This file is indexed.

/usr/share/gap/lib/ctblsolv.gd is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
#############################################################################
##
#W  ctblsolv.gd                 GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declaration of operations for computing
##  characters of solvable groups.
##


#############################################################################
##
#V  BaumClausenInfoDebug  . . . . . . . . . . . . . . testing BaumClausenInfo
##
##  <ManSection>
##  <Var Name="BaumClausenInfoDebug"/>
##
##  <Description>
##  This global record contains functions used for testing intermediate
##  results in <C>BaumClausenInfo</C> computations;
##  they are called only inside <C>Assert</C> statements.
##  </Description>
##  </ManSection>
##
DeclareGlobalVariable( "BaumClausenInfoDebug" );


#############################################################################
##
#A  BaumClausenInfo( <G> )  . . . . .  info about irreducible representations
##
##  <ManSection>
##  <Attr Name="BaumClausenInfo" Arg='G'/>
##
##  <Description>
##  Called with a group <A>G</A>, <Ref Func="BaumClausenInfo"/> returns
##  a record with the following components.
##  <P/>
##  <List>
##  <Mark><C>pcgs</C></Mark>
##  <Item>
##       each representation is encoded as a list, the entries encode images
##       of the elements in <C>pcgs</C>,
##  </Item>
##  <Mark><C>kernel</C></Mark>
##  <Item>
##       the normal subgroup such that the result describes the irreducible
##       representations of the corresponding factor group only
##       (so <E>all</E> irreducible nonlinear representations are described
##       if and only if this subgroup is trivial),
##  </Item>
##  <Mark><C>exponent</C></Mark>
##  <Item>
##       the roots of unity in the representations are encoded as exponents
##       of a primitive <C>exponent</C>-th root,
##  </Item>
##  <Mark><C>lin</C></Mark>
##  <Item>
##       the list that encodes all linear representations of <A>G</A>,
##       each representation is encoded as a list of exponents,
##  </Item>
##  <Mark><C>nonlin</C></Mark>
##  <Item>
##       a list of nonlinear irreducible representations,
##       each a list of monomial matrices.
##  </Item>
##  </List>
##  <P/>
##  Monomial matrices are encoded as records with components
##  <C>perm</C> (the permutation part) and <C>diag</C> (the nonzero entries).
##  E. g., the matrix <C>rec( perm := [ 3, 1, 2 ], diag := [ 1, 2, 3 ] )</C>
##  stands for
##  [ .  .  1 ]     [ e^1   .    .  ]   [  .    .   e^3 ]
##  [ 1  .  . ]  *  [  .   e^2   .  ] = [ e^1   .    .  ] ,
##  [ .  1  . ]     [  .    .   e^3 ]   [  .   e^2   .  ]
##  where <C>e</C> is the value of <C>exponent</C> in the result record.
##  <P/>
##  The algorithm of Baum and Clausen guarantees to compute all
##  irreducible representations for abelian by supersolvable groups;
##  if the supersolvable residuum of <A>G</A> is not abelian then this
##  implementation computes the irreducible representations of the factor
##  group of <A>G</A> by the derived subgroup of the supersolvable residuum.
##  <P/>
##  For this purpose, a composition series
##  <M>\langle \rangle &lt; G_{lg} &lt; G_{lg-1} &lt; \ldots &lt; G_1 = <A>G</A></M>
##  of <A>G</A> is used,
##  where the maximal abelian and all nonabelian composition subgroups are
##  normal in <A>G</A>.
##  Iteratively the representations of <M>G_i</M> are constructed from those of
##  <M>G_{{i+1}}</M>.
##  <P/>
##  Let <M>[ g_1, g_2, \ldots, g_{lg} ]</M> be a pcgs of <A>G</A>, and
##  <M>G_i = \langle G_{i+1}, g_i \rangle</M>.
##  The list <C>indices</C> holds the sizes of the composition factors,
##  i.e., <C>indices[i]</C><M> = [ G_i \colon G_{i+1} ]</M>.
##  <P/>
##  The iteration is an application of the theorem of Clifford.
##  An irreducible representation of <M>G_{i+1}</M> has either
##  <M>p = [ G_i \colon G_{i+1} ]</M> extensions to <M>G_i</M>,
##  or the induced representation is irreducible in <M>G_i</M>.
##  <P/>
##  In the case of extensions, a representing matrix for the canonical
##  generator <M>g_i</M> is constructed.
##  The induction can be performed directly, afterwards the induced
##  representation is modified such that the restriction to <M>G_{i+1}</M>
##  decomposes into the direct sum of its constituents as block diagonal
##  decomposition, and the matrix for <M>g_i</M> is constructed.
##  <P/>
##  So the construction guarantees that the restriction of a
##  representation of <M>G_i</M> to <M>G_{i+1}</M> decomposes (physically)
##  into a direct sum of irreducible representations of <M>G_{i+1}</M>.
##  Moreover, two constituents are equivalent if and only if they are equal.
##  </Description>
##  </ManSection>
##
DeclareAttribute( "BaumClausenInfo", IsGroup );


#############################################################################
##
#A  IrreducibleRepresentations( <G>[, <F>] )
##
##  <#GAPDoc Label="IrreducibleRepresentations">
##  <ManSection>
##  <Attr Name="IrreducibleRepresentations" Arg='G[, F]'/>
##
##  <Description>
##  Called with a finite group <A>G</A> and a field <A>F</A>,
##  <Ref Func="IrreducibleRepresentations"/> returns a list of
##  representatives of the irreducible matrix representations of <A>G</A>
##  over <A>F</A>, up to equivalence.
##  <P/>
##  If <A>G</A> is the only argument then
##  <Ref Func="IrreducibleRepresentations"/> returns a list of
##  representatives of the absolutely irreducible complex representations
##  of <A>G</A>, up to equivalence.
##  <P/>
##  At the moment, methods are available for the following cases:
##  If <A>G</A> is abelian by supersolvable the method
##  of&nbsp;<Cite Key="BC94"/> is used.
##  <P/>
##  Otherwise, if <A>F</A> and <A>G</A> are both finite,
##  the regular module of <A>G</A> is split by MeatAxe methods which can make
##  this an expensive operation.
##  <P/>
##  Finally, if <A>F</A> is not given (i.e. it defaults to the cyclotomic
##  numbers) and <A>G</A> is a finite group,
##  the method of <Cite Key="Dix93"/>
##  (see <Ref Func="IrreducibleRepresentationsDixon"/>) is used.
##  <P/>
##  For other cases no methods are implemented yet.
##  <P/>
##  The representations obtained are <E>not</E> guaranteed to be <Q>nice</Q>
##  (for example preserving a unitary form) in any way.
##  <P/>
##  See also <Ref Func="IrreducibleModules"/>,
##  which provides efficient methods for solvable groups.
##  <P/>
##  <Example><![CDATA[
##  gap> g:= AlternatingGroup( 4 );;
##  gap> repr:= IrreducibleRepresentations( g );
##  [ Pcgs([ (2,4,3), (1,3)(2,4), (1,2)(3,4) ]) -> 
##      [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ], 
##    Pcgs([ (2,4,3), (1,3)(2,4), (1,2)(3,4) ]) -> 
##      [ [ [ E(3) ] ], [ [ 1 ] ], [ [ 1 ] ] ], 
##    Pcgs([ (2,4,3), (1,3)(2,4), (1,2)(3,4) ]) -> 
##      [ [ [ E(3)^2 ] ], [ [ 1 ] ], [ [ 1 ] ] ], 
##    Pcgs([ (2,4,3), (1,3)(2,4), (1,2)(3,4) ]) -> 
##      [ [ [ 0, 0, 1 ], [ 1, 0, 0 ], [ 0, 1, 0 ] ], 
##        [ [ -1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, -1 ] ], 
##        [ [ 1, 0, 0 ], [ 0, -1, 0 ], [ 0, 0, -1 ] ] ] ]
##  gap> ForAll( repr, IsGroupHomomorphism );
##  true
##  gap> Length( repr );
##  4
##  gap> gens:= GeneratorsOfGroup( g );
##  [ (1,2,3), (2,3,4) ]
##  gap> List( gens, x -> x^repr[1] );
##  [ [ [ 1 ] ], [ [ 1 ] ] ]
##  gap>  List( gens, x -> x^repr[4] );
##  [ [ [ 0, 0, -1 ], [ 1, 0, 0 ], [ 0, -1, 0 ] ], 
##    [ [ 0, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "IrreducibleRepresentations", IsGroup and IsFinite );
DeclareOperation( "IrreducibleRepresentations",
    [ IsGroup and IsFinite, IsField ] );


#############################################################################
##
#A  IrrBaumClausen( <G> ) . . . .  irred. characters of a supersolvable group
##
##  <#GAPDoc Label="IrrBaumClausen">
##  <ManSection>
##  <Attr Name="IrrBaumClausen" Arg='G'/>
##
##  <Description>
##  <Ref Func="IrrBaumClausen"/> returns the absolutely irreducible ordinary
##  characters of the factor group of the finite solvable group <A>G</A>
##  by the derived subgroup of its supersolvable residuum.
##  <P/>
##  The characters are computed using the algorithm by Baum and Clausen
##  (see&nbsp;<Cite Key="BC94"/>).
##  An error is signalled if <A>G</A> is not solvable.
##  <P/>
##  <Example><![CDATA[
##  gap> g:= SL(2,3);;
##  gap> irr1:= IrrDixonSchneider( g );
##  [ Character( CharacterTable( SL(2,3) ), [ 1, 1, 1, 1, 1, 1, 1 ] ), 
##    Character( CharacterTable( SL(2,3) ), 
##      [ 1, E(3)^2, E(3), 1, E(3), E(3)^2, 1 ] ), 
##    Character( CharacterTable( SL(2,3) ), 
##      [ 1, E(3), E(3)^2, 1, E(3)^2, E(3), 1 ] ), 
##    Character( CharacterTable( SL(2,3) ), [ 2, 1, 1, -2, -1, -1, 0 ] ), 
##    Character( CharacterTable( SL(2,3) ), 
##      [ 2, E(3)^2, E(3), -2, -E(3), -E(3)^2, 0 ] ), 
##    Character( CharacterTable( SL(2,3) ), 
##      [ 2, E(3), E(3)^2, -2, -E(3)^2, -E(3), 0 ] ), 
##    Character( CharacterTable( SL(2,3) ), [ 3, 0, 0, 3, 0, 0, -1 ] ) ]
##  gap> irr2:= IrrConlon( g );
##  [ Character( CharacterTable( SL(2,3) ), [ 1, 1, 1, 1, 1, 1, 1 ] ), 
##    Character( CharacterTable( SL(2,3) ), 
##      [ 1, E(3), E(3)^2, 1, E(3)^2, E(3), 1 ] ), 
##    Character( CharacterTable( SL(2,3) ), 
##      [ 1, E(3)^2, E(3), 1, E(3), E(3)^2, 1 ] ), 
##    Character( CharacterTable( SL(2,3) ), [ 3, 0, 0, 3, 0, 0, -1 ] ) ]
##  gap> irr3:= IrrBaumClausen( g );
##  [ Character( CharacterTable( SL(2,3) ), [ 1, 1, 1, 1, 1, 1, 1 ] ), 
##    Character( CharacterTable( SL(2,3) ), 
##      [ 1, E(3), E(3)^2, 1, E(3)^2, E(3), 1 ] ), 
##    Character( CharacterTable( SL(2,3) ), 
##      [ 1, E(3)^2, E(3), 1, E(3), E(3)^2, 1 ] ), 
##    Character( CharacterTable( SL(2,3) ), [ 3, 0, 0, 3, 0, 0, -1 ] ) ]
##  gap> chi:= irr2[4];;  HasTestMonomial( chi );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "IrrBaumClausen", IsGroup );


#############################################################################
##
#F  InducedRepresentationImagesRepresentative( <rep>, <H>, <R>, <g> )
##
##  <ManSection>
##  <Func Name="InducedRepresentationImagesRepresentative"
##   Arg='rep, H, R, g'/>
##
##  <Description>
##  Let <A>rep</A><M>_H</M> denote the restriction of the group homomorphism
##  <A>rep</A> to the group <A>H</A>,
##  and <M>\phi</M> denote the induced representation of <A>rep</A><M>_H</M>
##  to <M>G</M>,
##  where <A>R</A> is a transversal of <A>H</A> in <M>G</M>.
##  <Ref Func="InducedRepresentationImagesRepresentative"/> returns the image
##  of the element <A>g</A> of <M>G</M> under <M>\phi</M>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "InducedRepresentationImagesRepresentative" );


#############################################################################
##
#F  InducedRepresentation( <rep>, <G>[, <R>[, <H>]] )    induced matrix repr.
##
##  <ManSection>
##  <Func Name="InducedRepresentation" Arg='rep, G[, R[, H]]'/>
##
##  <Description>
##  Let <A>rep</A> be a matrix representation of the group <M>H</M>,
##  which is a subgroup of the group <A>G</A>.
##  <Ref Func="InducedRepresentation"/> returns the induced matrix
##  representation of <A>G</A>.
##  <P/>
##  The optional third argument <A>R</A> is a right transversal of <M>H</M>
##  in <A>G</A>.
##  If the fourth optional argument <A>H</A> is given then it must be a
##  subgroup of the source of <A>rep</A>,
##  and the induced representation of the restriction of <A>rep</A>
##  to <A>H</A> is computed.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "InducedRepresentation" );
#T Currently the returned homomorphism has `Image' etc. methods which
#T return plain lists not block matrices.
#T Before the function can be documented, this behaviour should be changed.


#############################################################################
##
#F  ProjectiveCharDeg( <G> ,<z> ,<q> )
##
##  <ManSection>
##  <Func Name="ProjectiveCharDeg" Arg='G ,z ,q'/>
##
##  <Description>
##  is a collected list of the degrees of those faithful and absolutely
##  irreducible characters of the group <A>G</A> in characteristic <A>q</A>
##  that restrict homogeneously to the group generated by <A>z</A>,
##  which must be central in <A>G</A>.
##  Only those characters are counted that have value a multiple of
##  <C>E( Order(<A>z</A>) )</C> on <A>z</A>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "ProjectiveCharDeg" );


#############################################################################
##
#F  CoveringTriplesCharacters( <G>, <z> ) . . . . . . . . . . . . . . . local
##
##  <ManSection>
##  <Func Name="CoveringTriplesCharacters" Arg='G, z'/>
##
##  <Description>
##  <A>G</A> must be a supersolvable group,
##  and <A>z</A> a central element in <A>G</A>.
##  <Ref Func="CoveringTriplesCharacters"/> returns a list of tripels
##  <M>[ T, K, e ]</M>
##  such that every irreducible character <M>\chi</M> of <A>G</A> with the
##  property that <M>\chi(<A>z</A>)</M> is a multiple of
##  <C>E( Order(<A>z</A>) )</C> is induced from a linear character of some
##  <M>T</M>, with kernel <M>K</M>.
##  The element <M>e \in T</M> is chosen such that
##  <M>\langle e K \rangle = T/K</M>.
##  <P/>
##  The algorithm is in principle the same as that used in
##  <Ref Func="ProjectiveCharDeg"/>,
##  but the recursion stops if <M><A>G</A> = <A>z</A></M>.
##  The structure and the names of the variables are the same.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "CoveringTriplesCharacters" );


#############################################################################
##
#A  IrrConlon( <G> )
##
##  <#GAPDoc Label="IrrConlon">
##  <ManSection>
##  <Attr Name="IrrConlon" Arg='G'/>
##
##  <Description>
##  For a finite solvable group <A>G</A>,
##  <Ref Func="IrrConlon"/> returns a list of certain irreducible characters
##  of <A>G</A>, among those all irreducibles that have the
##  supersolvable residuum of <A>G</A> in their kernels;
##  so if <A>G</A> is supersolvable,
##  all irreducible characters of <A>G</A> are returned.
##  An error is signalled if <A>G</A> is not solvable.
##  <P/>
##  The characters are computed using Conlon's algorithm
##  (see&nbsp;<Cite Key="Con90a"/> and&nbsp;<Cite Key="Con90b"/>).
##  For each irreducible character in the returned list,
##  the monomiality information
##  (see&nbsp;<Ref Func="TestMonomial" Label="for a group"/>) is stored.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "IrrConlon", IsGroup );


#############################################################################
##
#E