/usr/share/gap/lib/ctblsolv.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 | #############################################################################
##
#W ctblsolv.gd GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declaration of operations for computing
## characters of solvable groups.
##
#############################################################################
##
#V BaumClausenInfoDebug . . . . . . . . . . . . . . testing BaumClausenInfo
##
## <ManSection>
## <Var Name="BaumClausenInfoDebug"/>
##
## <Description>
## This global record contains functions used for testing intermediate
## results in <C>BaumClausenInfo</C> computations;
## they are called only inside <C>Assert</C> statements.
## </Description>
## </ManSection>
##
DeclareGlobalVariable( "BaumClausenInfoDebug" );
#############################################################################
##
#A BaumClausenInfo( <G> ) . . . . . info about irreducible representations
##
## <ManSection>
## <Attr Name="BaumClausenInfo" Arg='G'/>
##
## <Description>
## Called with a group <A>G</A>, <Ref Func="BaumClausenInfo"/> returns
## a record with the following components.
## <P/>
## <List>
## <Mark><C>pcgs</C></Mark>
## <Item>
## each representation is encoded as a list, the entries encode images
## of the elements in <C>pcgs</C>,
## </Item>
## <Mark><C>kernel</C></Mark>
## <Item>
## the normal subgroup such that the result describes the irreducible
## representations of the corresponding factor group only
## (so <E>all</E> irreducible nonlinear representations are described
## if and only if this subgroup is trivial),
## </Item>
## <Mark><C>exponent</C></Mark>
## <Item>
## the roots of unity in the representations are encoded as exponents
## of a primitive <C>exponent</C>-th root,
## </Item>
## <Mark><C>lin</C></Mark>
## <Item>
## the list that encodes all linear representations of <A>G</A>,
## each representation is encoded as a list of exponents,
## </Item>
## <Mark><C>nonlin</C></Mark>
## <Item>
## a list of nonlinear irreducible representations,
## each a list of monomial matrices.
## </Item>
## </List>
## <P/>
## Monomial matrices are encoded as records with components
## <C>perm</C> (the permutation part) and <C>diag</C> (the nonzero entries).
## E. g., the matrix <C>rec( perm := [ 3, 1, 2 ], diag := [ 1, 2, 3 ] )</C>
## stands for
## [ . . 1 ] [ e^1 . . ] [ . . e^3 ]
## [ 1 . . ] * [ . e^2 . ] = [ e^1 . . ] ,
## [ . 1 . ] [ . . e^3 ] [ . e^2 . ]
## where <C>e</C> is the value of <C>exponent</C> in the result record.
## <P/>
## The algorithm of Baum and Clausen guarantees to compute all
## irreducible representations for abelian by supersolvable groups;
## if the supersolvable residuum of <A>G</A> is not abelian then this
## implementation computes the irreducible representations of the factor
## group of <A>G</A> by the derived subgroup of the supersolvable residuum.
## <P/>
## For this purpose, a composition series
## <M>\langle \rangle < G_{lg} < G_{lg-1} < \ldots < G_1 = <A>G</A></M>
## of <A>G</A> is used,
## where the maximal abelian and all nonabelian composition subgroups are
## normal in <A>G</A>.
## Iteratively the representations of <M>G_i</M> are constructed from those of
## <M>G_{{i+1}}</M>.
## <P/>
## Let <M>[ g_1, g_2, \ldots, g_{lg} ]</M> be a pcgs of <A>G</A>, and
## <M>G_i = \langle G_{i+1}, g_i \rangle</M>.
## The list <C>indices</C> holds the sizes of the composition factors,
## i.e., <C>indices[i]</C><M> = [ G_i \colon G_{i+1} ]</M>.
## <P/>
## The iteration is an application of the theorem of Clifford.
## An irreducible representation of <M>G_{i+1}</M> has either
## <M>p = [ G_i \colon G_{i+1} ]</M> extensions to <M>G_i</M>,
## or the induced representation is irreducible in <M>G_i</M>.
## <P/>
## In the case of extensions, a representing matrix for the canonical
## generator <M>g_i</M> is constructed.
## The induction can be performed directly, afterwards the induced
## representation is modified such that the restriction to <M>G_{i+1}</M>
## decomposes into the direct sum of its constituents as block diagonal
## decomposition, and the matrix for <M>g_i</M> is constructed.
## <P/>
## So the construction guarantees that the restriction of a
## representation of <M>G_i</M> to <M>G_{i+1}</M> decomposes (physically)
## into a direct sum of irreducible representations of <M>G_{i+1}</M>.
## Moreover, two constituents are equivalent if and only if they are equal.
## </Description>
## </ManSection>
##
DeclareAttribute( "BaumClausenInfo", IsGroup );
#############################################################################
##
#A IrreducibleRepresentations( <G>[, <F>] )
##
## <#GAPDoc Label="IrreducibleRepresentations">
## <ManSection>
## <Attr Name="IrreducibleRepresentations" Arg='G[, F]'/>
##
## <Description>
## Called with a finite group <A>G</A> and a field <A>F</A>,
## <Ref Func="IrreducibleRepresentations"/> returns a list of
## representatives of the irreducible matrix representations of <A>G</A>
## over <A>F</A>, up to equivalence.
## <P/>
## If <A>G</A> is the only argument then
## <Ref Func="IrreducibleRepresentations"/> returns a list of
## representatives of the absolutely irreducible complex representations
## of <A>G</A>, up to equivalence.
## <P/>
## At the moment, methods are available for the following cases:
## If <A>G</A> is abelian by supersolvable the method
## of <Cite Key="BC94"/> is used.
## <P/>
## Otherwise, if <A>F</A> and <A>G</A> are both finite,
## the regular module of <A>G</A> is split by MeatAxe methods which can make
## this an expensive operation.
## <P/>
## Finally, if <A>F</A> is not given (i.e. it defaults to the cyclotomic
## numbers) and <A>G</A> is a finite group,
## the method of <Cite Key="Dix93"/>
## (see <Ref Func="IrreducibleRepresentationsDixon"/>) is used.
## <P/>
## For other cases no methods are implemented yet.
## <P/>
## The representations obtained are <E>not</E> guaranteed to be <Q>nice</Q>
## (for example preserving a unitary form) in any way.
## <P/>
## See also <Ref Func="IrreducibleModules"/>,
## which provides efficient methods for solvable groups.
## <P/>
## <Example><![CDATA[
## gap> g:= AlternatingGroup( 4 );;
## gap> repr:= IrreducibleRepresentations( g );
## [ Pcgs([ (2,4,3), (1,3)(2,4), (1,2)(3,4) ]) ->
## [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ],
## Pcgs([ (2,4,3), (1,3)(2,4), (1,2)(3,4) ]) ->
## [ [ [ E(3) ] ], [ [ 1 ] ], [ [ 1 ] ] ],
## Pcgs([ (2,4,3), (1,3)(2,4), (1,2)(3,4) ]) ->
## [ [ [ E(3)^2 ] ], [ [ 1 ] ], [ [ 1 ] ] ],
## Pcgs([ (2,4,3), (1,3)(2,4), (1,2)(3,4) ]) ->
## [ [ [ 0, 0, 1 ], [ 1, 0, 0 ], [ 0, 1, 0 ] ],
## [ [ -1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, -1 ] ],
## [ [ 1, 0, 0 ], [ 0, -1, 0 ], [ 0, 0, -1 ] ] ] ]
## gap> ForAll( repr, IsGroupHomomorphism );
## true
## gap> Length( repr );
## 4
## gap> gens:= GeneratorsOfGroup( g );
## [ (1,2,3), (2,3,4) ]
## gap> List( gens, x -> x^repr[1] );
## [ [ [ 1 ] ], [ [ 1 ] ] ]
## gap> List( gens, x -> x^repr[4] );
## [ [ [ 0, 0, -1 ], [ 1, 0, 0 ], [ 0, -1, 0 ] ],
## [ [ 0, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "IrreducibleRepresentations", IsGroup and IsFinite );
DeclareOperation( "IrreducibleRepresentations",
[ IsGroup and IsFinite, IsField ] );
#############################################################################
##
#A IrrBaumClausen( <G> ) . . . . irred. characters of a supersolvable group
##
## <#GAPDoc Label="IrrBaumClausen">
## <ManSection>
## <Attr Name="IrrBaumClausen" Arg='G'/>
##
## <Description>
## <Ref Func="IrrBaumClausen"/> returns the absolutely irreducible ordinary
## characters of the factor group of the finite solvable group <A>G</A>
## by the derived subgroup of its supersolvable residuum.
## <P/>
## The characters are computed using the algorithm by Baum and Clausen
## (see <Cite Key="BC94"/>).
## An error is signalled if <A>G</A> is not solvable.
## <P/>
## <Example><![CDATA[
## gap> g:= SL(2,3);;
## gap> irr1:= IrrDixonSchneider( g );
## [ Character( CharacterTable( SL(2,3) ), [ 1, 1, 1, 1, 1, 1, 1 ] ),
## Character( CharacterTable( SL(2,3) ),
## [ 1, E(3)^2, E(3), 1, E(3), E(3)^2, 1 ] ),
## Character( CharacterTable( SL(2,3) ),
## [ 1, E(3), E(3)^2, 1, E(3)^2, E(3), 1 ] ),
## Character( CharacterTable( SL(2,3) ), [ 2, 1, 1, -2, -1, -1, 0 ] ),
## Character( CharacterTable( SL(2,3) ),
## [ 2, E(3)^2, E(3), -2, -E(3), -E(3)^2, 0 ] ),
## Character( CharacterTable( SL(2,3) ),
## [ 2, E(3), E(3)^2, -2, -E(3)^2, -E(3), 0 ] ),
## Character( CharacterTable( SL(2,3) ), [ 3, 0, 0, 3, 0, 0, -1 ] ) ]
## gap> irr2:= IrrConlon( g );
## [ Character( CharacterTable( SL(2,3) ), [ 1, 1, 1, 1, 1, 1, 1 ] ),
## Character( CharacterTable( SL(2,3) ),
## [ 1, E(3), E(3)^2, 1, E(3)^2, E(3), 1 ] ),
## Character( CharacterTable( SL(2,3) ),
## [ 1, E(3)^2, E(3), 1, E(3), E(3)^2, 1 ] ),
## Character( CharacterTable( SL(2,3) ), [ 3, 0, 0, 3, 0, 0, -1 ] ) ]
## gap> irr3:= IrrBaumClausen( g );
## [ Character( CharacterTable( SL(2,3) ), [ 1, 1, 1, 1, 1, 1, 1 ] ),
## Character( CharacterTable( SL(2,3) ),
## [ 1, E(3), E(3)^2, 1, E(3)^2, E(3), 1 ] ),
## Character( CharacterTable( SL(2,3) ),
## [ 1, E(3)^2, E(3), 1, E(3), E(3)^2, 1 ] ),
## Character( CharacterTable( SL(2,3) ), [ 3, 0, 0, 3, 0, 0, -1 ] ) ]
## gap> chi:= irr2[4];; HasTestMonomial( chi );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "IrrBaumClausen", IsGroup );
#############################################################################
##
#F InducedRepresentationImagesRepresentative( <rep>, <H>, <R>, <g> )
##
## <ManSection>
## <Func Name="InducedRepresentationImagesRepresentative"
## Arg='rep, H, R, g'/>
##
## <Description>
## Let <A>rep</A><M>_H</M> denote the restriction of the group homomorphism
## <A>rep</A> to the group <A>H</A>,
## and <M>\phi</M> denote the induced representation of <A>rep</A><M>_H</M>
## to <M>G</M>,
## where <A>R</A> is a transversal of <A>H</A> in <M>G</M>.
## <Ref Func="InducedRepresentationImagesRepresentative"/> returns the image
## of the element <A>g</A> of <M>G</M> under <M>\phi</M>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "InducedRepresentationImagesRepresentative" );
#############################################################################
##
#F InducedRepresentation( <rep>, <G>[, <R>[, <H>]] ) induced matrix repr.
##
## <ManSection>
## <Func Name="InducedRepresentation" Arg='rep, G[, R[, H]]'/>
##
## <Description>
## Let <A>rep</A> be a matrix representation of the group <M>H</M>,
## which is a subgroup of the group <A>G</A>.
## <Ref Func="InducedRepresentation"/> returns the induced matrix
## representation of <A>G</A>.
## <P/>
## The optional third argument <A>R</A> is a right transversal of <M>H</M>
## in <A>G</A>.
## If the fourth optional argument <A>H</A> is given then it must be a
## subgroup of the source of <A>rep</A>,
## and the induced representation of the restriction of <A>rep</A>
## to <A>H</A> is computed.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "InducedRepresentation" );
#T Currently the returned homomorphism has `Image' etc. methods which
#T return plain lists not block matrices.
#T Before the function can be documented, this behaviour should be changed.
#############################################################################
##
#F ProjectiveCharDeg( <G> ,<z> ,<q> )
##
## <ManSection>
## <Func Name="ProjectiveCharDeg" Arg='G ,z ,q'/>
##
## <Description>
## is a collected list of the degrees of those faithful and absolutely
## irreducible characters of the group <A>G</A> in characteristic <A>q</A>
## that restrict homogeneously to the group generated by <A>z</A>,
## which must be central in <A>G</A>.
## Only those characters are counted that have value a multiple of
## <C>E( Order(<A>z</A>) )</C> on <A>z</A>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "ProjectiveCharDeg" );
#############################################################################
##
#F CoveringTriplesCharacters( <G>, <z> ) . . . . . . . . . . . . . . . local
##
## <ManSection>
## <Func Name="CoveringTriplesCharacters" Arg='G, z'/>
##
## <Description>
## <A>G</A> must be a supersolvable group,
## and <A>z</A> a central element in <A>G</A>.
## <Ref Func="CoveringTriplesCharacters"/> returns a list of tripels
## <M>[ T, K, e ]</M>
## such that every irreducible character <M>\chi</M> of <A>G</A> with the
## property that <M>\chi(<A>z</A>)</M> is a multiple of
## <C>E( Order(<A>z</A>) )</C> is induced from a linear character of some
## <M>T</M>, with kernel <M>K</M>.
## The element <M>e \in T</M> is chosen such that
## <M>\langle e K \rangle = T/K</M>.
## <P/>
## The algorithm is in principle the same as that used in
## <Ref Func="ProjectiveCharDeg"/>,
## but the recursion stops if <M><A>G</A> = <A>z</A></M>.
## The structure and the names of the variables are the same.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "CoveringTriplesCharacters" );
#############################################################################
##
#A IrrConlon( <G> )
##
## <#GAPDoc Label="IrrConlon">
## <ManSection>
## <Attr Name="IrrConlon" Arg='G'/>
##
## <Description>
## For a finite solvable group <A>G</A>,
## <Ref Func="IrrConlon"/> returns a list of certain irreducible characters
## of <A>G</A>, among those all irreducibles that have the
## supersolvable residuum of <A>G</A> in their kernels;
## so if <A>G</A> is supersolvable,
## all irreducible characters of <A>G</A> are returned.
## An error is signalled if <A>G</A> is not solvable.
## <P/>
## The characters are computed using Conlon's algorithm
## (see <Cite Key="Con90a"/> and <Cite Key="Con90b"/>).
## For each irreducible character in the returned list,
## the monomiality information
## (see <Ref Func="TestMonomial" Label="for a group"/>) is stored.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "IrrConlon", IsGroup );
#############################################################################
##
#E
|