F  Parametrized( <list> )
##
##  <#GAPDoc Label="Parametrized">
##  <ManSection>
##  <Func Name="Parametrized" Arg='list'/>
##
##  <Description>
##  For a list <A>list</A> of (parametrized) maps of the same length,
##  <Ref Func="Parametrized"/> returns the smallest parametrized map
##  containing all elements of <A>list</A>.
##  <P/>
##  <Ref Func="Parametrized"/> is the inverse function to
##  <Ref Func="ContainedMaps"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> Parametrized( [ [ 1, 2, 3, 4, 5 ], [ 1, 3, 2, 4, 5 ],
##  >                    [ 1, 2, 3, 4, 6 ] ] );
##  [ 1, [ 2, 3 ], [ 2, 3 ], 4, [ 5, 6 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Parametrized" );


#############################################################################
##
#F  ContainedMaps( <paramap> )
##
##  <#GAPDoc Label="ContainedMaps">
##  <ManSection>
##  <Func Name="ContainedMaps" Arg='paramap'/>
##
##  <Description>
##  For a parametrized map <A>paramap</A>,
##  <Ref Func="ContainedMaps"/> returns the set of all
##  maps contained in <A>paramap</A>.
##  <P/>
##  <Ref Func="ContainedMaps"/> is the inverse function to
##  <Ref Func="Parametrized"/> in the sense that
##  <C>Parametrized( ContainedMaps( <A>paramap</A> ) )</C>
##  is equal to <A>paramap</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> ContainedMaps( [ 1, [ 2, 3 ], [ 2, 3 ], 4, [ 5, 6 ] ] );
##  [ [ 1, 2, 2, 4, 5 ], [ 1, 2, 2, 4, 6 ], [ 1, 2, 3, 4, 5 ], 
##    [ 1, 2, 3, 4, 6 ], [ 1, 3, 2, 4, 5 ], [ 1, 3, 2, 4, 6 ], 
##    [ 1, 3, 3, 4, 5 ], [ 1, 3, 3, 4, 6 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ContainedMaps" );


#############################################################################
##
#F  UpdateMap( <character>, <paramap>, <indirected> )
##
##  <#GAPDoc Label="UpdateMap">
##  <ManSection>
##  <Func Name="UpdateMap" Arg='character, paramap, indirected'/>
##
##  <Description>
##  Let <A>character</A> be a map, <A>paramap</A> a parametrized map,
##  and <A>indirected</A> a parametrized map that is contained in
##  <C>CompositionMaps( <A>character</A>, <A>paramap</A> )</C>.
##  <P/>
##  Then <Ref Func="UpdateMap"/> changes <A>paramap</A> to the parametrized
##  map containing exactly the maps whose composition with <A>character</A>
##  is equal to <A>indirected</A>.
##  <P/>
##  If a contradiction is detected then <K>false</K> is returned immediately,
##  otherwise <K>true</K>.
##  <P/>
##  <Example><![CDATA[
##  gap> subtbl:= CharacterTable("S4(4).2");; tbl:= CharacterTable("He");;
##  gap> fus:= InitFusion( subtbl, tbl );;
##  gap> fus;
##  [ 1, 2, 2, [ 2, 3 ], 4, 4, [ 7, 8 ], [ 7, 8 ], 9, 9, 9, [ 10, 11 ], 
##    [ 10, 11 ], 18, 18, 25, 25, [ 26, 27 ], [ 26, 27 ], 2, [ 6, 7 ], 
##    [ 6, 7 ], [ 6, 7, 8 ], 10, 10, 17, 17, 18, [ 19, 20 ], [ 19, 20 ] ]
##  gap> chi:= Irr( tbl )[2];
##  Character( CharacterTable( "He" ), [ 51, 11, 3, 6, 0, 3, 3, -1, 1, 2, 
##    0, 3*E(7)+3*E(7)^2+3*E(7)^4, 3*E(7)^3+3*E(7)^5+3*E(7)^6, 2, 
##    E(7)+E(7)^2+2*E(7)^3+E(7)^4+2*E(7)^5+2*E(7)^6, 
##    2*E(7)+2*E(7)^2+E(7)^3+2*E(7)^4+E(7)^5+E(7)^6, 1, 1, 0, 0, 
##    -E(7)-E(7)^2-E(7)^4, -E(7)^3-E(7)^5-E(7)^6, E(7)+E(7)^2+E(7)^4, 
##    E(7)^3+E(7)^5+E(7)^6, 1, 0, 0, -1, -1, 0, 0, E(7)+E(7)^2+E(7)^4, 
##    E(7)^3+E(7)^5+E(7)^6 ] )
##  gap> filt:= Filtered( Irr( subtbl ), x -> x[1] = 50 );
##  [ Character( CharacterTable( "S4(4).2" ), 
##      [ 50, 10, 10, 2, 5, 5, -2, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, -1, 
##        10, 2, 2, 2, 1, 1, 0, 0, 0, -1, -1 ] ), 
##    Character( CharacterTable( "S4(4).2" ), 
##      [ 50, 10, 10, 2, 5, 5, -2, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, -1, 
##        -10, -2, -2, -2, -1, -1, 0, 0, 0, 1, 1 ] ) ]
##  gap> UpdateMap( chi, fus, filt[1] + TrivialCharacter( subtbl ) );
##  true
##  gap> fus;
##  [ 1, 2, 2, 3, 4, 4, 8, 7, 9, 9, 9, 10, 10, 18, 18, 25, 25, 
##    [ 26, 27 ], [ 26, 27 ], 2, [ 6, 7 ], [ 6, 7 ], [ 6, 7 ], 10, 10, 
##    17, 17, 18, [ 19, 20 ], [ 19, 20 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "UpdateMap" );


#############################################################################
##
#F  MeetMaps( <paramap1>, <paramap2> )
##
##  <#GAPDoc Label="MeetMaps">
##  <ManSection>
##  <Func Name="MeetMaps" Arg='paramap1, paramap2'/>
##
##  <Description>
##  For two parametrized maps <A>paramap1</A> and <A>paramap2</A>,
##  <Ref Func="MeetMaps"/> changes <A>paramap1</A> such that the image of
##  class <M>i</M> is the intersection of
##  <A>paramap1</A><C>[</C><M>i</M><C>]</C>
##  and <A>paramap2</A><C>[</C><M>i</M><C>]</C>.
##  <P/>
##  If this implies that no images remain for a class, the position of such a
##  class is returned.
##  If no such inconsistency occurs,
##  <Ref Func="MeetMaps"/> returns <K>true</K>.
##  <P/>
##  <Example><![CDATA[
##  gap> map1:= [ [ 1, 2 ], [ 3, 4 ], 5, 6, [ 7, 8, 9 ] ];;
##  gap> map2:= [ [ 1, 3 ], [ 3, 4 ], [ 5, 6 ], 6, [ 8, 9, 10 ] ];;
##  gap> MeetMaps( map1, map2 );  map1;
##  true
##  [ 1, [ 3, 4 ], 5, 6, [ 8, 9 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "MeetMaps" );


#############################################################################
##
#F  ImproveMaps( <map2>, <map1>, <composition>, <class> )
##
##  <ManSection>
##  <Func Name="ImproveMaps" Arg='map2, map1, composition, class'/>
##
##  <Description>
##  <Ref Func="ImproveMaps"/> is a utility for
##  <Ref Func="CommutativeDiagram"/> and <Ref Func="TestConsistencyMaps"/>.
##  <P/>
##  <A>composition</A> must be a set that is known to be an upper bound for
##  the composition <M>( <A>map2</A> \circ <A>map1</A> )[ <A>class</A> ]</M>.
##  If <C><A>map1</A>[ <A>class</A> ]</C><M> = x</M> is unique then
##  <M><A>map2</A>[ x ]</M> must be a set,
##  it will be replaced by its intersection with <A>composition</A>;
##  if <A>map1</A>[ <A>class</A> ] is a set then all elements <C>x</C> with
##  empty <C>Intersection( <A>map2</A>[ x ], <A>composition</A> )</C>
##  are excluded.
##  <P/>
##  <Ref Func="ImproveMaps"/> returns
##  <List>
##  <Mark>0</Mark>
##  <Item>
##    if no improvement was found,
##  </Item>
##  <Mark>-1</Mark>
##  <Item>
##    if <A>map1</A>[ <A>class</A> ] was improved,
##  </Item>
##  <Mark><A>x</A></Mark>
##  <Item>
##    if <A>map2</A>[ <A>x</A> ] was improved.
##  </Item>
##  </List>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "ImproveMaps" );


#############################################################################
##
#F  CommutativeDiagram( <paramap1>, <paramap2>, <paramap3>, <paramap4>[,
#F                      <improvements>] )
##
##  <#GAPDoc Label="CommutativeDiagram">
##  <ManSection>
##  <Func Name="CommutativeDiagram"
##  Arg='paramap1, paramap2, paramap3, paramap4[, improvements]'/>
##
##  <Description>
##  Let <A>paramap1</A>, <A>paramap2</A>, <A>paramap3</A>, <A>paramap4</A> be
##  parametrized maps covering parametrized maps <M>f_1</M>, <M>f_2</M>,
##  <M>f_3</M>, <M>f_4</M> with the property
##  that <C>CompositionMaps</C><M>( f_2, f_1 )</M> is equal to
##  <C>CompositionMaps</C><M>( f_4, f_3 )</M>.
##  <P/>
##  <Ref Func="CommutativeDiagram"/> checks this consistency,
##  and changes the arguments such that all possible images are removed that
##  cannot occur in the parametrized maps <M>f_i</M>.
##  <P/>
##  The return value is <K>fail</K> if an inconsistency was found.
##  Otherwise a record with the components <C>imp1</C>, <C>imp2</C>,
##  <C>imp3</C>, <C>imp4</C> is returned, each bound to the list of positions
##  where the corresponding parametrized map was changed,
##  <P/>
##  The optional argument <A>improvements</A> must be a record with
##  components <C>imp1</C>, <C>imp2</C>, <C>imp3</C>, <C>imp4</C>.
##  If such a record is specified then only diagrams are considered where
##  entries of the <M>i</M>-th component occur as preimages of the
##  <M>i</M>-th parametrized map.
##  <P/>
##  When an inconsistency is detected,
##  <Ref Func="CommutativeDiagram"/> immediately returns <K>fail</K>.
##  Otherwise a record is returned that contains four lists <C>imp1</C>,
##  <M>\ldots</M>, <C>imp4</C>:
##  The <M>i</M>-th component is the list of classes where the <M>i</M>-th
##  argument was changed.
##  <P/>
##  <Example><![CDATA[
##  gap> map1:= [[ 1, 2, 3 ], [ 1, 3 ]];; map2:= [[ 1, 2 ], 1, [ 1, 3 ]];;
##  gap> map3:= [ [ 2, 3 ], 3 ];;  map4:= [ , 1, 2, [ 1, 2 ] ];;
##  gap> imp:= CommutativeDiagram( map1, map2, map3, map4 );
##  rec( imp1 := [ 2 ], imp2 := [ 1 ], imp3 := [  ], imp4 := [  ] )
##  gap> map1;  map2;  map3;  map4;
##  [ [ 1, 2, 3 ], 1 ]
##  [ 2, 1, [ 1, 3 ] ]
##  [ [ 2, 3 ], 3 ]
##  [ , 1, 2, [ 1, 2 ] ]
##  gap> imp2:= CommutativeDiagram( map1, map2, map3, map4, imp );
##  rec( imp1 := [  ], imp2 := [  ], imp3 := [  ], imp4 := [  ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "CommutativeDiagram" );


#############################################################################
##
#F  CheckFixedPoints( <inside1>, <between>, <inside2> )
##
##  <#GAPDoc Label="CheckFixedPoints">
##  <ManSection>
##  <Func Name="CheckFixedPoints" Arg='inside1, between, inside2'/>
##
##  <Description>
##  Let <A>inside1</A>, <A>between</A>, <A>inside2</A> be parametrized maps,
##  where <A>between</A> is assumed to map each fixed point of <A>inside1</A>
##  (that is, <A>inside1</A><C>[</C><M>i</M><C>] = </C><A>i</A>)
##  to a fixed point of <A>inside2</A>
##  (that is, <A>between</A><C>[</C><M>i</M><C>]</C> is either an integer
##  that is fixed by <A>inside2</A> or a list that has nonempty intersection
##  with the union of its images under <A>inside2</A>).
##  <Ref Func="CheckFixedPoints"/> changes <A>between</A> and <A>inside2</A>
##  by removing all those entries violate this condition.
##  <P/>
##  When an inconsistency is detected,
##  <Ref Func="CheckFixedPoints"/> immediately returns <K>fail</K>.
##  Otherwise the list of positions is returned where changes occurred.
##  <P/>
##  <Example><![CDATA[
##  gap> subtbl:= CharacterTable( "L4(3).2_2" );;
##  gap> tbl:= CharacterTable( "O7(3)" );;
##  gap> fus:= InitFusion( subtbl, tbl );;  fus{ [ 48, 49 ] };
##  [ [ 54, 55, 56, 57 ], [ 54, 55, 56, 57 ] ]
##  gap> CheckFixedPoints( ComputedPowerMaps( subtbl )[5], fus,
##  >        ComputedPowerMaps( tbl )[5] );
##  [ 48, 49 ]
##  gap> fus{ [ 48, 49 ] };
##  [ [ 56, 57 ], [ 56, 57 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "CheckFixedPoints" );


#############################################################################
##
#F  TransferDiagram( <inside1>, <between>, <inside2>[, <improvements>] )
##
##  <#GAPDoc Label="TransferDiagram">
##  <ManSection>
##  <Func Name="TransferDiagram"
##   Arg='inside1, between, inside2[, improvements]'/>
##
##  <Description>
##  Let <A>inside1</A>, <A>between</A>, <A>inside2</A> be parametrized maps
##  covering parametrized maps <M>m_1</M>, <M>f</M>, <M>m_2</M> with the
##  property that <C>CompositionMaps</C><M>( m_2, f )</M> is equal to
##  <C>CompositionMaps</C><M>( f, m_1 )</M>.
##  <P/>
##  <Ref Func="TransferDiagram"/> checks this consistency, and changes the
##  arguments such that all possible images are removed that cannot occur in
##  the parametrized maps <M>m_i</M> and <M>f</M>.
##  <P/>
##  So <Ref Func="TransferDiagram"/> is similar to
##  <Ref Func="CommutativeDiagram"/>,
##  but <A>between</A> occurs twice in each diagram checked.
##  <P/>
##  If a record <A>improvements</A> with fields <C>impinside1</C>,
##  <C>impbetween</C>, and <C>impinside2</C> is specified,
##  only those diagrams with elements of <C>impinside1</C> as preimages of
##  <A>inside1</A>, elements of <C>impbetween</C> as preimages of
##  <A>between</A> or elements of <C>impinside2</C> as preimages of
##  <A>inside2</A> are considered.
##  <P/>
##  When an inconsistency is detected,
##  <Ref Func="TransferDiagram"/> immediately returns <K>fail</K>.
##  Otherwise a record is returned that contains three lists
##  <C>impinside1</C>, <C>impbetween</C>, and <C>impinside2</C> of positions
##  where the arguments were changed.
##  <P/>
##  <Example><![CDATA[
##  gap> subtbl:= CharacterTable( "2F4(2)" );;  tbl:= CharacterTable( "Ru" );;
##  gap> fus:= InitFusion( subtbl, tbl );;
##  gap> permchar:= Sum( Irr( tbl ){ [ 1, 5, 6 ] } );;
##  gap> CheckPermChar( subtbl, tbl, fus, permchar );; fus;
##  [ 1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, [ 13, 15 ], 16, [ 18, 19 ], 20, 
##    [ 25, 26 ], [ 25, 26 ], 5, 5, 6, 8, 14, [ 13, 15 ], [ 18, 19 ], 
##    [ 18, 19 ], [ 25, 26 ], [ 25, 26 ], 27, 27 ]
##  gap> tr:= TransferDiagram(PowerMap( subtbl, 2), fus, PowerMap(tbl, 2));
##  rec( impbetween := [ 12, 23 ], impinside1 := [  ], impinside2 := [  ] 
##   )
##  gap> tr:= TransferDiagram(PowerMap(subtbl, 3), fus, PowerMap( tbl, 3 ));
##  rec( impbetween := [ 14, 24, 25 ], impinside1 := [  ], 
##    impinside2 := [  ] )
##  gap> tr:= TransferDiagram( PowerMap(subtbl, 3), fus, PowerMap(tbl, 3),
##  >             tr );
##  rec( impbetween := [  ], impinside1 := [  ], impinside2 := [  ] )
##  gap> fus;
##  [ 1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, 15, 16, 18, 20, [ 25, 26 ], 
##    [ 25, 26 ], 5, 5, 6, 8, 14, 13, 19, 19, [ 25, 26 ], [ 25, 26 ], 27, 
##    27 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "TransferDiagram" );


#############################################################################
##
#F  TestConsistencyMaps( <powermap1>, <fusionmap>, <powermap2>[, <fusimp>] )
##
##  <#GAPDoc Label="TestConsistencyMaps">
##  <ManSection>
##  <Func Name="TestConsistencyMaps"
##   Arg='powermap1, fusionmap, powermap2[, fusimp]'/>
##
##  <Description>
##  Let <A>powermap1</A> and <A>powermap2</A> be lists of parametrized maps,
##  and <A>fusionmap</A> a parametrized map,
##  such that for each <M>i</M>, the <M>i</M>-th entry in <A>powermap1</A>,
##  <A>fusionmap</A>, and the <M>i</M>-th entry in <A>powermap2</A>
##  (if bound) are valid arguments for <Ref Func="TransferDiagram"/>.
##  So a typical situation for applying <Ref Func="TestConsistencyMaps"/> is
##  that <A>fusionmap</A> is an approximation of a class fusion,
##  and <A>powermap1</A>, <A>powermap2</A> are the lists of power maps of the
##  subgroup and the group.
##  <P/>
##  <Ref Func="TestConsistencyMaps"/> repeatedly applies
##  <Ref Func="TransferDiagram"/> to these arguments for all <M>i</M> until
##  no more changes occur.
##  <P/>
##  If a list <A>fusimp</A> is specified then only those diagrams with
##  elements of <A>fusimp</A> as preimages of <A>fusionmap</A> are
##  considered.
##  <P/>
##  When an inconsistency is detected,
##  <Ref Func="TestConsistencyMaps"/> immediately returns <K>false</K>.
##  Otherwise <K>true</K> is returned.
##  <P/>
##  <Example><![CDATA[
##  gap> subtbl:= CharacterTable( "2F4(2)" );;  tbl:= CharacterTable( "Ru" );;
##  gap> fus:= InitFusion( subtbl, tbl );;
##  gap> permchar:= Sum( Irr( tbl ){ [ 1, 5, 6 ] } );;
##  gap> CheckPermChar( subtbl, tbl, fus, permchar );; fus;
##  [ 1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, [ 13, 15 ], 16, [ 18, 19 ], 20, 
##    [ 25, 26 ], [ 25, 26 ], 5, 5, 6, 8, 14, [ 13, 15 ], [ 18, 19 ], 
##    [ 18, 19 ], [ 25, 26 ], [ 25, 26 ], 27, 27 ]
##  gap> TestConsistencyMaps( ComputedPowerMaps( subtbl ), fus,
##  >        ComputedPowerMaps( tbl ) );
##  true
##  gap> fus;
##  [ 1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, 15, 16, 18, 20, [ 25, 26 ], 
##    [ 25, 26 ], 5, 5, 6, 8, 14, 13, 19, 19, [ 25, 26 ], [ 25, 26 ], 27, 
##    27 ]
##  gap> Indeterminateness( fus );
##  16
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "TestConsistencyMaps" );


#############################################################################
##
#F  Indeterminateness( <paramap> ) . . . . the indeterminateness of a paramap
##
##  <#GAPDoc Label="Indeterminateness">
##  <ManSection>
##  <Func Name="Indeterminateness" Arg='paramap'/>
##
##  <Description>
##  For a parametrized map <A>paramap</A>, <Ref Func="Indeterminateness"/>
##  returns the number of maps contained in <A>paramap</A>, that is,
##  the product of lengths of lists in <A>paramap</A> denoting lists of
##  several images.
##  <P/>
##  <Example><![CDATA[
##  gap> Indeterminateness([ 1, [ 2, 3 ], [ 4, 5 ], [ 6, 7, 8, 9, 10 ], 11 ]);
##  20
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Indeterminateness" );


#############################################################################
##
#F  IndeterminatenessInfo( <paramap> )
##
##  <ManSection>
##  <Func Name="IndeterminatenessInfo" Arg='paramap'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "IndeterminatenessInfo" );


#############################################################################
##
#F  PrintAmbiguity( <list>, <paramap> ) . . . .  ambiguity of characters with
#F                                                       respect to a paramap
##
##  <#GAPDoc Label="PrintAmbiguity">
##  <ManSection>
##  <Func Name="PrintAmbiguity" Arg='list, paramap'/>
##
##  <Description>
##  For each map in the list <A>list</A>, <Ref Func="PrintAmbiguity"/> prints
##  its position in <A>list</A>,
##  the indeterminateness (see&nbsp;<Ref Func="Indeterminateness"/>) of the
##  composition with the parametrized map <A>paramap</A>,
##  and the list of positions where a list of images occurs in this
##  composition.
##  <P/>
##  <Example><![CDATA[
##  gap> paramap:= [ 1, [ 2, 3 ], [ 3, 4 ], [ 2, 3, 4 ], 5 ];;
##  gap> list:= [ [ 1, 1, 1, 1, 1 ], [ 1, 1, 2, 2, 3 ], [ 1, 2, 3, 4, 5 ] ];;
##  gap> PrintAmbiguity( list, paramap );
##  1 1 [  ]
##  2 4 [ 2, 4 ]
##  3 12 [ 2, 3, 4 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "PrintAmbiguity" );


#############################################################################
##
#F  ContainedSpecialVectors( <tbl>, <chars>, <paracharacter>, <func> )
#F  IntScalarProducts( <tbl>, <chars>, <candidate> )
#F  NonnegIntScalarProducts( <tbl>, <chars>, <candidate> )
#F  ContainedPossibleVirtualCharacters( <tbl>, <chars>, <paracharacter> )
#F  ContainedPossibleCharacters( <tbl>, <chars>, <paracharacter> )
##
##  <#GAPDoc Label="ContainedSpecialVectors">
##  <ManSection>
##  <Func Name="ContainedSpecialVectors"
##   Arg='tbl, chars, paracharacter, func'/>
##  <Func Name="IntScalarProducts" Arg='tbl, chars, candidate'/>
##  <Func Name="NonnegIntScalarProducts" Arg='tbl, chars, candidate'/>
##  <Func Name="ContainedPossibleVirtualCharacters"
##   Arg='tbl, chars, paracharacter'/>
##  <Func Name="ContainedPossibleCharacters"
##   Arg='tbl, chars, paracharacter'/>
##
##  <Description>
##  Let <A>tbl</A> be an ordinary character table,
##  <A>chars</A> a list of class functions (or values lists),
##  <A>paracharacter</A> a parametrized class function of <A>tbl</A>,
##  and <A>func</A> a function that expects the three arguments <A>tbl</A>,
##  <A>chars</A>, and a values list of a class function, and that returns
##  either <K>true</K> or <K>false</K>.
##  <P/>
##  <Ref Func="ContainedSpecialVectors"/> returns
##  the list of all those elements <A>vec</A> of <A>paracharacter</A> that
##  have integral norm,
##  have integral scalar product with the principal character of <A>tbl</A>,
##  and that satisfy
##  <A>func</A><C>( </C><A>tbl</A>, <A>chars</A>, <A>vec</A> <C>) = </C><K>true</K>.
##  <P/>
##  Two special cases of <A>func</A> are the check whether the scalar
##  products in <A>tbl</A> between the vector <A>vec</A> and all lists in
##  <A>chars</A> are integers or nonnegative integers, respectively.
##  These functions are accessible as global variables
##  <Ref Func="IntScalarProducts"/> and
##  <Ref Func="NonnegIntScalarProducts"/>,
##  and <Ref Func="ContainedPossibleVirtualCharacters"/> and
##  <Ref Func="ContainedPossibleCharacters"/> provide access to these special
##  cases of <Ref Func="ContainedSpecialVectors"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> subtbl:= CharacterTable( "HSM12" );;  tbl:= CharacterTable( "HS" );;
##  gap> fus:= InitFusion( subtbl, tbl );;
##  gap> rest:= CompositionMaps( Irr( tbl )[8], fus );
##  [ 231, [ -9, 7 ], [ -9, 7 ], [ -9, 7 ], 6, 15, 15, [ -1, 15 ], 
##    [ -1, 15 ], 1, [ 1, 6 ], [ 1, 6 ], [ 1, 6 ], [ 1, 6 ], [ -2, 0 ], 
##    [ 1, 2 ], [ 1, 2 ], [ 1, 2 ], 0, 0, 1, 0, 0, 0, 0 ]
##  gap> irr:= Irr( subtbl );;
##  gap> # no further condition
##  gap> cont1:= ContainedSpecialVectors( subtbl, irr, rest,
##  >                function( tbl, chars, vec ) return true; end );;
##  gap> Length( cont1 );
##  24
##  gap> # require scalar products to be integral
##  gap> cont2:= ContainedSpecialVectors( subtbl, irr, rest,
##  >                IntScalarProducts );
##  [ [ 231, 7, -9, -9, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0, 
##        0, 1, 0, 0, 0, 0 ], 
##    [ 231, 7, -9, 7, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0, 
##        0, 1, 0, 0, 0, 0 ], 
##    [ 231, 7, -9, -9, 6, 15, 15, 15, 15, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0, 
##        0, 1, 0, 0, 0, 0 ], 
##    [ 231, 7, -9, 7, 6, 15, 15, 15, 15, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0, 
##        0, 1, 0, 0, 0, 0 ] ]
##  gap> # additionally require scalar products to be nonnegative
##  gap> cont3:= ContainedSpecialVectors( subtbl, irr, rest,
##  >                NonnegIntScalarProducts );
##  [ [ 231, 7, -9, -9, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0, 
##        0, 1, 0, 0, 0, 0 ], 
##    [ 231, 7, -9, 7, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0, 
##        0, 1, 0, 0, 0, 0 ] ]
##  gap> cont2 = ContainedPossibleVirtualCharacters( subtbl, irr, rest );
##  true
##  gap> cont3 = ContainedPossibleCharacters( subtbl, irr, rest );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##

DeclareGlobalFunction( "ContainedSpecialVectors" );
DeclareGlobalFunction( "IntScalarProducts" );
DeclareGlobalFunction( "NonnegIntScalarProducts" );
DeclareGlobalFunction( "ContainedPossibleVirtualCharacters" );
DeclareGlobalFunction( "ContainedPossibleCharacters" );


#############################################################################
##
#F  ContainedDecomposables( <constituents>, <moduls>, <parachar>, <func> )
#F  ContainedCharacters( <tbl>, <constituents>, <parachar> )
##
##  <#GAPDoc Label="ContainedDecomposables">
##  <ManSection>
##  <Func Name="ContainedDecomposables"
##   Arg='constituents, moduls, parachar, func'/>
##  <Func Name="ContainedCharacters" Arg='tbl, constituents, parachar'/>
##
##  <Description>
##  For these functions, 
##  let <A>constituents</A> be a list of <E>rational</E> class functions,
##  <A>moduls</A> a list of positive integers,
##  <A>parachar</A> a parametrized rational class function,
##  <A>func</A> a function that returns either <K>true</K> or <K>false</K>
##  when called with (a values list of) a class function,
##  and <A>tbl</A> a character table.
##  <P/>
##  <Ref Func="ContainedDecomposables"/> returns the set of all elements
##  <M>\chi</M> of <A>parachar</A> that satisfy
##  <A>func</A><M>( \chi ) =</M> <K>true</K>
##  and that lie in the <M>&ZZ;</M>-lattice spanned by <A>constituents</A>,
##  modulo <A>moduls</A>.
##  The latter means they lie in the <M>&ZZ;</M>-lattice spanned by
##  <A>constituents</A> and the set
##  <M>\{ <A>moduls</A>[i] \cdot e_i; 1 \leq i \leq n \}</M>
##  where <M>n</M> is the length of <A>parachar</A> and  <M>e_i</M> is the
##  <M>i</M>-th standard basis vector.
##  <P/>
##  One application of <Ref Func="ContainedDecomposables"/> is the following.
##  <A>constituents</A> is a list of (values lists of) rational characters of
##  an ordinary character table <A>tbl</A>,
##  <A>moduls</A> is the list of centralizer orders of <A>tbl</A>
##  (see&nbsp;<Ref Func="SizesCentralizers"/>),
##  and <A>func</A> checks whether a vector in the lattice mentioned above
##  has nonnegative integral scalar product in <A>tbl</A> with all entries of
##  <A>constituents</A>.
##  This situation is handled by <Ref Func="ContainedCharacters"/>.
##  Note that the entries of the result list are <E>not</E> necessary linear
##  combinations of <A>constituents</A>,
##  and they are <E>not</E> necessarily characters of <A>tbl</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> subtbl:= CharacterTable( "HSM12" );;  tbl:= CharacterTable( "HS" );;
##  gap> rat:= RationalizedMat( Irr( subtbl ) );;
##  gap> fus:= InitFusion( subtbl, tbl );;
##  gap> rest:= CompositionMaps( Irr( tbl )[8], fus );
##  [ 231, [ -9, 7 ], [ -9, 7 ], [ -9, 7 ], 6, 15, 15, [ -1, 15 ], 
##    [ -1, 15 ], 1, [ 1, 6 ], [ 1, 6 ], [ 1, 6 ], [ 1, 6 ], [ -2, 0 ], 
##    [ 1, 2 ], [ 1, 2 ], [ 1, 2 ], 0, 0, 1, 0, 0, 0, 0 ]
##  gap> # compute all vectors in the lattice
##  gap> ContainedDecomposables( rat, SizesCentralizers( subtbl ), rest,
##  >        ReturnTrue );
##  [ [ 231, 7, -9, -9, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0, 
##        0, 1, 0, 0, 0, 0 ], 
##    [ 231, 7, -9, -9, 6, 15, 15, 15, 15, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0, 
##        0, 1, 0, 0, 0, 0 ], 
##    [ 231, 7, -9, 7, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0, 
##        0, 1, 0, 0, 0, 0 ], 
##    [ 231, 7, -9, 7, 6, 15, 15, 15, 15, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0, 
##        0, 1, 0, 0, 0, 0 ] ]
##  gap> # compute only those vectors that are characters
##  gap> ContainedDecomposables( rat, SizesCentralizers( subtbl ), rest,
##  >        x -> NonnegIntScalarProducts( subtbl, Irr( subtbl ), x ) );
##  [ [ 231, 7, -9, -9, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0, 
##        0, 1, 0, 0, 0, 0 ], 
##    [ 231, 7, -9, 7, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0, 
##        0, 1, 0, 0, 0, 0 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ContainedDecomposables" );
DeclareGlobalFunction( "ContainedCharacters" );


#############################################################################
##
##  5. Subroutines for the Construction of Power Maps
##


#############################################################################
##
#F  InitPowerMap( <tbl>, <prime> )
##
##  <#GAPDoc Label="InitPowerMap">
##  <ManSection>
##  <Func Name="InitPowerMap" Arg='tbl, prime'/>
##
##  <Description>
##  For an ordinary character table <A>tbl</A> and a prime <A>prime</A>,
##  <Ref Func="InitPowerMap"/> returns a parametrized map that is a first
##  approximation of the <A>prime</A>-th powermap of <A>tbl</A>,
##  using the conditions 1.&nbsp;and 2.&nbsp;listed in the description of
##  <Ref Func="PossiblePowerMaps"/>.
##  <P/>
##  If there are classes for which no images are possible, according to these
##  criteria, then <K>fail</K> is returned.
##  <P/>
##  <Example><![CDATA[
##  gap> t:= CharacterTable( "U4(3).4" );;
##  gap> pow:= InitPowerMap( t, 2 );
##  [ 1, 1, 3, 4, 5, [ 2, 16 ], [ 2, 16, 17 ], 8, 3, [ 3, 4 ], 
##    [ 11, 12 ], [ 11, 12 ], [ 6, 7, 18, 19, 30, 31, 32, 33 ], 14, 
##    [ 9, 20 ], 1, 1, 2, 2, 3, [ 3, 4, 5 ], [ 3, 4, 5 ], 
##    [ 6, 7, 18, 19, 30, 31, 32, 33 ], 8, 9, 9, [ 9, 10, 20, 21, 22 ], 
##    [ 11, 12 ], [ 11, 12 ], 16, 16, [ 2, 16 ], [ 2, 16 ], 17, 17, 
##    [ 6, 18, 30, 31, 32, 33 ], [ 6, 18, 30, 31, 32, 33 ], 
##    [ 6, 7, 18, 19, 30, 31, 32, 33 ], [ 6, 7, 18, 19, 30, 31, 32, 33 ], 
##    20, 20, [ 9, 20 ], [ 9, 20 ], [ 9, 10, 20, 21, 22 ], 
##    [ 9, 10, 20, 21, 22 ], 24, 24, [ 15, 25, 26, 40, 41, 42, 43 ], 
##    [ 15, 25, 26, 40, 41, 42, 43 ], [ 28, 29 ], [ 28, 29 ], [ 28, 29 ], 
##    [ 28, 29 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "InitPowerMap" );


#############################################################################
##
##  <#GAPDoc Label="[7]{ctblmaps}">
##  In the argument lists of the functions
##  <Ref Func="Congruences" Label="for character tables"/>,
##  <Ref Func="ConsiderKernels"/>,
##  and <Ref Func="ConsiderSmallerPowerMaps"/>,
##  <A>tbl</A> is an ordinary character table,
##  <A>chars</A> a list of (values lists of) characters of <A>tbl</A>,
##  <A>prime</A> a prime integer,
##  <A>approxmap</A> a parametrized map that is an approximation for the
##  <A>prime</A>-th power map of <A>tbl</A>
##  (e.g., a list returned by <Ref Func="InitPowerMap"/>,
##  and <A>quick</A> a Boolean.
##  <P/>
##  The <A>quick</A> value <K>true</K> means that only those classes are
##  considered for which <A>approxmap</A> lists more than one possible image.
##  <#/GAPDoc>
##


#############################################################################
##
#F  Congruences( <tbl>, <chars>, <approxmap>, <prime>, <quick> )
##
##  <#GAPDoc Label="Congruences">
##  <ManSection>
##  <Func Name="Congruences" Arg='tbl, chars, approxmap, prime, quick'
##  Label="for character tables"/>
##
##  <Description>
##  <Ref Func="Congruences" Label="for character tables"/>
##  replaces the entries of <A>approxmap</A> by improved values,
##  according to condition 3.&nbsp;listed in the description
##  of <Ref Func="PossiblePowerMaps"/>.
##  <P/>
##  For each class for which no images are possible according to the tests,
##  the new value of <A>approxmap</A> is an empty list.
##  <Ref Func="Congruences" Label="for character tables"/>
##  returns <K>true</K> if no such inconsistencies occur,
##  and <K>false</K> otherwise.
##  <P/>
##  <Example><![CDATA[
##  gap> Congruences( t, Irr( t ), pow, 2, false );  pow;
##  true
##  [ 1, 1, 3, 4, 5, 2, 2, 8, 3, 4, 11, 12, [ 6, 7 ], 14, 9, 1, 1, 2, 2, 
##    3, 4, 5, [ 6, 7 ], 8, 9, 9, 10, 11, 12, 16, 16, 16, 16, 17, 17, 18, 
##    18, [ 18, 19 ], [ 18, 19 ], 20, 20, 20, 20, 22, 22, 24, 24, 
##    [ 25, 26 ], [ 25, 26 ], 28, 28, 29, 29 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Congruences" );


#############################################################################
##
#F  ConsiderKernels( <tbl>, <chars>, <approxmap>, <prime>, <quick> )
##
##  <#GAPDoc Label="ConsiderKernels">
##  <ManSection>
##  <Func Name="ConsiderKernels" Arg='tbl, chars, approxmap, prime, quick'/>
##
##  <Description>
##  <Ref Func="ConsiderKernels"/> replaces the entries of <A>approxmap</A> by
##  improved values, according to condition 4.&nbsp;listed in the description
##  of <Ref Func="PossiblePowerMaps"/>.
##  <P/>
##  <Ref Func="Congruences" Label="for character tables"/>
##  returns <K>true</K> if the orders of the
##  kernels of all characters in <A>chars</A> divide the order of the group
##  of <A>tbl</A>, and <K>false</K> otherwise.
##  <P/>
##  <Example><![CDATA[
##  gap> t:= CharacterTable( "A7.2" );;  init:= InitPowerMap( t, 2 );
##  [ 1, 1, 3, 4, [ 2, 9, 10 ], 6, 3, 8, 1, 1, [ 2, 9, 10 ], 3, [ 3, 4 ], 
##    6, [ 7, 12 ] ]
##  gap> ConsiderKernels( t, Irr( t ), init, 2, false );
##  true
##  gap> init;
##  [ 1, 1, 3, 4, 2, 6, 3, 8, 1, 1, 2, 3, [ 3, 4 ], 6, 7 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ConsiderKernels" );


#############################################################################
##
#F  ConsiderSmallerPowerMaps( <tbl>, <approxmap>, <prime>, <quick> )
##
##  <#GAPDoc Label="ConsiderSmallerPowerMaps">
##  <ManSection>
##  <Func Name="ConsiderSmallerPowerMaps"
##   Arg='tbl, approxmap, prime, quick'/>
##
##  <Description>
##  <Ref Func="ConsiderSmallerPowerMaps"/> replaces the entries of
##  <A>approxmap</A> by improved values,
##  according to condition 5.&nbsp;listed in the description of
##  <Ref Func="PossiblePowerMaps"/>.
##  <P/>
##  <Ref Func="ConsiderSmallerPowerMaps"/> returns <K>true</K> if each class
##  admits at least one image after the checks, otherwise <K>false</K> is
##  returned.
##  If no element orders of <A>tbl</A> are stored
##  (see&nbsp;<Ref Func="OrdersClassRepresentatives"/>) then <K>true</K> is
##  returned without any tests.
##  <P/>
##  <Example><![CDATA[
##  gap> t:= CharacterTable( "3.A6" );;  init:= InitPowerMap( t, 5 );
##  [ 1, [ 2, 3 ], [ 2, 3 ], 4, [ 5, 6 ], [ 5, 6 ], [ 7, 8 ], [ 7, 8 ], 
##    9, [ 10, 11 ], [ 10, 11 ], 1, [ 2, 3 ], [ 2, 3 ], 1, [ 2, 3 ], 
##    [ 2, 3 ] ]
##  gap> Indeterminateness( init );
##  4096
##  gap> ConsiderSmallerPowerMaps( t, init, 5, false );
##  true
##  gap> Indeterminateness( init );
##  256
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ConsiderSmallerPowerMaps" );


#############################################################################
##
#F  MinusCharacter( <character>, <primepowermap>, <prime> )
##
##  <#GAPDoc Label="MinusCharacter">
##  <ManSection>
##  <Func Name="MinusCharacter" Arg='character, primepowermap, prime'/>
##
##  <Description>
##  Let <A>character</A> be (the list of values of) a class function
##  <M>\chi</M>, <A>prime</A> a prime integer <M>p</M>, and
##  <A>primepowermap</A> a parametrized map that is an approximation of the
##  <M>p</M>-th power map for the character table of <M>\chi</M>.
##  <Ref Func="MinusCharacter"/> returns the parametrized map of values of
##  <M>\chi^{{p-}}</M>,
##  which is defined by
##  <M>\chi^{{p-}}(g) = ( \chi(g)^p - \chi(g^p) ) / p</M>.
##  <P/>
##  <Example><![CDATA[
##  gap> tbl:= CharacterTable( "S7" );;  pow:= InitPowerMap( tbl, 2 );;
##  gap> pow;
##  [ 1, 1, 3, 4, [ 2, 9, 10 ], 6, 3, 8, 1, 1, [ 2, 9, 10 ], 3, [ 3, 4 ], 
##    6, [ 7, 12 ] ]
##  gap> chars:= Irr( tbl ){ [ 2 .. 5 ] };;
##  gap> List( chars, x -> MinusCharacter( x, pow, 2 ) );
##  [ [ 0, 0, 0, 0, [ 0, 1 ], 0, 0, 0, 0, 0, [ 0, 1 ], 0, 0, 0, [ 0, 1 ] ]
##      , 
##    [ 15, -1, 3, 0, [ -2, -1, 0 ], 0, -1, 1, 5, -3, [ 0, 1, 2 ], -1, 0, 
##        0, [ 0, 1 ] ], 
##    [ 15, -1, 3, 0, [ -1, 0, 2 ], 0, -1, 1, 5, -3, [ 1, 2, 4 ], -1, 0, 
##        0, 1 ], 
##    [ 190, -2, 1, 1, [ 0, 2 ], 0, 1, 1, -10, -10, [ 0, 2 ], -1, -1, 0, 
##        [ -1, 0 ] ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "MinusCharacter" );


#############################################################################
##
#F  PowerMapsAllowedBySymmetrizations( <tbl>, <subchars>, <chars>,
#F                                     <approxmap>, <prime>, <parameters> )
##
##  <#GAPDoc Label="PowerMapsAllowedBySymmetrizations">
##  <ManSection>
##  <Func Name="PowerMapsAllowedBySymmetrizations"
##   Arg='tbl, subchars, chars, approxmap, prime, parameters'/>
##
##  <Description>
##  Let <A>tbl</A> be an ordinary character table,
##  <A>prime</A> a prime integer,
##  <A>approxmap</A> a parametrized map that is an approximation of the
##  <A>prime</A>-th power map of <A>tbl</A>
##  (e.g., a list returned by <Ref Func="InitPowerMap"/>,
##  <A>chars</A> and <A>subchars</A> two lists of (values lists of)
##  characters of <A>tbl</A>,
##  and <A>parameters</A> a record with components
##  <C>maxlen</C>, <C>minamb</C>, <C>maxamb</C> (three integers),
##  <C>quick</C> (a Boolean),
##  and <C>contained</C> (a function).
##  Usual values of <C>contained</C> are <Ref Func="ContainedCharacters"/> or
##  <Ref Func="ContainedPossibleCharacters"/>.
##  <P/>
##  <Ref Func="PowerMapsAllowedBySymmetrizations"/> replaces the entries of
##  <A>approxmap</A> by improved values,
##  according to condition 6.&nbsp;listed in the description of
##  <Ref Func="PossiblePowerMaps"/>.
##  <P/>
##  More precisely, the strategy used is as follows.
##  <P/>
##  First, for each <M>\chi \in <A>chars</A></M>,
##  let <C>minus:= MinusCharacter(</C><M>\chi</M><C>, <A>approxmap</A>,
##  <A>prime</A>)</C>.
##  <List>
##  <Item>
##    If <C>Indeterminateness( minus )</C><M> = 1</M> and
##    <C><A>parameters</A>.quick = false</C> then the scalar products of
##    <C>minus</C> with <A>subchars</A> are checked;
##    if not all scalar products are nonnegative integers then
##    an empty list is returned,
##    otherwise <M>\chi</M> is deleted from the list of characters to
##    inspect.
##  </Item>
##  <Item>
##    Otherwise if <C>Indeterminateness( minus )</C> is smaller than
##    <C><A>parameters</A>.minamb</C> then <M>\chi</M> is deleted from the
##    list of characters.
##  </Item>
##  <Item>
##    If <C><A>parameters</A>.minamb</C> <M>\leq</M>
##    <C>Indeterminateness( minus )</C> <M>\leq</M>
##    <C><A>parameters</A>.maxamb</C> then
##    construct the list of contained class functions
##    <C>poss:= <A>parameters</A>.contained(<A>tbl</A>, <A>subchars</A>,
##    minus)</C> and <C>Parametrized( poss )</C>,
##    and improve the approximation of the power map using
##    <Ref Func="UpdateMap"/>.
##  </Item>
##  </List>
##  <P/>
##  If this yields no further immediate improvements then we branch.
##  If there is a character from <A>chars</A> left with less or equal
##  <C><A>parameters</A>.maxlen</C> possible symmetrizations,
##  compute the union of power maps allowed by these possibilities.
##  Otherwise we choose a class <M>C</M> such that the possible
##  symmetrizations of a character in <A>chars</A> differ at <M>C</M>,
##  and compute recursively the union of all allowed power maps with image
##  at <M>C</M> fixed in the set given by the current approximation of the
##  power map.
##  <P/>
##  <Example><![CDATA[
##  gap> tbl:= CharacterTable( "U4(3).4" );;
##  gap> pow:= InitPowerMap( tbl, 2 );;
##  gap> Congruences( tbl, Irr( tbl ), pow, 2 );;  pow;
##  [ 1, 1, 3, 4, 5, 2, 2, 8, 3, 4, 11, 12, [ 6, 7 ], 14, 9, 1, 1, 2, 2, 
##    3, 4, 5, [ 6, 7 ], 8, 9, 9, 10, 11, 12, 16, 16, 16, 16, 17, 17, 18, 
##    18, [ 18, 19 ], [ 18, 19 ], 20, 20, 20, 20, 22, 22, 24, 24, 
##    [ 25, 26 ], [ 25, 26 ], 28, 28, 29, 29 ]
##  gap> PowerMapsAllowedBySymmetrizations( tbl, Irr( tbl ), Irr( tbl ),
##  >       pow, 2, rec( maxlen:= 10, contained:= ContainedPossibleCharacters,
##  >       minamb:= 2, maxamb:= infinity, quick:= false ) );
##  [ [ 1, 1, 3, 4, 5, 2, 2, 8, 3, 4, 11, 12, 6, 14, 9, 1, 1, 2, 2, 3, 4, 
##        5, 6, 8, 9, 9, 10, 11, 12, 16, 16, 16, 16, 17, 17, 18, 18, 18, 
##        18, 20, 20, 20, 20, 22, 22, 24, 24, 25, 26, 28, 28, 29, 29 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "PowerMapsAllowedBySymmetrizations" );

DeclareSynonym( "PowerMapsAllowedBySymmetrisations",
    PowerMapsAllowedBySymmetrizations );


#############################################################################
##
##  6. Subroutines for the Construction of Class Fusions
##


#############################################################################
##
#F  InitFusion( <subtbl>, <tbl> )
##
##  <#GAPDoc Label="InitFusion">
##  <ManSection>
##  <Func Name="InitFusion" Arg='subtbl, tbl'/>
##
##  <Description>
##  For two ordinary character tables <A>subtbl</A> and <A>tbl</A>,
##  <Ref Func="InitFusion"/> returns a parametrized map that is a first
##  approximation of the class fusion from <A>subtbl</A> to <A>tbl</A>,
##  using condition&nbsp;1.&nbsp;listed in the description of
##  <Ref Func="PossibleClassFusions"/>.
##  <P/>
##  If there are classes for which no images are possible, according to this
##  criterion, then <K>fail</K> is returned.
##  <P/>
##  <Example><![CDATA[
##  gap> subtbl:= CharacterTable( "2F4(2)" );;  tbl:= CharacterTable( "Ru" );;
##  gap> fus:= InitFusion( subtbl, tbl );
##  [ 1, 2, 2, 4, [ 5, 6 ], [ 5, 6, 7, 8 ], [ 5, 6, 7, 8 ], [ 9, 10 ], 
##    11, 14, 14, [ 13, 14, 15 ], [ 16, 17 ], [ 18, 19 ], 20, [ 25, 26 ], 
##    [ 25, 26 ], [ 5, 6 ], [ 5, 6 ], [ 5, 6 ], [ 5, 6, 7, 8 ], 
##    [ 13, 14, 15 ], [ 13, 14, 15 ], [ 18, 19 ], [ 18, 19 ], [ 25, 26 ], 
##    [ 25, 26 ], [ 27, 28, 29 ], [ 27, 28, 29 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "InitFusion" );


#############################################################################
##
#F  CheckPermChar( <subtbl>, <tbl>, <approxmap>, <permchar> )
##
##  <#GAPDoc Label="CheckPermChar">
##  <ManSection>
##  <Func Name="CheckPermChar" Arg='subtbl, tbl, approxmap, permchar'/>
##
##  <Description>
##  <Index>permutation character</Index>
##  <Ref Func="CheckPermChar"/> replaces the entries of the parametrized map
##  <A>approxmap</A> by improved values,
##  according to condition&nbsp;3.&nbsp;listed in the description of
##  <Ref Func="PossibleClassFusions"/>.
##  <P/>
##  <Ref Func="CheckPermChar"/> returns <K>true</K> if no inconsistency
##  occurred, and <K>false</K> otherwise.
##  <P/>
##  <Example><![CDATA[
##  gap> permchar:= Sum( Irr( tbl ){ [ 1, 5, 6 ] } );;
##  gap> CheckPermChar( subtbl, tbl, fus, permchar ); fus;
##  true
##  [ 1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, [ 13, 15 ], 16, [ 18, 19 ], 20, 
##    [ 25, 26 ], [ 25, 26 ], 5, 5, 6, 8, 14, [ 13, 15 ], [ 18, 19 ], 
##    [ 18, 19 ], [ 25, 26 ], [ 25, 26 ], 27, 27 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "CheckPermChar" );


#############################################################################
##
#F  ConsiderTableAutomorphisms( <approxmap>, <grp> )
##
##  <#GAPDoc Label="ConsiderTableAutomorphisms">
##  <ManSection>
##  <Func Name="ConsiderTableAutomorphisms" Arg='approxmap, grp'/>
##
##  <Description>
##  <Index>table automorphisms</Index>
##  <Ref Func="ConsiderTableAutomorphisms"/> replaces the entries of the
##  parametrized map <A>approxmap</A> by improved values, according to
##  condition&nbsp;4.&nbsp;listed in the description of
##  <Ref Func="PossibleClassFusions"/>.
##  <P/>
##  Afterwards exactly one representative of fusion maps (contained in
##  <A>approxmap</A>) in each orbit under the action of the permutation group
##  <A>grp</A> is contained in the modified parametrized map.
##  <P/>
##  <Ref Func="ConsiderTableAutomorphisms"/> returns the list of positions
##  where <A>approxmap</A> was changed.
##  <P/>
##  <Example><![CDATA[
##  gap> ConsiderTableAutomorphisms( fus, AutomorphismsOfTable( tbl ) );
##  [ 16 ]
##  gap> fus;
##  [ 1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, [ 13, 15 ], 16, [ 18, 19 ], 20, 
##    25, [ 25, 26 ], 5, 5, 6, 8, 14, [ 13, 15 ], [ 18, 19 ], [ 18, 19 ], 
##    [ 25, 26 ], [ 25, 26 ], 27, 27 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ConsiderTableAutomorphisms" );


#############################################################################
##
#F  FusionsAllowedByRestrictions( <subtbl>, <tbl>, <subchars>, <chars>,
#F                                <approxmap>, <parameters> )
##
##  <#GAPDoc Label="FusionsAllowedByRestrictions">
##  <ManSection>
##  <Func Name="FusionsAllowedByRestrictions"
##   Arg='subtbl, tbl, subchars, chars, approxmap, parameters'/>
##
##  <Description>
##  Let <A>subtbl</A> and <A>tbl</A> be ordinary character tables,
##  <A>subchars</A> and <A>chars</A> two lists of (values lists of)
##  characters of <A>subtbl</A> and <A>tbl</A>, respectively,
##  <A>approxmap</A> a parametrized map that is an approximation of the class
##  fusion of <A>subtbl</A> in <A>tbl</A>,
##  and <A>parameters</A> a record with components
##  <C>maxlen</C>, <C>minamb</C>, <C>maxamb</C> (three integers),
##  <C>quick</C> (a Boolean),
##  and <C>contained</C> (a function).
##  Usual values of <C>contained</C> are
##  <Ref Func="ContainedCharacters"/> or
##  <Ref Func="ContainedPossibleCharacters"/>.
##  <P/>
##  <Ref Func="FusionsAllowedByRestrictions"/> replaces the entries of
##  <A>approxmap</A> by improved values,
##  according to condition 5.&nbsp;listed in the description of
##  <Ref Func="PossibleClassFusions"/>.
##  <P/>
##  More precisely, the strategy used is as follows.
##  <P/>
##  First, for each <M>\chi \in <A>chars</A></M>,
##  let <C>restricted:= CompositionMaps( </C><M>\chi</M><C>,
##  <A>approxmap</A> )</C>.
##  <List>
##  <Item>
##    If <C>Indeterminateness( restricted )</C><M> = 1</M> and
##    <C><A>parameters</A>.quick = false</C> then the scalar products of
##    <C>restricted</C> with <A>subchars</A> are checked;
##    if not all scalar products are nonnegative integers then
##    an empty list is returned,
##    otherwise <M>\chi</M> is deleted from the list of characters to
##    inspect.
##  </Item>
##  <Item>
##    Otherwise if <C>Indeterminateness( minus )</C> is smaller than
##    <C><A>parameters</A>.minamb</C> then <M>\chi</M> is deleted from the
##    list of characters.
##  </Item>
##  <Item>
##    If <C><A>parameters</A>.minamb</C> <M>\leq</M>
##    <C>Indeterminateness( restricted )</C>
##    <M>\leq</M> <C><A>parameters</A>.maxamb</C> then construct
##    <C>poss:= <A>parameters</A>.contained( <A>subtbl</A>, <A>subchars</A>,
##    restricted )</C>
##    and <C>Parametrized( poss )</C>,
##    and improve the approximation of the fusion map using
##    <Ref Func="UpdateMap"/>.
##  </Item>
##  </List>
##  <!-- #T Would it help to exploit that the restriction of a <E>linear</E> character-->
##  <!-- #T is again a linear character (not only a linear combination of linear-->
##  <!-- #T characters?-->
##  <!-- #T Branching in these cases would yield a short list of possibilities,-->
##  <!-- #T so it should be recommended ...-->
##  <P/>
##  If this yields no further immediate improvements then we branch.
##  If there is a character from <A>chars</A> left with less or equal
##  <A>parameters</A><C>.maxlen</C> possible restrictions,
##  compute the union of fusion maps allowed by these possibilities.
##  Otherwise we choose a class <M>C</M> such that the possible restrictions
##  of a character in <A>chars</A> differ at <M>C</M>,
##  and compute recursively the union of all allowed fusion maps with image
##  at <M>C</M> fixed in the set given by the current approximation of the
##  fusion map.
##  <P/>
##  <Example><![CDATA[
##  gap> subtbl:= CharacterTable( "U3(3)" );;  tbl:= CharacterTable( "J4" );;
##  gap> fus:= InitFusion( subtbl, tbl );;
##  gap> TestConsistencyMaps( ComputedPowerMaps( subtbl ), fus,
##  >        ComputedPowerMaps( tbl ) );
##  true
##  gap> fus;
##  [ 1, 2, 4, 4, [ 5, 6 ], [ 5, 6 ], [ 5, 6 ], 10, [ 12, 13 ], 
##    [ 12, 13 ], [ 14, 15, 16 ], [ 14, 15, 16 ], [ 21, 22 ], [ 21, 22 ] ]
##  gap> ConsiderTableAutomorphisms( fus, AutomorphismsOfTable( tbl ) );
##  [ 9 ]
##  gap> fus;
##  [ 1, 2, 4, 4, [ 5, 6 ], [ 5, 6 ], [ 5, 6 ], 10, 12, [ 12, 13 ], 
##    [ 14, 15, 16 ], [ 14, 15, 16 ], [ 21, 22 ], [ 21, 22 ] ]
##  gap> FusionsAllowedByRestrictions( subtbl, tbl, Irr( subtbl ),
##  >        Irr( tbl ), fus, rec( maxlen:= 10,
##  >        contained:= ContainedPossibleCharacters, minamb:= 2,
##  >        maxamb:= infinity, quick:= false ) );
##  [ [ 1, 2, 4, 4, 5, 5, 6, 10, 12, 13, 14, 14, 21, 21 ], 
##    [ 1, 2, 4, 4, 6, 6, 6, 10, 12, 13, 15, 15, 22, 22 ], 
##    [ 1, 2, 4, 4, 6, 6, 6, 10, 12, 13, 16, 16, 22, 22 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "FusionsAllowedByRestrictions" );


#############################################################################
##
#F  ConsiderStructureConstants( <subtbl>, <tbl>, <fusions>, <quick> )
##
##  <#GAPDoc Label="ConsiderStructureConstants">
##  <ManSection>
##  <Func Name="ConsiderStructureConstants"
##   Arg='subtbl, tbl, fusions, quick'/>
##
##  <Description>
##  Let <A>subtbl</A> and <A>tbl</A> be ordinary character tables and
##  <A>fusions</A> be a list of possible class fusions from <A>subtbl</A> to
##  <A>tbl</A>.
##  <Ref Func="ConsiderStructureConstants"/> returns the list of those maps
##  <M>\sigma</M> in <A>fusions</A> with the property that for all triples
##  <M>(i,j,k)</M> of class positions,
##  <C>ClassMultiplicationCoefficient</C><M>( <A>subtbl</A>, i, j, k )</M>
##  is not bigger than
##  <C>ClassMultiplicationCoefficient</C><M>( <A>tbl</A>, \sigma[i],
##  \sigma[j], \sigma[k] )</M>;
##  see&nbsp;<Ref Func="ClassMultiplicationCoefficient"
##  Label="for character tables"/>
##  for the definition of class multiplication coefficients/structure
##  constants.
##  <P/>
##  The argument <A>quick</A> must be a Boolean; if it is <K>true</K> then
##  only those triples are checked for which for which at least two entries
##  in <A>fusions</A> have different images.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ConsiderStructureConstants" );


#############################################################################
##
#E