/usr/share/gap/lib/ctblmono.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 | #############################################################################
##
#W ctblmono.gd GAP library Thomas Breuer
#W & Erzsébet Horváth
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations of the functions dealing with
## monomiality questions for finite (solvable) groups.
##
## 1. Character Degrees and Derived Length
## 2. Primitivity of Characters
## 3. Testing Monomiality
## 4. Minimal Nonmonomial Groups
##
#############################################################################
##
## <#GAPDoc Label="[1]{ctblmono}">
## All these functions assume <E>characters</E> to be class function objects
## as described in Chapter <Ref Chap="Class Functions"/>,
## lists of character <E>values</E> are not allowed.
## <P/>
## The usual <E>property tests</E> of &GAP; that return either <K>true</K>
## or <K>false</K> are not sufficient for us.
## When we ask whether a group character <M>\chi</M> has a certain property,
## such as quasiprimitivity,
## we usually want more information than just yes or no.
## Often we are interested in the reason <E>why</E> a group character
## <M>\chi</M> was proved to have a certain property,
## e.g., whether monomiality of <M>\chi</M> was proved by the observation
## that the underlying group is nilpotent,
## or whether it was necessary to construct a linear character of a subgroup
## from which <M>\chi</M> can be induced.
## In the latter case we also may be interested in this linear character.
## Therefore we need test functions that return a record containing such
## useful information.
## For example, the record returned by the function
## <Ref Attr="TestQuasiPrimitive"/> contains the component
## <C>isQuasiPrimitive</C> (which is the known boolean property flag),
## and additionally the component <C>comment</C>,
## a string telling the reason for the value of the <C>isQuasiPrimitive</C>
## component,
## and in the case that the argument <M>\chi</M> was <E>not</E>
## quasiprimitive also the component <C>character</C>,
## which is an irreducible constituent of a nonhomogeneous restriction
## of <M>\chi</M> to a normal subgroup.
## Besides these test functions there are also the known properties,
## e.g., the property <Ref Prop="IsQuasiPrimitive"/>
## which will call the attribute <Ref Attr="TestQuasiPrimitive"/>,
## and return the value of the <C>isQuasiPrimitive</C> component of the
## result.
## <P/>
## A few words about how to use the monomiality functions seem to be
## necessary.
## Monomiality questions usually involve computations in many subgroups
## and factor groups of a given group,
## and for these groups often expensive calculations such as that of
## the character table are necessary.
## So one should be careful not to construct the same group over and over
## again, instead the same group object should be reused,
## such that its character table need to be computed only once.
## For example,
## suppose you want to restrict a character to a normal subgroup
## <M>N</M> that was constructed as a normal closure of some group elements,
## and suppose that you have already computed with normal subgroups
## (by calls to <Ref Attr="NormalSubgroups"/> or
## <Ref Attr="MaximalNormalSubgroups"/>)
## and their character tables.
## Then you should look in the lists of known normal subgroups
## whether <M>N</M> is contained,
## and if so you can use the known character table.
## A mechanism that supports this for normal subgroups is described in
## <Ref Sect="Storing Normal Subgroup Information"/>.
## <P/>
## Also the following hint may be useful in this context.
## If you know that sooner or later you will compute the character table of
## a group <M>G</M> then it may be advisable to compute it as soon as
## possible.
## For example, if you need the normal subgroups of <M>G</M> then they can
## be computed more efficiently if the character table of <M>G</M> is known,
## and they can be stored compatibly to the contained <M>G</M>-conjugacy
## classes.
## This correspondence of classes list and normal subgroup can be used very
## often.
## <#/GAPDoc>
##
#############################################################################
##
#V InfoMonomial
##
## <#GAPDoc Label="InfoMonomial">
## <ManSection>
## <InfoClass Name="InfoMonomial"/>
##
## <Description>
## Most of the functions described in this chapter print some
## (hopefully useful) <E>information</E> if the info level of the info class
## <Ref InfoClass="InfoMonomial"/> is at least <M>1</M>,
## see <Ref Sect="Info Functions"/> for details.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareInfoClass( "InfoMonomial" );
#############################################################################
##
## 1. Character Degrees and Derived Length
##
#############################################################################
##
#A Alpha( <G> )
##
## <#GAPDoc Label="Alpha">
## <ManSection>
## <Attr Name="Alpha" Arg='G'/>
##
## <Description>
## For a group <A>G</A>, <Ref Attr="Alpha"/> returns a list
## whose <M>i</M>-th entry is the maximal derived length of groups
## <M><A>G</A> / \ker(\chi)</M> for <M>\chi \in Irr(<A>G</A>)</M> with
## <M>\chi(1)</M> at most the <M>i</M>-th irreducible degree of <A>G</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Alpha", IsGroup );
#############################################################################
##
#A Delta( <G> )
##
## <#GAPDoc Label="Delta">
## <ManSection>
## <Attr Name="Delta" Arg='G'/>
##
## <Description>
## For a group <A>G</A>, <Ref Attr="Delta"/> returns the list
## <M>[ 1, alp[2] - alp[1], \ldots, alp[<A>n</A>] - alp[<A>n</A>-1] ]</M>,
## where <M>alp = </M><C>Alpha( <A>G</A> )</C>
## (see <Ref Func="Alpha"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Delta", IsGroup );
#############################################################################
##
#P IsBergerCondition( <G> )
#P IsBergerCondition( <chi> )
##
## <#GAPDoc Label="IsBergerCondition">
## <ManSection>
## <Heading>IsBergerCondition</Heading>
## <Prop Name="IsBergerCondition" Arg='G' Label="for a group"/>
## <Prop Name="IsBergerCondition" Arg='chi' Label="for a character"/>
##
## <Description>
## Called with an irreducible character <A>chi</A> of a group <M>G</M>,
## <Ref Prop="IsBergerCondition" Label="for a group"/> returns <K>true</K>
## if <A>chi</A> satisfies <M>M' \leq \ker(\chi)</M> for every normal
## subgroup <M>M</M> of <M>G</M> with the property that
## <M>M \leq \ker(\psi)</M> holds for all <M>\psi \in Irr(G)</M> with
## <M>\psi(1) < \chi(1)</M>, and <K>false</K> otherwise.
## <P/>
## Called with a group <A>G</A>,
## <Ref Prop="IsBergerCondition" Label="for a character"/> returns
## <K>true</K> if all irreducible characters of <A>G</A> satisfy the
## inequality above, and <K>false</K> otherwise.
## <P/>
## For groups of odd order the result is always <K>true</K> by a theorem of
## T. R. Berger (see <Cite Key="Ber76" Where="Thm. 2.2"/>).
## <P/>
## In the case that <K>false</K> is returned,
## <Ref InfoClass="InfoMonomial"/> tells about
## a degree for which the inequality is violated.
## <P/>
## <Example><![CDATA[
## gap> Alpha( Sl23 );
## [ 1, 3, 3 ]
## gap> Alpha( S4 );
## [ 1, 2, 3 ]
## gap> Delta( Sl23 );
## [ 1, 2, 0 ]
## gap> Delta( S4 );
## [ 1, 1, 1 ]
## gap> IsBergerCondition( S4 );
## true
## gap> IsBergerCondition( Sl23 );
## false
## gap> List( Irr( Sl23 ), IsBergerCondition );
## [ true, true, true, false, false, false, true ]
## gap> List( Irr( Sl23 ), Degree );
## [ 1, 1, 1, 2, 2, 2, 3 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsBergerCondition", IsGroup );
DeclareProperty( "IsBergerCondition", IsClassFunction );
#############################################################################
##
## 2. Primitivity of Characters
##
#############################################################################
##
#F TestHomogeneous( <chi>, <N> )
##
## <#GAPDoc Label="TestHomogeneous">
## <ManSection>
## <Func Name="TestHomogeneous" Arg='chi, N'/>
##
## <Description>
## For a group character <A>chi</A> of the group <M>G</M>, say,
## and a normal subgroup <A>N</A> of <M>G</M>,
## <Ref Func="TestHomogeneous"/> returns a record with information whether
## the restriction of <A>chi</A> to <A>N</A> is homogeneous,
## i.e., is a multiple of an irreducible character.
## <P/>
## <A>N</A> may be given also as list of conjugacy class positions
## w.r.t. the character table of <M>G</M>.
## <P/>
## The components of the result are
## <P/>
## <List>
## <Mark><C>isHomogeneous</C></Mark>
## <Item>
## <K>true</K> or <K>false</K>,
## </Item>
## <Mark><C>comment</C></Mark>
## <Item>
## a string telling a reason for the value of the
## <C>isHomogeneous</C> component,
## </Item>
## <Mark><C>character</C></Mark>
## <Item>
## irreducible constituent of the restriction,
## only bound if the restriction had to be checked,
## </Item>
## <Mark><C>multiplicity</C></Mark>
## <Item>
## multiplicity of the <C>character</C> component in the
## restriction of <A>chi</A>.
## </Item>
## </List>
## <P/>
## <Example><![CDATA[
## gap> n:= DerivedSubgroup( Sl23 );;
## gap> chi:= Irr( Sl23 )[7];
## Character( CharacterTable( SL(2,3) ), [ 3, 0, 0, 3, 0, 0, -1 ] )
## gap> TestHomogeneous( chi, n );
## rec( character := Character( CharacterTable( Group(
## [ [ [ 0*Z(3), Z(3) ], [ Z(3)^0, 0*Z(3) ] ],
## [ [ Z(3), 0*Z(3) ], [ 0*Z(3), Z(3) ] ],
## [ [ Z(3)^0, Z(3) ], [ Z(3), Z(3) ] ] ]) ), [ 1, -1, 1, -1, 1 ] )
## , comment := "restriction checked", isHomogeneous := false,
## multiplicity := 1 )
## gap> chi:= Irr( Sl23 )[4];
## Character( CharacterTable( SL(2,3) ), [ 2, 1, 1, -2, -1, -1, 0 ] )
## gap> cln:= ClassPositionsOfNormalSubgroup( CharacterTable( Sl23 ), n );
## [ 1, 4, 7 ]
## gap> TestHomogeneous( chi, cln );
## rec( comment := "restricts irreducibly", isHomogeneous := true )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "TestHomogeneous" );
#############################################################################
##
#P IsPrimitiveCharacter( <chi> )
##
## <#GAPDoc Label="IsPrimitiveCharacter">
## <ManSection>
## <Prop Name="IsPrimitiveCharacter" Arg='chi'/>
##
## <Description>
## For a character <A>chi</A> of the group <M>G</M>, say,
## <Ref Prop="IsPrimitiveCharacter"/> returns <K>true</K> if <A>chi</A> is
## not induced from any proper subgroup, and <K>false</K> otherwise.
## <P/>
## <Example><![CDATA[
## gap> IsPrimitive( Irr( Sl23 )[4] );
## true
## gap> IsPrimitive( Irr( Sl23 )[7] );
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsPrimitiveCharacter", IsClassFunction );
#############################################################################
##
#A TestQuasiPrimitive( <chi> )
#P IsQuasiPrimitive( <chi> )
##
## <#GAPDoc Label="TestQuasiPrimitive">
## <ManSection>
## <Attr Name="TestQuasiPrimitive" Arg='chi'/>
## <Prop Name="IsQuasiPrimitive" Arg='chi'/>
##
## <Description>
## <Ref Attr="TestQuasiPrimitive"/> returns a record with information about
## quasiprimitivity of the group character <A>chi</A>,
## i.e., whether <A>chi</A> restricts homogeneously to every normal subgroup
## of its group.
## The result record contains at least the components
## <C>isQuasiPrimitive</C> (with value either <K>true</K> or <K>false</K>)
## and <C>comment</C> (a string telling a reason for the value of the
## component <C>isQuasiPrimitive</C>).
## If <A>chi</A> is not quasiprimitive then there is additionally a
## component <C>character</C>, with value an irreducible constituent of a
## nonhomogeneous restriction of <A>chi</A>.
## <P/>
## <Ref Prop="IsQuasiPrimitive"/> returns <K>true</K> or <K>false</K>,
## depending on whether the character <A>chi</A> is quasiprimitive.
## <P/>
## Note that for solvable groups, quasiprimitivity is the same as
## primitivity (see <Ref Prop="IsPrimitiveCharacter"/>).
## <P/>
## <Example><![CDATA[
## gap> chi:= Irr( Sl23 )[4];
## Character( CharacterTable( SL(2,3) ), [ 2, 1, 1, -2, -1, -1, 0 ] )
## gap> TestQuasiPrimitive( chi );
## rec( comment := "all restrictions checked", isQuasiPrimitive := true )
## gap> chi:= Irr( Sl23 )[7];
## Character( CharacterTable( SL(2,3) ), [ 3, 0, 0, 3, 0, 0, -1 ] )
## gap> TestQuasiPrimitive( chi );
## rec( character := Character( CharacterTable( Group(
## [ [ [ 0*Z(3), Z(3) ], [ Z(3)^0, 0*Z(3) ] ],
## [ [ Z(3), 0*Z(3) ], [ 0*Z(3), Z(3) ] ],
## [ [ Z(3)^0, Z(3) ], [ Z(3), Z(3) ] ] ]) ), [ 1, -1, 1, -1, 1 ] )
## , comment := "restriction checked", isQuasiPrimitive := false )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "TestQuasiPrimitive", IsClassFunction );
DeclareProperty( "IsQuasiPrimitive", IsClassFunction );
#############################################################################
##
#F TestInducedFromNormalSubgroup( <chi>[, <N>] )
#P IsInducedFromNormalSubgroup( <chi> )
##
## <#GAPDoc Label="TestInducedFromNormalSubgroup">
## <ManSection>
## <Func Name="TestInducedFromNormalSubgroup" Arg='chi[, N]'/>
## <Prop Name="IsInducedFromNormalSubgroup" Arg='chi'/>
##
## <Description>
## <Ref Func="TestInducedFromNormalSubgroup"/> returns a record with
## information whether the irreducible character <A>chi</A> of the group
## <M>G</M>, say, is induced from a proper normal subgroup of <M>G</M>.
## If the second argument <A>N</A> is present,
## which must be a normal subgroup of <M>G</M>
## or the list of class positions of a normal subgroup of <M>G</M>,
## it is checked whether <A>chi</A> is induced from <A>N</A>.
## <P/>
## The result contains always the components
## <C>isInduced</C> (either <K>true</K> or <K>false</K>) and
## <C>comment</C> (a string telling a reason for the value of the component
## <C>isInduced</C>).
## In the <K>true</K> case there is a component <C>character</C> which
## contains a character of a maximal normal subgroup from which <A>chi</A>
## is induced.
## <P/>
## <Ref Prop="IsInducedFromNormalSubgroup"/> returns <K>true</K> if
## <A>chi</A> is induced from a proper normal subgroup of <M>G</M>,
## and <K>false</K> otherwise.
## <P/>
## <Example><![CDATA[
## gap> List( Irr( Sl23 ), IsInducedFromNormalSubgroup );
## [ false, false, false, false, false, false, true ]
## gap> List( Irr( S4 ){ [ 1, 3, 4 ] },
## > TestInducedFromNormalSubgroup );
## [ rec( comment := "linear character", isInduced := false ),
## rec( character := Character( CharacterTable( Alt( [ 1 .. 4 ] ) ),
## [ 1, 1, E(3)^2, E(3) ] ),
## comment := "induced from component '.character'",
## isInduced := true ),
## rec( comment := "all maximal normal subgroups checked",
## isInduced := false ) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "TestInducedFromNormalSubgroup" );
DeclareProperty( "IsInducedFromNormalSubgroup", IsClassFunction );
#############################################################################
##
## 3. Testing Monomiality
##
## <#GAPDoc Label="[2]{ctblmono}">
## A character <M>\chi</M> of a finite group <M>G</M> is called
## <E>monomial</E> if <M>\chi</M> is induced from a linear character of a
## subgroup of <M>G</M>.
## A finite group <M>G</M> is called <E>monomial</E>
## (or <E><M>M</M>-group</E>) if each
## ordinary irreducible character of <M>G</M> is monomial.
## <P/>
## <!--
## There are &GAP; properties <Ref Prop="IsMonomialGroup"/>
## and <C>IsMonomialCharacter</C>,
## but one can use <Ref Func="IsMonomial" Label="for groups"> instead.
## <Index Key="IsMonomial" Subkey="for groups"><C>IsMonomial</C></Index>
## <Index Key="IsMonomial" Subkey="for characters"><C>IsMonomial</C></Index>
## -->
## <#/GAPDoc>
##
#############################################################################
##
#P IsMonomialCharacter( <chi> )
##
## <ManSection>
## <Prop Name="IsMonomialCharacter" Arg='chi'/>
##
## <Description>
## is <K>true</K> if the character <A>chi</A> is induced from
## a linear character of a subgroup, and <K>false</K> otherwise.
## </Description>
## </ManSection>
##
DeclareProperty( "IsMonomialCharacter", IsClassFunction );
#############################################################################
##
#P IsMonomialNumber( <n> )
##
## <#GAPDoc Label="IsMonomialNumber">
## <ManSection>
## <Prop Name="IsMonomialNumber" Arg='n'/>
##
## <Description>
## For a positive integer <A>n</A>,
## <Ref Prop="IsMonomialNumber"/> returns <K>true</K> if every solvable
## group of order <A>n</A> is monomial, and <K>false</K> otherwise.
## One can also use <C>IsMonomial</C> instead.
## <Index Key="IsMonomial" Subkey="for positive integers">
## <C>IsMonomial</C></Index>
## <P/>
## Let <M>\nu_p(n)</M> denote the multiplicity of the prime <M>p</M> as
## factor of <M>n</M>, and <M>ord(p,q)</M> the multiplicative order of
## <M>p \pmod{q}</M>.
## <P/>
## Then there exists a solvable nonmonomial group of order <M>n</M>
## if and only if one of the following conditions is satisfied.
## <P/>
## <List>
## <Mark>1.</Mark>
## <Item>
## <M>\nu_2(n) \geq 2</M> and there is a <M>p</M> such that
## <M>\nu_p(n) \geq 3</M> and <M>p \equiv -1 \pmod{4}</M>,
## </Item>
## <Mark>2.</Mark>
## <Item>
## <M>\nu_2(n) \geq 3</M> and there is a <M>p</M> such that
## <M>\nu_p(n) \geq 3</M> and <M>p \equiv 1 \pmod{4}</M>,
## </Item>
## <Mark>3.</Mark>
## <Item>
## there are odd prime divisors <M>p</M> and <M>q</M> of <M>n</M>
## such that <M>ord(p,q)</M> is even and <M>ord(p,q) < \nu_p(n)</M>
## (especially <M>\nu_p(n) \geq 3</M>),
## </Item>
## <Mark>4.</Mark>
## <Item>
## there is a prime divisor <M>q</M> of <M>n</M> such that
## <M>\nu_2(n) \geq 2 ord(2,q) + 2</M>
## (especially <M>\nu_2(n) \geq 4</M>),
## </Item>
## <Mark>5.</Mark>
## <Item>
## <M>\nu_2(n) \geq 2</M> and there is a <M>p</M> such that
## <M>p \equiv 1 \pmod{4}</M>, <M>ord(p,q)</M> is odd,
## and <M>2 ord(p,q) < \nu_p(n)</M>
## (especially <M>\nu_p(n) \geq 3</M>).
## </Item>
## </List>
## <P/>
## These five possibilities correspond to the five types of solvable minimal
## nonmonomial groups (see <Ref Func="MinimalNonmonomialGroup"/>)
## that can occur as subgroups and factor groups of groups of order
## <A>n</A>.
## <P/>
## <Example><![CDATA[
## gap> Filtered( [ 1 .. 111 ], x -> not IsMonomial( x ) );
## [ 24, 48, 72, 96, 108 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsMonomialNumber", IsPosInt );
#############################################################################
##
#A TestMonomialQuick( <chi> )
#A TestMonomialQuick( <G> )
##
## <#GAPDoc Label="TestMonomialQuick">
## <ManSection>
## <Heading>TestMonomialQuick</Heading>
## <Attr Name="TestMonomialQuick" Arg='chi' Label="for a character"/>
## <Attr Name="TestMonomialQuick" Arg='G' Label="for a group"/>
##
## <Description>
## <Ref Attr="TestMonomialQuick" Label="for a group"/> does some cheap tests
## whether the irreducible character <A>chi</A> or the group <A>G</A>,
## respectively, is monomial.
## Here <Q>cheap</Q> means in particular that no computations of character
## tables are involved.
## The return value is a record with components
## <List>
## <Mark><C>isMonomial</C></Mark>
## <Item>
## either <K>true</K> or <K>false</K> or the string <C>"?"</C>,
## depending on whether (non)monomiality could be proved, and
## </Item>
## <Mark><C>comment</C></Mark>
## <Item>
## a string telling the reason for the value of the
## <C>isMonomial</C> component.
## </Item>
## </List>
## <P/>
## A group <A>G</A> is proved to be monomial by
## <Ref Attr="TestMonomialQuick" Label="for a group"/> if
## <A>G</A> is nilpotent or Sylow abelian by supersolvable,
## or if <A>G</A> is solvable and its order is not divisible by the third
## power of a prime,
## Nonsolvable groups are proved to be nonmonomial by
## <Ref Attr="TestMonomialQuick" Label="for a group"/>.
## <P/>
## An irreducible character <A>chi</A> is proved to be monomial if
## it is linear, or if its codegree is a prime power,
## or if its group knows to be monomial,
## or if the factor group modulo the kernel can be proved to be monomial by
## <Ref Attr="TestMonomialQuick" Label="for a character"/>.
## <P/>
## <Example><![CDATA[
## gap> TestMonomialQuick( Irr( S4 )[3] );
## rec( comment := "whole group is monomial", isMonomial := true )
## gap> TestMonomialQuick( S4 );
## rec( comment := "abelian by supersolvable group", isMonomial := true )
## gap> TestMonomialQuick( Sl23 );
## rec( comment := "no decision by cheap tests", isMonomial := "?" )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "TestMonomialQuick", IsClassFunction );
DeclareAttribute( "TestMonomialQuick", IsGroup );
#############################################################################
##
#A TestMonomial( <chi> )
#A TestMonomial( <G> )
#O TestMonomial( <chi>, <uselattice> )
#O TestMonomial( <G>, <uselattice> )
##
## <#GAPDoc Label="TestMonomial">
## <ManSection>
## <Heading>TestMonomial</Heading>
## <Attr Name="TestMonomial" Arg='chi' Label="for a character"/>
## <Attr Name="TestMonomial" Arg='G' Label="for a group"/>
## <Oper Name="TestMonomial" Arg='chi, uselattice'
## Label="for a character and a Boolean"/>
## <Oper Name="TestMonomial" Arg='G, uselattice'
## Label="for a group and a Boolean"/>
##
## <Description>
## Called with a group character <A>chi</A> of a group <A>G</A>,
## <Ref Attr="TestMonomial" Label="for a character"/>
## returns a record containing information about monomiality of the group
## <A>G</A> or the group character <A>chi</A>, respectively.
## <P/>
## If <Ref Attr="TestMonomial" Label="for a character"/> proves
## the character <A>chi</A> to be monomial then the result contains
## components <C>isMonomial</C> (with value <K>true</K>),
## <C>comment</C> (a string telling a reason for monomiality),
## and if it was necessary to compute a linear character from which
## <A>chi</A> is induced, also a component <C>character</C>.
## <P/>
## If <Ref Attr="TestMonomial" Label="for a character"/> proves <A>chi</A>
## or <A>G</A> to be nonmonomial
## then the value of the component <C>isMonomial</C> is <K>false</K>,
## and in the case of <A>G</A> a nonmonomial character is the value
## of the component <C>character</C> if it had been necessary to compute it.
## <P/>
## A Boolean can be entered as the second argument <A>uselattice</A>;
## if the value is <K>true</K> then the subgroup lattice of the underlying
## group is used if necessary,
## if the value is <K>false</K> then the subgroup lattice is used only for
## groups of order at most <Ref Var="TestMonomialUseLattice"/>.
## The default value of <A>uselattice</A> is <K>false</K>.
## <P/>
## For a group whose lattice must not be used, it may happen that
## <Ref Attr="TestMonomial" Label="for a group"/> cannot prove or disprove
## monomiality; then the result
## record contains the component <C>isMonomial</C> with value <C>"?"</C>.
## This case occurs in the call for a character <A>chi</A> if and only if
## <A>chi</A> is not induced from the inertia subgroup of a component of any
## reducible restriction to a normal subgroup.
## It can happen that <A>chi</A> is monomial in this situation.
## For a group, this case occurs if no irreducible character can be proved
## to be nonmonomial, and if no decision is possible for at least one
## irreducible character.
## <P/>
## <Example><![CDATA[
## gap> TestMonomial( S4 );
## rec( comment := "abelian by supersolvable group", isMonomial := true )
## gap> TestMonomial( Sl23 );
## rec( comment := "list Delta( G ) contains entry > 1",
## isMonomial := false )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "TestMonomial", IsClassFunction );
DeclareAttribute( "TestMonomial", IsGroup );
DeclareOperation( "TestMonomial", [ IsClassFunction, IsBool ] );
DeclareOperation( "TestMonomial", [ IsGroup, IsBool ] );
#############################################################################
##
#V TestMonomialUseLattice
##
## <#GAPDoc Label="TestMonomialUseLattice">
## <ManSection>
## <Var Name="TestMonomialUseLattice"/>
##
## <Description>
## This global variable controls for which groups the operation
## <Ref Oper="TestMonomial" Label="for a group and a Boolean"/> may compute
## the subgroup lattice.
## The value can be set to a positive integer or <Ref Var="infinity"/>,
## the default is <M>1000</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
TestMonomialUseLattice := 1000;
#############################################################################
##
#A TestSubnormallyMonomial( <G> )
#A TestSubnormallyMonomial( <chi> )
#P IsSubnormallyMonomial( <G> )
#P IsSubnormallyMonomial( <chi> )
##
## <#GAPDoc Label="TestSubnormallyMonomial">
## <ManSection>
## <Heading>TestSubnormallyMonomial</Heading>
## <Attr Name="TestSubnormallyMonomial" Arg='G' Label="for a group"/>
## <Attr Name="TestSubnormallyMonomial" Arg='chi' Label="for a character"/>
## <Prop Name="IsSubnormallyMonomial" Arg='G' Label="for a group"/>
## <Prop Name="IsSubnormallyMonomial" Arg='chi' Label="for a character"/>
##
## <Description>
## A character of the group <M>G</M> is called <E>subnormally monomial</E>
## (SM for short) if it is induced from a linear character of a subnormal
## subgroup of <M>G</M>.
## A group <M>G</M> is called SM if all its irreducible characters are SM.
## <P/>
## <Ref Attr="TestSubnormallyMonomial" Label="for a group"/> returns
## a record with information whether the group <A>G</A> or the irreducible
## character <A>chi</A> of <A>G</A> is SM.
## <P/>
## The result has the components
## <C>isSubnormallyMonomial</C> (either <K>true</K> or <K>false</K>) and
## <C>comment</C> (a string telling a reason for the value of the component
## <C>isSubnormallyMonomial</C>);
## in the case that the <C>isSubnormallyMonomial</C> component has value
## <K>false</K> there is also a component <C>character</C>,
## with value an irreducible character of <M>G</M> that is not SM.
## <P/>
## <Ref Prop="IsSubnormallyMonomial" Label="for a group"/> returns
## <K>true</K> if the group <A>G</A> or the group character <A>chi</A>
## is subnormally monomial, and <K>false</K> otherwise.
## <P/>
## <Example><![CDATA[
## gap> TestSubnormallyMonomial( S4 );
## rec( character := Character( CharacterTable( S4 ), [ 3, -1, -1, 0, 1
## ] ), comment := "found non-SM character",
## isSubnormallyMonomial := false )
## gap> TestSubnormallyMonomial( Irr( S4 )[4] );
## rec( comment := "all subnormal subgroups checked",
## isSubnormallyMonomial := false )
## gap> TestSubnormallyMonomial( DerivedSubgroup( S4 ) );
## rec( comment := "all irreducibles checked",
## isSubnormallyMonomial := true )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "TestSubnormallyMonomial", IsGroup );
DeclareAttribute( "TestSubnormallyMonomial", IsClassFunction );
DeclareProperty( "IsSubnormallyMonomial", IsGroup );
DeclareProperty( "IsSubnormallyMonomial", IsClassFunction );
#############################################################################
##
#A TestRelativelySM( <G> )
#A TestRelativelySM( <chi> )
#O TestRelativelySM( <G>, <N> )
#O TestRelativelySM( <chi>, <N> )
#P IsRelativelySM( <G> )
#P IsRelativelySM( <chi> )
##
## <#GAPDoc Label="TestRelativelySM">
## <ManSection>
## <Heading>TestRelativelySM</Heading>
## <Attr Name="TestRelativelySM" Arg='G' Label="for a group"/>
## <Attr Name="TestRelativelySM" Arg='chi' Label="for a character"/>
## <Oper Name="TestRelativelySM" Arg='G, N'
## Label="for a group and a normal subgroup"/>
## <Oper Name="TestRelativelySM" Arg='chi, N'
## Label="for a character and a normal subgroup"/>
## <Prop Name="IsRelativelySM" Arg='G' Label="for a group"/>
## <Prop Name="IsRelativelySM" Arg='chi' Label="for a character"/>
##
## <Description>
## In the first two cases,
## <Ref Attr="TestRelativelySM" Label="for a group"/> returns a record with
## information whether the argument, which must be a SM group <A>G</A> or
## an irreducible character <A>chi</A> of a SM group <M>G</M>,
## is relatively SM with respect to every normal subgroup of <A>G</A>.
## <P/>
## In the second two cases, a normal subgroup <A>N</A> of <A>G</A> is the
## second argument.
## Here
## <Ref Oper="TestRelativelySM" Label="for a group and a normal subgroup"/>
## returns a record with information whether
## the first argument is relatively SM with respect to <A>N</A>,
## i.e, whether there is a subnormal subgroup <M>H</M> of <M>G</M> that
## contains <A>N</A> such that the character <A>chi</A>
## resp. every irreducible character of <M>G</M> is induced from a
## character <M>\psi</M> of <M>H</M> such that the restriction of
## <M>\psi</M> to <A>N</A> is irreducible.
## <P/>
## The result record has the components
## <C>isRelativelySM</C> (with value either <K>true</K> or <K>false</K>) and
## <C>comment</C> (a string that describes a reason).
## If the argument is a group <A>G</A> that is not relatively SM
## with respect to a normal subgroup then additionally the component
## <C>character</C> is bound,
## with value a not relatively SM character of such a normal subgroup.
## <P/>
## <Ref Prop="IsRelativelySM" Label="for a group"/> returns <K>true</K>
## if the SM group <A>G</A> or the irreducible character <A>chi</A>
## of the SM group <A>G</A> is relatively SM with respect to every
## normal subgroup of <A>G</A>,
## and <K>false</K> otherwise.
## <P/>
## <E>Note</E> that it is <E>not</E> checked whether <A>G</A> is SM.
## <P/>
## <Example><![CDATA[
## gap> IsSubnormallyMonomial( DerivedSubgroup( S4 ) );
## true
## gap> TestRelativelySM( DerivedSubgroup( S4 ) );
## rec(
## comment := "normal subgroups are abelian or have nilpotent factor gr\
## oup", isRelativelySM := true )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "TestRelativelySM", IsGroup );
DeclareAttribute( "TestRelativelySM", IsClassFunction );
DeclareOperation( "TestRelativelySM", [ IsClassFunction, IsGroup ] );
DeclareOperation( "TestRelativelySM", [ IsGroup, IsGroup ] );
DeclareProperty( "IsRelativelySM", IsClassFunction );
DeclareProperty( "IsRelativelySM", IsGroup );
#############################################################################
##
## 4. Minimal Nonmonomial Groups
##
#############################################################################
##
#P IsMinimalNonmonomial( <G> )
##
## <#GAPDoc Label="IsMinimalNonmonomial">
## <ManSection>
## <Prop Name="IsMinimalNonmonomial" Arg='G'/>
##
## <Description>
## A group <A>G</A> is called <E>minimal nonmonomial</E> if it is
## nonmonomial, and all proper subgroups and factor groups are monomial.
## <P/>
## <Example><![CDATA[
## gap> IsMinimalNonmonomial( Sl23 ); IsMinimalNonmonomial( S4 );
## true
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsMinimalNonmonomial", IsGroup );
#############################################################################
##
#F MinimalNonmonomialGroup( <p>, <factsize> )
##
## <#GAPDoc Label="MinimalNonmonomialGroup">
## <ManSection>
## <Func Name="MinimalNonmonomialGroup" Arg='p, factsize'/>
##
## <Description>
## is a solvable minimal nonmonomial group described by the parameters
## <A>factsize</A> and <A>p</A> if such a group exists,
## and <K>false</K> otherwise.
## <P/>
## Suppose that the required group <M>K</M> exists.
## Then <A>factsize</A> is the size of the Fitting factor <M>K / F(K)</M>,
## and this value is 4, 8, an odd prime, twice an odd prime,
## or four times an odd prime.
## In the case that <A>factsize</A> is twice an odd prime,
## the centre <M>Z(K)</M> is cyclic of order <M>2^{{<A>p</A>+1}}</M>.
## In all other cases <A>p</A> is the (unique) prime that divides
## the order of <M>F(K)</M>.
## <P/>
## The solvable minimal nonmonomial groups were classified by van der Waall,
## see <Cite Key="vdW76"/>.
## <P/>
## <Example><![CDATA[
## gap> MinimalNonmonomialGroup( 2, 3 ); # the group SL(2,3)
## 2^(1+2):3
## gap> MinimalNonmonomialGroup( 3, 4 );
## 3^(1+2):4
## gap> MinimalNonmonomialGroup( 5, 8 );
## 5^(1+2):Q8
## gap> MinimalNonmonomialGroup( 13, 12 );
## 13^(1+2):2.D6
## gap> MinimalNonmonomialGroup( 1, 14 );
## 2^(1+6):D14
## gap> MinimalNonmonomialGroup( 2, 14 );
## (2^(1+6)Y4):D14
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "MinimalNonmonomialGroup" );
#############################################################################
##
#E
|