/usr/share/gap/lib/ctblsolv.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 | #############################################################################
##
#W ctblsolv.gi GAP library Hans Ulrich Besche
#W Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains character table methods for solvable groups.
##
#############################################################################
##
#M CharacterDegrees( <G>, <p> ) . . . . . . . . . . . for an abelian group
##
InstallMethod( CharacterDegrees,
"for an abelian group, and an integer p (just strip off the p-part)",
[ IsGroup and IsAbelian, IsInt ],
RankFilter(IsZeroCyc), # There is a method for groups for
# the integer zero which is worse
function( G, p )
G:= Size( G );
if p <> 0 then
while G mod p = 0 do
G:= G / p;
od;
fi;
return [ [ 1, G ] ];
end );
#############################################################################
##
#F AppendCollectedList( <list1>, <list2> )
##
BindGlobal( "AppendCollectedList", function( list1, list2 )
local pair1, pair2, toadd;
for pair2 in list2 do
toadd:= true;
for pair1 in list1 do
if pair1[1] = pair2[1] then
pair1[2]:= pair1[2] + pair2[2];
toadd:= false;
break;
fi;
od;
if toadd then
AddSet( list1, pair2 );
fi;
od;
end );
#############################################################################
##
#F KernelUnderDualAction( <N>, <Npcgs>, <v> ) . . . . . . . local function
##
## <Npcgs> is a PCGS of an elementary abelian group <N>.
## <v> is a vector in the dual space of <N>, w.r.t. <Npcgs>.
## The kernel of <v> is returned.
##
BindGlobal( "KernelUnderDualAction", function( N, Npcgs, v )
local gens, # generators list
i, j;
gens:= [];
for i in Reversed( [ 1 .. Length( v ) ] ) do
if IsZero( v[i] ) then
Add( gens, Npcgs[i] );
else
# `i' is the position of the last nonzero entry of `v'.
for j in Reversed( [ 1 .. i-1 ] ) do
Add( gens, Npcgs[j]*Npcgs[i]^( Int(-v[j]/v[i]) ) );
od;
return SubgroupNC( N, Reversed( gens ) );
fi;
od;
end );
#############################################################################
##
#F ProjectiveCharDeg( <G> ,<z> ,<q> )
##
InstallGlobalFunction( ProjectiveCharDeg, function( G, z, q )
local oz, # the order of `z'
N, # normal subgroup of `G'
t,
r, # collected list of character degrees, result
h, # natural homomorphism
img,
k,
c,
ci,
zn,
i,
p, # prime divisor of the size of `N'
P, # Sylow `p' subgroup of `N'
O,
L,
Gpcgs, # PCGS of `G'
Ppcgs, # PCGS of `P'
Opcgs, # PCGS of `O'
mats,
orbs,
orb, # loop over `orbs'
stab; # stabilizer of canonical representative of `orb'
oz:= Order( z );
# For abelian groups, there are only linear characters.
if IsAbelian( G ) then
G:= Size( G );
if q <> 0 then
while G mod q = 0 do
G:= G / q;
od;
fi;
return [ [ 1, G/oz ] ];
fi;
# Now `G' is not abelian.
h:= NaturalHomomorphismByNormalSubgroupNC( G, SubgroupNC( G, [ z ] ) );
img:= ImagesSource( h );
N:= ElementaryAbelianSeriesLargeSteps( img );
N:= N[ Length( N )-1 ];
if not IsPrime( Size( N ) ) then
N:= ChiefSeriesUnderAction( img, N );
N:= N[ Length( N )-1 ];
fi;
# `N' is a normal subgroup such that `N/<z>' is a chief factor of `G'
# of order `i' which is a power of `p'.
N:= PreImagesSet( h, N );
i:= Size( N ) / oz;
p:= Factors( i )[1];
if not IsAbelian( N ) then
h:= NaturalHomomorphismByNormalSubgroupNC( G, SubgroupNC( G, [ z ] ) );
# `c' is a list of complement classes of `N' modulo `z'
c:= List( ComplementClassesRepresentatives( ImagesSource( h ), ImagesSet( h, N ) ),
x -> PreImagesSet( h, x ) );
r:= Centralizer( G, N );
for L in c do
if IsSubset( L, r ) then
# L is a complement to N in G modulo <z> which centralizes N
r:= RootInt( Size(N) / oz );
return List( ProjectiveCharDeg( L, z, q ),
x -> [ x[1]*r, x[2] ] );
fi;
od;
Error( "this should not happen" );
fi;
# `N' is abelian, `P' is its Sylow `p' subgroup.
P:= SylowSubgroup( N, p );
if p = q then
# Factor out `P' (lies in the kernel of the repr.)
h:= NaturalHomomorphismByNormalSubgroupNC( G, P );
return ProjectiveCharDeg( ImagesSource( h ), ImageElm( h, z ), q );
elif i = Size( P ) then
# `z' is a p'-element, `P' is elementary abelian.
# Find the characters of the factor group needed.
h:= NaturalHomomorphismByNormalSubgroupNC( G, P );
r:= ProjectiveCharDeg( ImagesSource( h ), ImageElm( h, z ), q );
if p = i then
# `P' has order `p'.
zn:= First( GeneratorsOfGroup( P ), g -> not IsOne( g ) );
t:= Stabilizer( G, zn );
i:= Size(G) / Size(t);
AppendCollectedList( r,
List( ProjectiveCharDeg( t, zn*z, q ),
x -> [ x[1]*i, x[2]*(p-1)/i ] ) );
return r;
else
# `P' has order strictly larger than `p'.
# `mats' describes the contragredient operation of `G' on `P'.
Gpcgs:= Pcgs( G );
Ppcgs:= Pcgs( P );
mats:= List( List( Gpcgs, Inverse ),
x -> TransposedMat( List( Ppcgs,
y -> ExponentsConjugateLayer( Ppcgs, y,x ) )*Z(p)^0 ) );
orbs:= ExternalOrbitsStabilizers( G,
NormedRowVectors( GF(p)^Length( Ppcgs ) ),
Gpcgs, mats, OnLines );
orbs:= Filtered( orbs,
o -> not IsZero( CanonicalRepresentativeOfExternalSet( o ) ) );
for orb in orbs do
# `k' is the kernel of the character.
stab:= StabilizerOfExternalSet( orb );
h:= NaturalHomomorphismByNormalSubgroupNC( stab,
KernelUnderDualAction( P, Ppcgs,
CanonicalRepresentativeOfExternalSet( orb ) ) );
img:= ImagesSource( h );
# `zn' is an element of `img'.
# Note that the image of `P' under `h' has order `p'.
zn:= First( GeneratorsOfGroup( ImagesSet( h, P) ),
g -> not IsOne( g ) )
* ImageElm( h, z );
# `c' is stabilizer of the character,
# `ci' is the number of orbits of characters with equal kernels
if p = 2 then
c := img;
ci := 1;
else
c := Stabilizer( img, zn );
ci := Size( img ) / Size( c );
fi;
k:= Size( G ) / Size( stab ) * ci;
AppendCollectedList( r,
List( ProjectiveCharDeg( c, zn, q ),
x -> [ x[1]*k, x[2]*(p-1)/ci ] ) );
od;
return r;
fi;
elif IsCyclic( P ) then
# Choose a generator `zn' of `P'.
zn := Pcgs( P )[1];
t := Stabilizer( G, zn, OnPoints );
if G = t then
# `P' is a central subgroup of `G'.
return List( ProjectiveCharDeg( G, zn*z, q ),
x -> [ x[1], x[2]*p ] );
else
# `P' is not central in `G'.
return List( ProjectiveCharDeg( t, zn*z, q ),
x -> [ x[1]*p, x[2] ] );
fi;
fi;
# `P' is the direct product of the Sylow `p' subgroup of `z'
# and an elementary abelian `p' subgroup.
O:= Omega( P, p );
Opcgs:= Pcgs( O );
Gpcgs:= Pcgs( G );
# `zn' is a generator of the intersection of <z> and `O'
zn := z^(oz/p);
r := [];
mats:= List( List( Gpcgs, Inverse ),
x -> TransposedMat( List( Opcgs,
y -> ExponentsConjugateLayer( Opcgs, y,x ) ) * Z(p)^0 ) );
orbs:= ExternalOrbitsStabilizers( G,
NormedRowVectors( GF(p)^Length( Opcgs ) ),
Gpcgs, mats, OnLines );
orbs:= Filtered( orbs,
o -> not IsZero( CanonicalRepresentativeOfExternalSet( o ) ) );
# In this case the stabilzers of the kernels are already the
# stabilizers of the characters.
for orb in orbs do
k:= KernelUnderDualAction( O, Opcgs,
CanonicalRepresentativeOfExternalSet( orb ) );
if not zn in k then
# The kernel avoids `zn'.
t:= StabilizerOfExternalSet( orb );
h:= NaturalHomomorphismByNormalSubgroupNC( t, k );
img:= ImagesSource( h );
t:= Size(G) / Size(t);
AppendCollectedList( r, List( ProjectiveCharDeg( img,
ImageElm( h, z ), q ),
x -> [ x[1]*t, x[2] ] ) );
fi;
od;
return r;
end );
#############################################################################
##
#M CharacterDegrees( <G>, <p> ) . . . . . . . . . . . for a solvable group
##
## The algorithm used is based on~\cite{Con90b},
## its main tool is Clifford theory.
##
## Given a solvable group $G$ and a nonnegative integer $q$,
## we first choose an elementary abelian normal subgroup $N$.
## (Note that $N$ need not be a *minimal* normal subgroup, this requirement
## in~\cite{Con90b} applies only to the computation of projective degrees
## where nonabelian normal subgroups $N$ occur.)
## By recursion, the $q$-modular character degrees of the factor group $G/N$
## are computed next.
## So it remains to compute the degrees of those $q$-modular irreducible
## characters whose kernels do not contain $N$.
## This last step follows~\cite{Con90b}, for the special case of a *trivial*
## central subgroup $Z$.
## Namely, we compute the $G$-orbits on the linear spaces of the nontrivial
## irreducible characters of $N$, under projective action.
## (The orbit consisting of the trivial character corresponds to those
## $q$-modular irreducible $G$-characters with $N$ in their kernels.)
## For each orbit, we use the function `ProjectiveCharDeg' to compute the
## degrees arising from a representative $\chi$,
## in the group $S/K$ with central cyclic subgroup $N/K$,
## where $S$ is the (subspace) stabilizer of $\chi$ and $K$ is the kernel of
## $\chi$.
##
## One recursive step of the algorithm is described in the following.
##
## Let $G$ be a solvable group, $z$ a central element in $G$,
## and let $q$ be the characteristic of the algebraic closed field $F$.
## Without loss of generality, we may assume that $G$ is nonabelian.
## Consider a faithful linear character $\lambda$ of $\langle z \rangle$.
## We calculate the character degrees $(G,z,q)$ of those absolutely
## irreducible characters of $G$ whose restrictions to $\langle z \rangle$
## are a multiple of $\lambda$.
##
## We choose a normal subgroup $N$ of $G$ such that the factor
## $N / \langle z \rangle$ is a chief factor in $G$, and consider
## the following cases.
##
## If $N$ is nonabelian then we calculate a subgroup $L$ of $G$ such that
## $N \cap L = \langle z \rangle$, $L$ centralizes $N$, and $N L = G$.
## One can show that the order of $N / \langle z \rangle$ is a square $r^2$,
## and that the degrees $(G,z,q)$ are obtained from the degrees $(L,z,q)$
## on multiplying each with $r$.
##
## If $N$ is abelian then the order of $N / \langle z \rangle$ is a prime
## power $p^i$.
## Let $P$ denote the Sylow $p$ subgroup of $N$.
## Following Clifford's theorem, we calculate orbit representatives and
## inertia subgroups with respect to the action of $G$ on those irreducible
## characters of $P$ that restrict to multiples of $\lambda_P$.
## For that, we distinguish three cases.
## \beginlist
## \item{(a)}
## $z$ is a $p^{\prime}$ element.
## Then we compute first the character degrees $(G/P,zP,q)$,
## corresponding to the (orbit of the) trivial character.
## The action on the nontrivial irreducible characters of $P$
## is dual to the action on the nonzero vectors of the vector space
## $P$.
## For each representative, we compute the kernel $K$, and the degrees
## $(S/K,zK,q)$, where $S$ denotes the inertia subgroup.
##
## \item{(b)}
## $z$ is not a $p^{\prime}$ element, and $P$ cyclic (not prime order).
## Let $y$ be a generator of $P$.
## If $y$ is central in $G$ then we have to return $p$ copies of the
## degrees $(G,zy,q)$.
## Otherwise we compute the degrees $(C_G(y),zy,q)$, and multiply
## each with $p$.
##
## \item{(c)}
## $z$ is not a $p^{\prime}$ element, and $P$ is not cyclic.
## We compute $O = \Omega(P)$.
## As above, we consider the dual operation to that in $O$,
## and for each orbit representative we check whether its restriction
## to $O$ is a multiple of $\lambda_O$, and if yes compute the degrees
## $(S/K,zK,q)$.
## \endlist
##
BindGlobal( "CharacterDegreesConlon", function( G, q )
local r, # list of degrees, result
N, # elementary abelian normal subgroup of `G'
p, # prime divisor of the order of `N'
z, # one generator of `N'
t, # stabilizer of `z' in `G'
i, # index of `t' in `G'
Gpcgs, # PCGS of `G'
Npcgs, # PCGS of `N'
mats, # matrices describing the action of `Gpcgs' w.r.t. `Npcgs'
orbs, # orbits of the action
orb, # loop over `orbs'
rep, # canonical representative of `orb'
stab, # stabilizer of `rep'
h, # nat. hom. by the kernel of a character
img, # image of `h'
c,
ci,
k;
Info( InfoCharacterTable, 1,
"CharacterDegrees: called for group of order ", Size( G ) );
# If the group is abelian, we must give up because this method
# needs a proper elementary abelian normal subgroup for its
# reduction step.
# (Note that we must not call `TryNextMethod' because the method
# for abelian groups has higher rank.)
if IsAbelian( G ) then
r:= CharacterDegrees( G, q );
Info( InfoCharacterTable, 1,
"CharacterDegrees: returns ", r );
return r;
elif not ( q = 0 or IsPrimeInt( q ) ) then
Error( "<q> mut be zero or a prime" );
fi;
# Choose a normal elementary abelian `p'-subgroup `N',
# not necessarily minimal.
N:= ElementaryAbelianSeriesLargeSteps( G );
N:= N[ Length( N ) - 1 ];
r:= CharacterDegrees( G / N, q );
p:= Factors( Size( N ) )[1];
if p = q then
# If `N' is a `q'-group we are done.
Info( InfoCharacterTable, 1,
"CharacterDegrees: returns ", r );
return r;
elif Size( N ) = p then
# `N' is of prime order.
z:= Pcgs( N )[1];
t:= Stabilizer( G, z, OnPoints );
i:= Size( G ) / Size( t );
AppendCollectedList( r, List( ProjectiveCharDeg( t, z, q ),
x -> [ x[1]*i, x[2]*(p-1)/i ] ) );
else
# `N' is an elementary abelian `p'-group of nonprime order.
Gpcgs:= Pcgs( G );
Npcgs:= Pcgs( N );
mats:= List( Gpcgs, x -> TransposedMat( List( Npcgs,
y -> ExponentsConjugateLayer( Npcgs, y,x ) ) * Z(p)^0 )^-1 );
orbs:= ExternalOrbitsStabilizers( G,
NormedRowVectors( GF( p )^Length( Npcgs ) ),
Gpcgs, mats, OnLines );
#T may fail because the list is too long!
orbs:= Filtered( orbs,
o -> not IsZero( CanonicalRepresentativeOfExternalSet( o ) ) );
for orb in orbs do
stab:= StabilizerOfExternalSet( orb );
rep:= CanonicalRepresentativeOfExternalSet( orb );
h:= NaturalHomomorphismByNormalSubgroupNC( stab,
KernelUnderDualAction( N, Npcgs, rep ) );
img:= ImagesSource( h );
# The kernel has index `p' in `stab'.
z:= First( GeneratorsOfGroup( ImagesSet( h, N ) ),
g -> not IsOne( g ) );
if p = 2 then
c := img;
ci := 1;
else
c := Stabilizer( img, z );
ci := Size( img ) / Size( c );
fi;
k:= Size( G ) / Size( stab ) * ci;
AppendCollectedList( r, List( ProjectiveCharDeg( c, z, q ),
x -> [ x[1]*k, x[2]*(p-1)/ci ] ) );
od;
fi;
Info( InfoCharacterTable, 1,
"CharacterDegrees: returns ", r );
return r;
end );
InstallMethod( CharacterDegrees,
"for a solvable group and an integer (Conlon's algorithm)",
[ IsGroup and IsSolvableGroup, IsInt ],
RankFilter(IsZeroCyc), # There is a method for groups for
# the integer zero which is worse
function( G, q )
if HasIrr( G ) then
# Use the known irreducibles.
TryNextMethod();
else
return CharacterDegreesConlon( G, q );
fi;
end );
#############################################################################
##
#F CoveringTriplesCharacters( <G>, <z> ) . . . . . . . . . . . . . . . local
##
InstallGlobalFunction( CoveringTriplesCharacters, function( G, z )
local oz,
h,
img,
N,
t,
r,
k,
c,
zn,
i,
p,
P,
O,
Gpcgs,
Ppcgs,
Opcgs,
mats,
orbs,
orb;
# The trivial character will be dealt with separately.
if IsTrivial( G ) then
return [];
fi;
oz:= Order( z );
if Size( G ) = oz then
return [ [ G, TrivialSubgroup( G ), z ] ];
fi;
h:= NaturalHomomorphismByNormalSubgroupNC( G, SubgroupNC( G, [ z ] ) );
img:= ImagesSource( h );
N:= ElementaryAbelianSeriesLargeSteps( img );
N:= N[ Length( N ) - 1 ];
if not IsPrime( Size( N ) ) then
N:= ChiefSeriesUnderAction( img, N );
N:= N[ Length( N ) - 1 ];
fi;
N:= PreImagesSet( h, N );
if not IsAbelian( N ) then
Info( InfoCharacterTable, 2,
"#I misuse of `CoveringTriplesCharacters'!\n" );
return [];
fi;
i:= Size( N ) / oz;
p:= Factors( i )[1];
P:= SylowSubgroup( N, p );
if i = Size( P ) then
# `z' is a p'-element, `P' is elementary abelian.
# Find the characters of the factor group needed.
h:= NaturalHomomorphismByNormalSubgroupNC( G, P );
r:= List( CoveringTriplesCharacters( ImagesSource( h ),
ImageElm( h, z ) ),
x -> [ PreImagesSet( h, x[1] ),
PreImagesSet( h, x[2] ),
PreImagesRepresentative( h, x[3] ) ] );
if p = i then
# `P' has order `p'.
zn:= First( GeneratorsOfGroup( P ), g -> not IsOne( g ) );
return Concatenation( r,
CoveringTriplesCharacters( Stabilizer( G, zn ), zn*z ) );
else
Gpcgs:= Pcgs( G );
Ppcgs:= Pcgs( P );
mats:= List( List( Gpcgs, Inverse ),
x -> TransposedMat( List( Ppcgs,
y -> ExponentsConjugateLayer( Ppcgs, y,x ) )*Z(p)^0 ) );
orbs:= ExternalOrbitsStabilizers( G,
NormedRowVectors( GF(p)^Length( Ppcgs ) ),
Gpcgs, mats, OnLines );
orbs:= Filtered( orbs,
o -> not IsZero( CanonicalRepresentativeOfExternalSet( o ) ) );
for orb in orbs do
h:= NaturalHomomorphismByNormalSubgroupNC(
StabilizerOfExternalSet( orb ),
KernelUnderDualAction( P, Ppcgs,
CanonicalRepresentativeOfExternalSet( orb ) ) );
img:= ImagesSource( h );
zn:= First( GeneratorsOfGroup( ImagesSet( h, P ) ),
g -> not IsOne( g ) )
* ImageElm( h, z );
if p = 2 then
c:= img;
else
c:= Stabilizer( img, zn );
fi;
Append( r, List( CoveringTriplesCharacters( c, zn ),
x -> [ PreImagesSet( h, x[1] ),
PreImagesSet( h, x[2] ),
PreImagesRepresentative( h, x[3] ) ] ) );
od;
return r;
fi;
elif IsCyclic( P ) then
zn:= Pcgs( P )[1];
return CoveringTriplesCharacters( Stabilizer( G, zn ), zn*z );
fi;
O:= Omega( P, p );
Opcgs:= Pcgs( O );
Gpcgs:= Pcgs( G );
zn := z^(oz/p);
r := [];
mats:= List( List( Gpcgs, Inverse ),
x -> TransposedMat( List( Opcgs,
y -> ExponentsConjugateLayer( Opcgs, y,x ) )*Z(p)^0 ) );
orbs:= ExternalOrbitsStabilizers( G,
NormedRowVectors( GF(p)^Length( Opcgs ) ),
Gpcgs, mats, OnLines );
orbs:= Filtered( orbs,
o -> not IsZero( CanonicalRepresentativeOfExternalSet( o ) ) );
for orb in orbs do
k:= KernelUnderDualAction( O, Opcgs,
CanonicalRepresentativeOfExternalSet( orb ) );
if not zn in k then
t:= SubgroupNC( G, StabilizerOfExternalSet( orb ) );
h:= NaturalHomomorphismByNormalSubgroupNC( t, k );
img:= ImagesSource( h );
Append( r,
List( CoveringTriplesCharacters( img, ImageElm( h, z ) ),
x -> [ PreImagesSet( h, x[1] ),
PreImagesSet( h, x[2] ),
PreImagesRepresentative( h, x[3] ) ] ) );
fi;
od;
return r;
end );
#############################################################################
##
#M IrrConlon( <G> )
##
## This algorithm is a generalization of the algorithm to compute the
## absolutely irreducible degrees of a solvable group to the computation
## of the absolutely irreducible characters of a supersolvable group,
## using an idea like in
##
## S. B. Conlon, J. Symbolic Computation (1990) 9, 535-550.
##
## The function `CoveringTriplesCharacters' is used to compute a list of
## triples describing linear representations of subgroups of <G>.
## These linear representations are induced to <G> and then evaluated on
## representatives of the conjugacy classes.
##
## For every irreducible character the monomiality information is stored as
## value of the attribute `TestMonomial'.
##
InstallMethod( IrrConlon,
"for a group",
[ IsGroup ],
function( G )
local mulmoma, # local function: multiply monomial matrices
ct, # character table of `G'
ccl, # conjugacy classes of `G'
Gpcgs, # PCGS of `G'
irr, # matrix of character values
irredinfo, # monomiality info
evl, # encode class representatives as words in `Gpcgs'
i,
t,
chi,
j,
mat,
k,
triple,
hom,
zi,
oz,
ee,
zp,
co, # cosets
coreps, # representatives of `co'
dim,
rep, # matrix representation
bco,
p,
i1, # loop variable in `mulmoma'
re; # result of `mulmoma'
# Compute the product of the monomial matrices `a' and `b';
# The diagonal elements are powers of a fixed `oz'-th root of unity.
mulmoma:= function( a, b )
re:= rec( perm:= [], diag:= [] );
for i1 in [ 1 .. Length( a.perm ) ] do
re.perm[i1]:= b.perm[ a.perm[i1] ];
re.diag[ b.perm[i1] ]:= ( b.diag[ b.perm[i1] ] + a.diag[i1] ) mod oz;
od;
return re;
end;
ct:= CharacterTable( G );
ccl:= ConjugacyClasses( ct );
Gpcgs:= Pcgs( G );
irr:= [];
irredinfo:= [ rec( inducedFrom:= rec( subgroup:= G, kernel:= G ) ) ];
# `evl' is a list describing representatives of the nontrivial
# conjugacy classes.
# the entry for the element $g.1^2*g.2^0*g.3^1$ is $[ 1, 1, 3 ]$.
evl:= [];
for i in [ 2 .. Length( ccl ) ] do
k:= ExponentsOfPcElement( Gpcgs, Representative( ccl[i] ) );
t:= [];
for j in [ 1 .. Length( k ) ] do
if 0 < k[j] then
Append( t, [ 1 .. k[j] ]*0 + j );
fi;
od;
Add( evl, t );
od;
for triple in CoveringTriplesCharacters( G, One( G ) ) do
hom:= NaturalHomomorphismByNormalSubgroupNC( triple[1], triple[2] );
zi:= ImagesRepresentative( hom, triple[3] );
oz:= Order( zi );
ee:= E( oz );
zp:= List( [ 1 .. oz ], x -> zi^x );
co:= RightCosets( G, triple[1] );
coreps:= List( co, Representative );
dim:= Length( co );
# `rep' describes a matrix representation on a module with basis
# a transversal of the stabilizer in `G'.
# (The monomial matrices are the same as in `RepresentationsPGroup'.)
rep:= [];
for i in Gpcgs do
mat:= rec( perm:= [], diag:= [] );
for j in [ 1 .. dim ] do
bco:= co[j]*i;
p:= Position( co, bco, 0 );
Add( mat.perm, p );
mat.diag[p]:= Position( zp,
ImageElm( hom, coreps[j]*i*Inverse( coreps[p] ) ), 0 );
od;
Add( rep, mat );
od;
# Compute the representing matrices for class representatives,
# and their traces.
chi:= [ dim ];
for j in evl do
mat:= Iterated( rep{ j }, mulmoma );
t:= 0;
for k in [ 1 .. dim ] do
if mat.perm[k] = k then
t:= t + ee^mat.diag[k];
fi;
od;
Add( chi, t );
od;
# Test if `chi' is known and add `chi' and its Galois-conjugates
# to the list.
# Also compute the monomiality information.
if not chi in irr then
chi:= GaloisMat( [ chi ] ).mat;
Append( irr, chi );
for j in chi do
Add( irredinfo, rec( subgroup:= triple[1], kernel:= triple[2] ) );
od;
fi;
od;
# Construct the characters from their values lists,
# and set the monomiality info.
irr:= Concatenation( [ TrivialCharacter( G ) ],
List( irr, chi -> Character( ct, chi ) ) );
for i in [ 1 .. Length( irr ) ] do
SetTestMonomial( irr[i], irredinfo[i] );
od;
# Return the characters.
return irr;
end );
#############################################################################
##
#M Irr( <G>, 0 ) . . . . . . for a supersolvable group (Conlon's algorithm)
##
InstallMethod( Irr,
"for a supersolvable group (Conlon's algorithm)",
[ IsGroup and IsSupersolvableGroup, IsZeroCyc ],
function( G, zero )
local irr;
irr:= IrrConlon( G );
SetIrr( OrdinaryCharacterTable( G ), irr );
return irr;
end );
InstallMethod( Irr,
"for a supersolvable group with known `IrrConlon'",
[ IsGroup and IsSupersolvableGroup and HasIrrConlon, IsZeroCyc ],
function( G, zero )
local irr;
irr:= IrrConlon( G );
SetIrr( OrdinaryCharacterTable( G ), irr );
return irr;
end );
#############################################################################
##
#M Irr( <G>, 0 ) . . . . for a supersolvable group (Baum-Clausen algorithm)
##
InstallMethod( Irr,
"for a supersolvable group (Baum-Clausen algorithm)",
[ IsGroup and IsSupersolvableGroup, IsZeroCyc ],
function( G, zero )
local irr;
irr:= IrrBaumClausen( G );
SetIrr( OrdinaryCharacterTable( G ), irr );
return irr;
end );
InstallMethod( Irr,
"for a supersolvable group with known `IrrBaumClausen'",
[ IsGroup and IsSupersolvableGroup and HasIrrBaumClausen, IsZeroCyc ],
function( G, zero )
local irr;
irr:= IrrBaumClausen( G );
SetIrr( OrdinaryCharacterTable( G ), irr );
return irr;
end );
#############################################################################
##
#V BaumClausenInfoDebug . . . . . . . . . . . . . . testing BaumClausenInfo
##
InstallValue( BaumClausenInfoDebug, rec(
makemat:= function( record, e )
local dim, mat, diag, gcd, i;
dim:= Length( record.diag );
mat:= NullMat( dim, dim );
diag:= record.diag;
gcd:= Gcd( diag );
if gcd = 0 then
e:= 1;
else
gcd:= GcdInt( gcd, e );
e:= E( e / gcd );
diag:= diag / gcd;
fi;
for i in [ 1 .. dim ] do
mat[i][ record.perm[i] ]:= e^diag[ record.perm[i] ];
od;
return mat;
end,
testrep:= function( pcgs, rep, e )
local images, hom;
images:= List( rep,
record -> BaumClausenInfoDebug.makemat( record, e ) );
hom:= GroupGeneralMappingByImagesNC( Group( pcgs ), Group( images ),
pcgs, images );
return IsGroupHomomorphism( hom );
end,
checkconj:= function( pcgs, i, lg, j, rep1, rep2, X, e )
local ii, exps, mat, jj;
X:= BaumClausenInfoDebug.makemat( X, e );
for ii in [ i .. lg ] do
exps:= ExponentsOfPcElement( pcgs, pcgs[ii]^pcgs[j], [ i .. lg ] );
mat:= One( X );
for jj in [ 1 .. lg-i+1 ] do
mat:= mat * BaumClausenInfoDebug.makemat( rep1[jj], e )^exps[jj];
od;
if X * mat <>
BaumClausenInfoDebug.makemat( rep2[ ii-i+1 ], e ) * X then
return false;
fi;
od;
return true;
end ) );
#############################################################################
##
#M BaumClausenInfo( <G> ) . . . . . info about irreducible representations
##
#T generalize to characteristic p !!
##
InstallMethod( BaumClausenInfo,
"for a (solvable) group",
[ IsGroup ],
function( G )
local e, # occurring roots of unity are `e'-th roots
pcgs, # Pcgs of `G'
lg, # length of `pcgs'
cs, # composition series of `G' corresp. to `pcgs'
abel, # position of abelian normal comp. subgroup
ExtLinRep, # local function
indices, # sizes of composition factors in `cs'
linear, # list of linear representations
i, # current position in the iteration: $G_i$
p, # size of current composition factor
pexp, # exponent vector of `pcgs[i]^p'
root, # value of an xtension
roots, # list of $p$-th roots (relative to `e')
mulmoma, # product of two monomial matrices
poweval, # representing matrix for power of generator
pilinear, # action of $g_1, \ldots, g_i$ on `linear'
d, j, k, l, # loop variables
u, v, w, # loop variables
M, #
pos, # position in a list
nonlin, # list of nonlinear representations
pinonlin, # action of $g_1, \ldots, g_i$ on `nonlin'
Xlist, # conjugating matrices:
# for $X = `Xlist[j][k]'$, we have
# $X \cdot {`nonlin[k]'}^{g_j} \cdot X^{-1} =
# `nonlin[ pinonlin[j][k] ]'$
min, #
minval, #
ssr, #
next, #
X, # one matrix for `Xlist'
nextlinear, # extensions of `linear'
nextnonlin1, # nonlinear repr. arising from `linear'
nextnonlin2, # nonlinear repr. arising from `nonlin'
pinextlinear, # action of $g_1, \ldots, g_i$ on `nextlinear'
pinextnonlin1, # action of $g_1, \ldots, g_i$ on `nextnonlin1'
pinextnonlin2, # action of $g_1, \ldots, g_i$ on `nextnonlin2'
nextXlist1, # conjugating matrices for `nextnonlin1'
nextXlist2, # conjugating matrices for `nextnonlin2'
cexp, # exponent vector of `pcgs[i]^pcgs[j]'
poli, # list that encodes `pexp'
rep, # one representation
D, C, #
value, #
image, #
used, # boolean list
Dpos1, # positions of extension resp. induced repres.
# that arise from linear representations
Dpos2, # positions of extension resp. induced repres.
# that arise from nonlinear representations
dim, # dimension of the current representation
invX, # inverse of `X'
D_gi, #
hom, # homomorphism to adjust the composition series
orb, #
Forb, #
sigma, pi, # permutations needed in the fusion case
constants, # vector $(c_0, c_1, \ldots, c_{p-1})$
kernel; # kernel of `hom'
if not IsSolvableGroup( G ) then
Error( "<G> must be solvable" );
fi;
# Step 0:
# Treat the case of the trivial group,
# and initialize some variables.
pcgs:= SpecialPcgs( G );
#T because I need a ``prime orders pcgs''
lg:= Length( pcgs );
if lg = 0 then
return rec( pcgs := pcgs,
kernel := G,
exponent := 1,
nonlin := [],
lin := [ [] ]
);
fi;
cs:= PcSeries( pcgs );
if HasExponent( G ) then
e:= Exponent( G );
else
e:= Size(G);
#T better adjust on the fly
fi;
# Step 1:
# If necessary then adjust the composition series of $G$
# and get the largest factor group of $G$ that has an abelian normal
# subgroup such that the factor group modulo this subgroup is
# supersolvable.
abel:= 1;
while IsNormal( G, cs[ abel ] ) and not IsAbelian( cs[ abel ] ) do
abel:= abel + 1;
od;
# If `cs[ abel ]' is abelian then we compute its representations first,
# and then loop over the initial part of the composition series;
# note that the factor group is supersolvable.
# If `cs[ abel ]' is not abelian then we try to switch to a better
# composition series, namely one through the derived subgroup of the
# supersolvable residuum.
if not IsNormal( G, cs[ abel ] ) then
# We have reached a non-normal nonabelian composition subgroup
# so we have to adjust the composition series.
Info( InfoGroup, 2,
"BaumClausenInfo: switching to a suitable comp. ser." );
ssr:= SupersolvableResiduumDefault( G );
hom:= NaturalHomomorphismByNormalSubgroupNC( G,
DerivedSubgroup( ssr.ssr ) );
# `SupersolvableResiduumDefault' contains a component `ds',
# a list of subgroups such that any composition series through
# `ds' from `G' down to the residuum is a chief series.
pcgs:= [];
for i in [ 2 .. Length( ssr.ds ) ] do
j:= NaturalHomomorphismByNormalSubgroupNC( ssr.ds[ i-1 ], ssr.ds[i] );
Append( pcgs, List( SpecialPcgs( ImagesSource( j ) ),
x -> PreImagesRepresentative( j, x ) ) );
od;
Append( pcgs, SpecialPcgs( ssr.ds[ Length( ssr.ds ) ]) );
G:= ImagesSource( hom );
pcgs:= List( pcgs, x -> ImagesRepresentative( hom, x ) );
pcgs:= Filtered( pcgs, x -> Order( x ) <> 1 );
pcgs:= PcgsByPcSequence( ElementsFamily( FamilyObj( G ) ), pcgs );
cs:= PcSeries( pcgs );
lg:= Length( pcgs );
# The image of `ssr' under `hom' is abelian,
# compute its position in the composition series.
abel:= Position( cs, ImagesSet( hom, ssr.ssr ) );
# If `G' is supersolvable then `abel = lg+1',
# but the last *nontrivial* member of the chain is normal and abelian,
# so we choose this group.
# (Otherwise we would have the technical problem in step 4 that the
# matrix `M' would be empty.)
if lg < abel then
abel:= lg;
fi;
fi;
# Step 2:
# Compute the representations of `cs[ abel ]',
# each a list of images of $g_{abel}, \ldots, g_{lg}$.
# The local function `ExtLinRep' computes the extensions of the
# linear $G_{i+1}$-representations $F$ in the list `linear' to $G_i$.
# The only condition that must be satisfied is that
# $F(g_i)^p = F(g_i^p)$.
# (Roughly speaking, we just compute $p$-th roots.)
ExtLinRep:= function( i, linear, pexp, roots )
local nextlinear, rep, j, shift;
nextlinear:= [];
if IsZero( pexp ) then
# $g_i^p$ is the identity
for rep in linear do
for j in roots do
Add( nextlinear, Concatenation( [ j ], rep ) );
od;
od;
else
pexp:= pexp{ [ i+1 .. lg ] };
#T cut this outside the function!
for rep in linear do
# Compute the value of `rep' on $g_i^p$.
shift:= pexp * rep;
if shift mod p <> 0 then
# We must enlarge the exponent.
Error("wrong exponent");
#T if not integral then enlarge the exponent!
#T (is this possible here at all?)
fi;
shift:= shift / p;
for j in roots do
Add( nextlinear, Concatenation( [ (j+shift) mod e ], rep ) );
od;
od;
fi;
return nextlinear;
end;
indices:= RelativeOrders( pcgs );
#T here set the exponent `e' to `indices[ lg ]' !
Info( InfoGroup, 2,
"BaumClausenInfo: There are ", lg, " steps" );
linear:= List( [ 0 .. indices[lg]-1 ] * ( e / indices[lg] ),
x -> [ x ] );
for i in [ lg-1, lg-2 .. abel ] do
Info( InfoGroup, 2,
"BaumClausenInfo: Compute repres. of step ", i,
" (central case)" );
p:= indices[i];
# `pexp' describes $g_i^p$.
pexp:= ExponentsOfRelativePower( pcgs,i);
# { ? } ??
root:= e/p;
#T enlarge the exponent if necessary!
roots:= [ 0, root .. (p-1)*root ];
linear:= ExtLinRep( i, linear, pexp, roots );
od;
# We are done if $G$ is abelian.
if abel = 1 then
return rec( pcgs := pcgs,
kernel := TrivialSubgroup( G ),
exponent := e,
nonlin := [],
lin := linear
);
fi;
# Step 3:
# Define some local functions.
# (We did not need them for abelian groups.)
# `mulmoma' returns the product of two monomial matrices.
mulmoma:= function( a, b )
local prod, i;
prod:= rec( perm := b.perm{ a.perm },
diag := [] );
for i in [ 1 .. Length( a.perm ) ] do
prod.diag[ b.perm[i] ]:= ( b.diag[ b.perm[i] ] + a.diag[i] ) mod e;
od;
return prod;
end;
# `poweval' evaluates the representation `rep' on the $p$-th power of
# the conjugating element.
# This $p$-th power is described by `poli'.
poweval:= function( rep, poli )
local pow, i;
if IsEmpty( poli ) then
return rec( perm:= [ 1 .. Length( rep[1].perm ) ],
diag:= [ 1 .. Length( rep[1].perm ) ] * 0 );
fi;
pow:= rep[ poli[1] ];
for i in [ 2 .. Length( poli ) ] do
pow:= mulmoma( pow, rep[ poli[i] ] );
od;
return pow;
end;
# Step 4:
# Compute the actions of $g_j$, $j < abel$, on the representations
# of $G_{abel}$.
# Let $g_i^{g_j} = \prod_{k=1}^n g_k^{\alpha_{ik}^j}$,
# and set $A_j = [ \alpha_{ik}^j} ]_{i,k}$.
# Then the representation that maps $g_i$ to the root $\zeta_e^{c_i}$
# is mapped to the representation that has images exponents
# $A_j * (c_1, \ldots, c_n)$ under $g_j$.
Info( InfoGroup, 2,
"BaumClausenInfo: Initialize actions on abelian normal subgroup" );
pilinear:= [];
for j in [ 1 .. abel-1 ] do
# Compute the matrix $A_j$.
M:= List( [ abel .. lg ],
i -> ExponentsOfPcElement( pcgs, pcgs[i]^pcgs[j],
[ abel .. lg ] ) );
# Compute the permutation corresponding to the action of $g_j$.
pilinear[j]:= List( linear,
rep -> Position( linear,
List( M * rep, x -> x mod e ) ) );
od;
# Step 5:
# Run up the composition series from `abel' to `1',
# and compute extensions resp. induced representations.
# For each index, we have to update `linear', `pilinear',
# `nonlin', `pinonlin', and `Xlist'.
nonlin := [];
pinonlin := [];
Xlist := [];
for i in [ abel-1, abel-2 .. 1 ] do
p:= indices[i];
# `poli' describes $g_i^p$.
#was pexp:= ExponentsOfPcElement( pcgs, pcgs[i]^p );
pexp:= ExponentsOfRelativePower( pcgs, i );
poli:= Concatenation( List( [ i+1 .. lg ],
x -> List( [ 1 .. pexp[x] ],
y -> x-i ) ) );
# `p'-th roots of unity
roots:= [ 0 .. p-1 ] * ( e/p );
Info( InfoGroup, 2,
"BaumClausenInfo: Compute repres. of step ", i );
# Step A:
# Compute representations of $G_i$ arising from *linear*
# representations of $G_{i+1}$.
used := BlistList( [ 1 .. Length( linear ) ], [] );
nextlinear := [];
nextnonlin1 := [];
d := 1;
pexp:= pexp{ [ i+1 .. lg ] };
# At position `d', store the position of either the first extension
# of `linear[d]' in `nextlinear' or the position of the induced
# representation of `linear[d]' in `nextnonlin1'.
Dpos1:= [];
while d <> fail do
rep:= linear[d];
used[d]:= true;
# `root' is the value of `rep' on $g_i^p$.
root:= ( pexp * rep ) mod e;
if pilinear[i][d] = d then
# `linear[d]' extends to $G_i$.
Dpos1[d]:= Length( nextlinear ) + 1;
# Take a `p'-th root.
root:= root / p;
#T enlarge the exponent if necessary!
for j in roots do
Add( nextlinear, Concatenation( [ root+j ], rep ) );
od;
else
# We must fuse the representations in the orbit of `d'
# under `pilinear[i]';
# so we construct the induced representation `D'.
Dpos1[d]:= Length( nextnonlin1 ) + 1;
D:= List( rep, x -> rec( perm := [ 1 .. p ],
diag := [ x ]
) );
pos:= d;
for j in [ 2 .. p ] do
pos:= pilinear[i][ pos ];
for k in [ 1 .. Length( rep ) ] do
D[k].diag[j]:= linear[ pos ][k];
od;
used[ pos ]:= true;
Dpos1[ pos ]:= Length( nextnonlin1 ) + 1;
od;
Add( nextnonlin1,
Concatenation( [ rec( perm := Concatenation( [p], [1..p-1]),
diag := Concatenation( [ 1 .. p-1 ] * 0,
[ root ] ) ) ],
D ) );
Assert( 2, BaumClausenInfoDebug.testrep( pcgs{ [ i .. lg ] },
nextnonlin1[ Length( nextnonlin1 ) ], e ),
Concatenation( "BaumClausenInfo: failed assertion in ",
"inducing linear representations ",
"(i = ", String( i ), ")\n" ) );
fi;
d:= Position( used, false, d );
od;
# Step B:
# Now compute representations of $G_i$ arising from *nonlinear*
# representations of $G_{i+1}$ (if there are some).
used:= BlistList( [ 1 .. Length( nonlin ) ], [] );
nextnonlin2:= [];
if Length( nonlin ) = 0 then
d:= fail;
else
d:= 1;
fi;
# At position `d', store the position of the first extension resp.
# of the induced representation of `nonlin[d]'in `nextnonlin2'.
Dpos2:= [];
while d <> fail do
used[d]:= true;
rep:= nonlin[d];
if pinonlin[i][d] = d then
# The representation $F = `rep'$ has `p' different extensions.
# For `X = Xlist[i][d]', we have $`rep ^ X' = `rep'^{g_i}$,
# i.e., $X^{-1} F X = F^{g_i}$.
# Representing matrix $F(g_i)$ is $c X$ with $c^p X^p = F(g_i^p)$,
# so $c^p X^p.diag[k] = F(g_i^p).diag[k]$ for all $k$ ;
# for determination of $c$ we look at `k = X^p.perm[1]'.
X:= Xlist[i][d];
image:= X.perm[1];
value:= X.diag[ image ];
for j in [ 2 .. p ] do
image:= X.perm[ image ];
value:= X.diag[ image ] + value;
# now `image = X^j.perm[1]', `value = X^j.diag[ image ]'
od;
# Subtract this from $F(g_i^p).diag[k]$;
# note that `image' is the image of 1 under `X^p', so also
# under $F(g_i^p)$.
value:= - value;
image:= 1;
for j in poli do
image:= rep[j].perm[ image ];
value:= rep[j].diag[ image ] + value;
od;
value:= ( value / p ) mod e;
#T enlarge the exponent if necessary!
Dpos2[d]:= Length( nextnonlin2 ) + 1;
# Compute the `p' extensions.
for k in roots do
Add( nextnonlin2, Concatenation(
[ rec( perm := X.perm,
diag := List( X.diag,
x -> ( x + k + value ) mod e ) ) ], rep ) );
Assert( 2, BaumClausenInfoDebug.testrep( pcgs{ [ i .. lg ] },
nextnonlin2[ Length( nextnonlin2 ) ], e ),
Concatenation( "BaumClausenInfo: failed assertion in ",
"extending nonlinear representations ",
"(i = ", String( i ), ")\n" ) );
od;
else
# `$F$ = nonlin[d]' fuses with `p-1' partners given by the orbit
# of `d' under `pinonlin[i]'.
# The new irreducible representation of $G_i$ will be
# $X Ind( F ) X^{-1}$ with $X$ the block diagonal matrix
# consisting of blocks $X_{i,F}^{(k)}$ defined by
# $X_{i,F}^{(0)} = Id$,
# and $X_{i,F}^{(k)} = X_{i,\pi_i^{k-1} F} X_{i,F}^{(k-1)}$
# for $k > 0$.
# The matrix for $g_i$ in the induced representation $Ind( F )$ is
# of the form
# | 0 F(g_i^p) |
# | I 0 |
# Thus $X Ind(F) X^{-1} ( g_i )$ is the block diagonal matrix
# consisting of the blocks
# $X_{i,F}, X_{i,\pi_i F}, \ldots, X_{i,\pi_i^{p-2} F}$, and
# $F(g_i^p) \cdot ( X_{i,F}^{(p-1)} )^{-1}$.
dim:= Length( rep[1].diag );
Dpos2[d]:= Length( nextnonlin2 ) + 1;
# We make a copy of `rep' because we want to change it.
D:= List( rep, record -> rec( perm := ShallowCopy( record.perm ),
diag := ShallowCopy( record.diag )
) );
# matrices for $g_j, i\< j \leq n$
pos:= d;
for j in [ 1 .. p-1 ] * dim do
pos:= pinonlin[i][ pos ];
for k in [ 1 .. Length( rep ) ] do
Append( D[k].diag, nonlin[ pos ][k].diag );
Append( D[k].perm, nonlin[ pos ][k].perm + j );
od;
used[ pos ]:= true;
Dpos2[ pos ]:= Length( nextnonlin2 ) + 1;
od;
# The matrix of $g_i$ is a block-cycle with blocks
# $X_{i,\pi_i^k(F)}$ for $0 \leq k \leq p-2$,
# and $F(g_i^p) \cdot (X_{i,F}^{(p-1)})^{-1}$.
X:= Xlist[i][d]; # $X_{i,F}$
pos:= d;
for j in [ 1 .. p-2 ] do
pos:= pinonlin[i][ pos ];
X:= mulmoma( Xlist[i][ pos ], X );
od;
# `invX' is the inverse of `X'.
invX:= rec( perm := [], diag := [] );
for j in [ 1 .. Length( X.diag ) ] do
invX.perm[ X.perm[j] ]:= j;
invX.diag[j]:= e - X.diag[ X.perm[j] ];
od;
#T improve this using the {} operator!
X:= mulmoma( poweval( rep, poli ), invX );
D_gi:= rec( perm:= List( X.perm, x -> x + ( p-1 ) * dim ),
diag:= [] );
pos:= d;
for j in [ 0 .. p-2 ] * dim do
# $X_{i,\pi_i^j F}$
Append( D_gi.diag, Xlist[i][ pos ].diag);
Append( D_gi.perm, Xlist[i][ pos ].perm + j);
pos:= pinonlin[i][ pos ];
od;
Append( D_gi.diag, X.diag );
Add( nextnonlin2, Concatenation( [ D_gi ], D ) );
Assert( 2, BaumClausenInfoDebug.testrep( pcgs{ [ i .. lg ] },
nextnonlin2[ Length( nextnonlin2 ) ], e ),
Concatenation( "BaumClausenInfo: failed assertion in ",
"inducing nonlinear representations ",
"(i = ", String( i ), ")\n" ) );
fi;
d:= Position( used, false, d );
od;
# Step C:
# Compute `pilinear', `pinonlin', and `Xlist'.
pinextlinear := [];
pinextnonlin1 := [];
nextXlist1 := [];
pinextnonlin2 := [];
nextXlist2 := [];
for j in [ 1 .. i-1 ] do
pinextlinear[j] := [];
pinextnonlin1[j] := [];
nextXlist1[j] := [];
# `cexp' describes $g_i^{g_j}$.
cexp:= ExponentsOfPcElement( pcgs, pcgs[i]^pcgs[j], [ i .. lg ] );
# Compute `pilinear', and the parts of `pinonlin', `Xlist'
# arising from *linear* representations for the next step,
# that is, compute the action of $g_j$ on `nextlinear' and
# `nextnonlin1'.
for k in [ 1 .. Length( linear ) ] do
if pilinear[i][k] = k then
# Let $F = `linear[k]'$ extend to
# $D = D_0, D_1, \ldots, D_{p-1}$,
# $C$ the first extension of $\pi_j(F)$.
# We have $D( g_i^{g_j} ) = D^{g_j}(g_i) = ( C \chi^l )(g_i)$
# where $\chi^l(g_i)$ is the $l$-th power of the chosen
# primitive $p$-th root of unity.
D:= nextlinear[ Dpos1[k] ];
# `pos' is the position of $C$ in `nextlinear'.
pos:= Dpos1[ pilinear[j][k] ];
l:= ( ( cexp * D # $D( g_i^{g_j} )$
- nextlinear[ pos ][1] ) # $C(g_i)$
* p / e ) mod p;
for u in [ 0 .. p-1 ] do
Add( pinextlinear[j], pos + ( ( l + u * cexp[1] ) mod p ) );
od;
elif not IsBound( pinextnonlin1[j][ Dpos1[k] ] ) then
# $F$ fuses with its conjugates under $g_i$,
# the conjugating matrix describing the action of $g_j$
# is a permutation matrix.
# Let $D = F^{g_j}$, then the permutation corresponds to
# the mapping between the lists
# $[ D, (F^{g_i})^{g_j}, \ldots, (F^{g_i^{p-1}})^{g_j} ]$
# and $[ D, D^{g_i}, \ldots, D^{g_i^{p-1}} ]$;
# The constituents in the first list are the images of
# the induced representation of $F$ under $g_j$,
# and those in the second list are the constituents of the
# induced representation of $D$.
# While `u' runs from $1$ to $p$,
# `pos' runs over the positions of $(F^{g_i^u})^{g_j}$ in
# `linear'.
# `orb' is the list of positions of the $(F^{g_j})^{g_i^u}$,
# cyclically permuted such that the smallest entry is the
# first.
pinextnonlin1[j][ Dpos1[k] ]:= Dpos1[ pilinear[j][k] ];
pos:= pilinear[j][k];
orb:= [ pos ];
min:= 1;
minval:= pos;
for u in [ 2 .. p ] do
pos:= pilinear[i][ pos ];
orb[u]:= pos;
if pos < minval then
minval:= pos;
min:= u;
fi;
od;
if 1 < min then
orb:= Concatenation( orb{ [ min .. p ] },
orb{ [ 1 .. min-1 ] } );
fi;
# Compute the conjugating matrix `X'.
# Let $C$ be the stored representation $\tau_j D$
# equivalent to $D^{g_j}$.
# Compute the position of $C$ in `pinextnonlin1'.
C:= nextnonlin1[ pinextnonlin1[j][ Dpos1[k] ] ];
D:= nextnonlin1[ Dpos1[k] ];
# `sigma' is the bijection of constituents in the restrictions
# of $D$ and $\tau_j D$ to $G_{i-1}$.
# More precisely, $\pi_j(\pi_i^{u-1} F) = \Phi_{\sigma(u-1)}$.
sigma:= [];
pos:= k;
for u in [ 1 .. p ] do
sigma[u]:= Position( orb, pilinear[j][ pos ] );
pos:= pilinear[i][ pos ];
od;
# Compute $\pi = \sigma^{-1} (1,2,\ldots,p) \sigma$.
pi:= [];
pi[ sigma[p] ]:= sigma[1];
for u in [ 1 .. p-1 ] do
pi[ sigma[u] ]:= sigma[ u+1 ];
od;
# Compute the values $c_{\pi^u(0)}$, for $0 \leq u \leq p-1$.
# Note that $c_0 = 1$.
# (Here we encode of course the exponents.)
constants:= [ 0 ];
l:= 1;
for u in [ 1 .. p-1 ] do
# Compute $c_{\pi^u(0)}$.
# (We have $`l' = 1 + \pi^{u-1}(0)$.)
# Note that $B_u = [ [ 1 ] ]$ for $0\leq u\leq p-2$,
# and $B_{p-1} = \Phi_0(g_i^p)$.
# Next we compute the image under $A_{\pi^{u-1}(0)}$;
# this matrix is in the $(\pi^{u-1}(0)+1)$-th column block
# and in the $(\pi^u(0)+1)$-th row block of $D^{g_j}$.
# Since we do not have this matrix explicitly,
# we use the conjugate representation and the action
# encoded by `cexp'.
# Note the necessary initial shift because we use the
# whole representation $D$ and not a single constituent;
# so we shift by $\pi^u(0)+1$.
#T `perm' is nontrivial only for v = 1, this should make life easier.
value:= 0;
image:= pi[l];
for v in [ 1 .. lg-i+1 ] do
for w in [ 1 .. cexp[v] ] do
image:= D[v].perm[ image ];
value:= value + D[v].diag[ image ];
od;
od;
# Next we divide by the corresponding value in
# the image of the first standard basis vector under
# $B_{\sigma\pi^{u-1}(0)}$.
value:= value - C[1].diag[ sigma[l] ];
constants[ pi[l] ]:= ( constants[l] - value ) mod e;
l:= pi[l];
od;
# Put the conjugating matrix together.
X:= rec( perm := [],
diag := constants );
for u in [ 1 .. p ] do
X.perm[ sigma[u] ]:= u;
od;
Assert( 2, BaumClausenInfoDebug.checkconj( pcgs, i, lg, j,
nextnonlin1[ Dpos1[k] ],
nextnonlin1[ pinextnonlin1[j][ Dpos1[k] ] ],
X, e ),
Concatenation( "BaumClausenInfo: failed assertion on ",
"conjugating matrices for linear repres. ",
"(i = ", String( i ), ")\n" ) );
nextXlist1[j][ Dpos1[k] ]:= X;
fi;
od;
# Compute the remaining parts of `pinonlin' and `Xlist' for
# the next step, namely for those *nonlinear* representations
# arising from *nonlinear* ones.
nextXlist2[j] := [];
pinextnonlin2[j] := [];
# `cexp' describes $g_i^{g_j}$.
cexp:= ExponentsOfPcElement( pcgs, pcgs[i]^pcgs[j], [ i .. lg ] );
# Compute the action of $g_j$ on `nextnonlin2'.
for k in [ 1 .. Length( nonlin ) ] do
if pinonlin[i][k] = k then
# Let $F = `nonlin[k]'$ extend to
# $D = D_0, D_1, \ldots, D_{p-1}$,
# $C$ the first extension of $\pi_j(F)$.
# We have $X_{j,F} \cdot F^{g_j} = \pi_j(F) \cdot X_{j,F}$,
# thus $X_{j,F} \cdot D( g_i^{g_j} )
# = X_{j,F} \cdot D^{g_j}(g_i)
# = ( C \chi^l )(g_i) \cdot X_{j,F}$
# where $\chi^l(g_i)$ is the $l$-th power of the chosen
# primitive $p$-th root of unity.
D:= nextnonlin2[ Dpos2[k] ];
# `pos' is the position of $C$ in `nextnonlin2'.
pos:= Dpos2[ pinonlin[j][k] ];
# Find a nonzero entry in $X_{j,F} \cdot D( g_i^{g_j} )$.
image:= Xlist[j][k].perm[1];
value:= Xlist[j][k].diag[ image ];
for u in [ 1 .. lg-i+1 ] do
for v in [ 1 .. cexp[u] ] do
image:= D[u].perm[ image ];
value:= value + D[u].diag[ image ];
od;
od;
# Subtract the corresponding value in $C(g_i) \cdot X_{j,F}$.
C:= nextnonlin2[ pos ];
Assert( 2, image = Xlist[j][k].perm[ C[1].perm[1] ],
"BaumClausenInfo: failed assertion on conj. matrices" );
value:= value -
( C[1].diag[ C[1].perm[1] ] + Xlist[j][k].diag[ image ] );
l:= ( value * p / e ) mod p;
for u in [ 0 .. p-1 ] do
pinextnonlin2[j][ Dpos2[k] + u ]:=
pos + ( ( l + u * cexp[1] ) mod p );
nextXlist2[j][ Dpos2[k] + u ]:= Xlist[j][k];
od;
Assert( 2, BaumClausenInfoDebug.checkconj( pcgs, i, lg, j,
nextnonlin2[ Dpos2[k] ],
nextnonlin2[ pinextnonlin2[j][ Dpos2[k] ] ],
Xlist[j][k], e ),
Concatenation( "BaumClausenInfo: failed assertion on ",
"conjugating matrices for nonlinear repres. ",
"(i = ", String( i ), ")\n" ) );
elif not IsBound( pinextnonlin2[j][ Dpos2[k] ] ) then
# $F$ fuses with its conjugates under $g_i$, yielding $D$.
dim:= Length( nonlin[k][1].diag );
# Let $C$ be the stored representation $\tau_j D$
# equivalent to $D^{g_j}$.
# Compute the position of $C$ in `pinextnonlin2'.
pinextnonlin2[j][ Dpos2[k] ]:= Dpos2[ pinonlin[j][k] ];
C:= nextnonlin2[ pinextnonlin2[j][ Dpos2[k] ] ];
D:= nextnonlin2[ Dpos2[k] ];
# Compute the positions of the constituents;
# `orb[k]' is the position of $\Phi_{k-1}$ in `nonlin'.
pos:= pinonlin[j][k];
orb:= [ pos ];
min:= 1;
minval:= pos;
for u in [ 2 .. p ] do
pos:= pinonlin[i][ pos ];
orb[u]:= pos;
if pos < minval then
minval:= pos;
min:= u;
fi;
od;
if 1 < min then
orb:= Concatenation( orb{ [ min .. p ] },
orb{ [ 1 .. min-1 ] } );
fi;
# `sigma' is the bijection of constituents in the restrictions
# of $D$ and $\tau_j D$ to $G_{i-1}$.
# More precisely, $\pi_j(\pi_i^{u-1} F) = \Phi_{\sigma(u-1)}$.
sigma:= [];
pos:= k;
for u in [ 1 .. p ] do
sigma[u]:= Position( orb, pinonlin[j][ pos ] );
pos:= pinonlin[i][ pos ];
od;
# Compute $\pi = \sigma^{-1} (1,2,\ldots,p) \sigma$.
pi:= [];
pi[ sigma[p] ]:= sigma[1];
for u in [ 1 .. p-1 ] do
pi[ sigma[u] ]:= sigma[ u+1 ];
od;
# Compute the positions of the constituents
# $F_0, F_{\pi(0)}, \ldots, F_{\pi^{p-1}(0)}$.
Forb:= [ k ];
pos:= k;
for u in [ 2 .. p ] do
pos:= pinonlin[i][ pos ];
Forb[u]:= pos;
od;
# Compute the values $c_{\pi^u(0)}$, for $0 \leq u \leq p-1$.
# Note that $c_0 = 1$.
# (Here we encode of course the exponents.)
constants:= [ 0 ];
l:= 1;
for u in [ 1 .. p-1 ] do
# Compute $c_{\pi^u(0)}$.
# (We have $`l' = 1 + \pi^{u-1}(0)$.)
# Note that $B_u = X_{j,\pi_j^u \Phi_0}$ for $0\leq u\leq p-2$,
# and $B_{p-1} =
# \Phi_0(g_i^p) \cdot ( X_{j,\Phi_0}^{(p-1)} )^{-1}$
# First we get the image and diagonal value of
# the first standard basis vector under $X_{j,\pi^u(0)}$.
image:= Xlist[j][ Forb[ pi[l] ] ].perm[1];
value:= Xlist[j][ Forb[ pi[l] ] ].diag[ image ];
# Next we compute the image under $A_{\pi^{u-1}(0)}$;
# this matrix is in the $(\pi^{u-1}(0)+1)$-th column block
# and in the $(\pi^u(0)+1)$-th row block of $D^{g_j}$.
# Since we do not have this matrix explicitly,
# we use the conjugate representation and the action
# encoded by `cexp'.
# Note the necessary initial shift because we use the
# whole representation $D$ and not a single constituent;
# so we shift by `dim' times $\pi^u(0)+1$.
image:= dim * ( pi[l] - 1 ) + image;
for v in [ 1 .. lg-i+1 ] do
for w in [ 1 .. cexp[v] ] do
image:= D[v].perm[ image ];
value:= value + D[v].diag[ image ];
od;
od;
# Next we divide by the corresponding value in
# the image of the first standard basis vector under
# $B_{\sigma\pi^{u-1}(0)} X_{j,\pi^{u-1}(0)}$.
# Note that $B_v$ is in the $(v+2)$-th row block for
# $0 \leq v \leq p-2$, in the first row block for $v = p-1$,
# and in the $(v+1)$-th column block of $C$.
v:= sigma[l];
if v = p then
image:= C[1].perm[1];
else
image:= C[1].perm[ v*dim + 1 ];
fi;
value:= value - C[1].diag[ image ];
image:= Xlist[j][ Forb[l] ].perm[ image - ( v - 1 ) * dim ];
value:= value - Xlist[j][ Forb[l] ].diag[ image ];
constants[ pi[l] ]:= ( constants[l] - value ) mod e;
l:= pi[l];
od;
# Put the conjugating matrix together.
X:= rec( perm:= [],
diag:= [] );
pos:= k;
for u in [ 1 .. p ] do
Append( X.diag, List( Xlist[j][ pos ].diag,
x -> ( x + constants[u] ) mod e ) );
X.perm{ [ ( sigma[u] - 1 )*dim+1 .. sigma[u]*dim ] }:=
Xlist[j][ pos ].perm + (u-1) * dim;
pos:= pinonlin[i][ pos ];
od;
Assert( 2, BaumClausenInfoDebug.checkconj( pcgs, i, lg, j,
nextnonlin2[ Dpos2[k] ],
nextnonlin2[ pinextnonlin2[j][ Dpos2[k] ] ],
X, e ),
Concatenation( "BaumClausenInfo: failed assertion on ",
"conjugating matrices for nonlinear repres. ",
"(i = ", String( i ), ")\n" ) );
nextXlist2[j][ Dpos2[k] ]:= X;
fi;
od;
od;
# Finish the update for the next index.
linear := nextlinear;
pilinear := pinextlinear;
nonlin := Concatenation( nextnonlin1, nextnonlin2 );
pinonlin := List( [ 1 .. i-1 ],
j -> Concatenation( pinextnonlin1[j],
pinextnonlin2[j] + Length( pinextnonlin1[j] ) ) );
Xlist := List( [ 1 .. i-1 ],
j -> Concatenation( nextXlist1[j], nextXlist2[j] ) );
od;
# Step 6: If necessary transfer the representations back to the
# original group.
if IsBound( hom )
and not IsTrivial( KernelOfMultiplicativeGeneralMapping( hom ) ) then
Info( InfoGroup, 2,
"BaumClausenInfo: taking preimages in the original group" );
kernel:= KernelOfMultiplicativeGeneralMapping( hom );
k:= Pcgs( kernel );
pcgs:= PcgsByPcSequence( ElementsFamily( FamilyObj( kernel ) ),
Concatenation( List( pcgs,
x -> PreImagesRepresentative( hom, x ) ),
k ) );
k:= ListWithIdenticalEntries( Length( k ), 0 );
linear:= List( linear, rep -> Concatenation( rep, k ) );
for rep in nonlin do
dim:= Length( rep[1].perm );
M:= rec( perm:= [ 1 .. dim ],
diag:= [ 1 .. dim ] * 0 );
for i in k do
Add( rep, M );
od;
od;
else
kernel:= TrivialSubgroup( G );
fi;
# Return the result (for nonabelian groups).
return Immutable( rec( pcgs := pcgs,
kernel := kernel,
exponent := e,
nonlin := nonlin,
lin := linear
) );
end );
#############################################################################
##
#F IrreducibleRepresentationsByBaumClausen( <G> ) . for a supersolv. group
##
BindGlobal( "IrreducibleRepresentationsByBaumClausen", function( G )
local mrep, # list of images lists for the result
info, # result of `BaumClausenInfo'
lg, # composition length of `G'
rep, # loop over the representations
gcd, # g.c.d. of the exponents in `rep'
Ee, # complex root of unity needed for `rep'
images, # one list of images
dim, # current dimension
i, k, # loop variabes
mat; # one representing matrix
mrep:= [];
info:= BaumClausenInfo( G );
lg:= Length( info.pcgs );
if info.lin=[[]] then # trivial group
return [GroupHomomorphismByImagesNC(G,Group([[1]]),[],[])];
fi;
# Compute the images of linear representations on the pcgs.
for rep in info.lin do
gcd := Gcd( rep );
if gcd = 0 then
Add( mrep, List( rep, x -> [ [ 1 ] ] ) );
else
gcd:= GcdInt( gcd, info.exponent );
Ee:= E( info.exponent / gcd );
Add( mrep, List( rep / gcd, x -> [ [ Ee^x ] ] ) );
fi;
od;
# Compute the images of nonlinear representations on the pcgs.
for rep in info.nonlin do
images:= [];
dim:= Length( rep[1].perm );
gcd:= GcdInt( Gcd( List( rep, x -> Gcd( x.diag ) ) ), info.exponent );
Ee:= E( info.exponent / gcd );
for i in [ 1 .. lg ] do
mat:= NullMat( dim, dim, Rationals );
for k in [ 1 .. dim ] do
mat[k][ rep[i].perm[k] ]:=
Ee^( rep[i].diag[ rep[i].perm[k] ] / gcd );
od;
images[i]:= mat;
od;
Add( mrep, images );
od;
return List( mrep, images -> GroupHomomorphismByImagesNC( G,
GroupByGenerators( images ), info.pcgs, images ) );
end );
#############################################################################
##
#M IrreducibleRepresentations( <G> ) . for an abelian by supersolvable group
##
InstallMethod( IrreducibleRepresentations,
"(abelian by supersolvable) finite group",
[ IsGroup and IsFinite ], 1, # higher than Dixon's method
function( G )
if IsAbelian( SupersolvableResiduum( G ) ) then
return IrreducibleRepresentationsByBaumClausen( G );
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M IrreducibleRepresentations( <G>, <F> ) . . for a group and `Cyclotomics'
##
InstallMethod( IrreducibleRepresentations,
"finite group, Cyclotomics",
[ IsGroup and IsFinite, IsCyclotomicCollection and IsField ],
function( G, F )
if F <> Cyclotomics then
TryNextMethod();
else
return IrreducibleRepresentations( G );
fi;
end );
#############################################################################
##
#M IrreducibleRepresentations( <G>, <f> )
##
InstallMethod( IrreducibleRepresentations,
"for a finite group over a finite field",
[ IsGroup and IsFinite, IsField and IsFinite ],
function( G, f )
local md, hs, gens, M, mats, H, hom;
md := IrreducibleModules( G, f, 0 );
gens:=md[1];
md:=md[2];
hs := [];
for M in md do
mats := M.generators;
H := Group( mats, IdentityMat( M.dimension, f ) );
hom := GroupHomomorphismByImagesNC( G, H, gens, mats );
Add( hs, hom );
od;
return hs;
end );
#############################################################################
##
#M IrrBaumClausen( <G>) . . . . irred. characters of a supersolvable group
##
InstallMethod( IrrBaumClausen,
"for a (solvable) group",
[ IsGroup ],
function( G )
local mulmoma, # local function to multiply monomial matrices
ccl, # conjugacy classes of `G'
tbl, # character table of `G'
info, # result of `BaumClausenInfo'
pcgs, # value of `info.pcgs'
lg, # composition length
evl, # list encoding exponents of class representatives
i, j, k, # loop variables
exps, # exponent vector of a group element
t, # intermediate representation value
irreducibles, # list of irreducible characters
rep, # loop over the representations
gcd, # g.c.d. of the exponents in `rep'
q, #
Ee, # complex root of unity needed for `rep'
chi, # one character values list
deg, # character degree
idmat, # identity matrix
trace; # trace of a matrix
mulmoma:= function( a, b )
local prod, i;
prod:= rec( perm := b.perm{ a.perm },
diag := [] );
for i in [ 1 .. deg ] do
prod.diag[ b.perm[i] ]:= b.diag[ b.perm[i] ] + a.diag[i];
od;
return prod;
end;
tbl:= CharacterTable( G );
ccl:= ConjugacyClasses( tbl );
SetExponent( G, Exponent( tbl ) );
info:= BaumClausenInfo( G );
# The trivial group does not admit matrix arithmetic for evaluations.
if IsTrivial( G ) then
return [ Character( G, [ 1 ] ) ];
fi;
pcgs:= info.pcgs;
lg:= Length( pcgs );
exps:= List( ccl,
c -> ExponentsOfPcElement( pcgs, Representative( c ) ) );
# Compute the linear irreducibles.
# Compute the roots of unity only once for all linear characters.
# ($q$-th roots suffice, where $q$ divides the number of linear
# characters and the known exponent; we do *not* compute the smallest
# possible roots for each representation.)
q:= Gcd( info.exponent, Length( info.lin ) );
gcd:= info.exponent / q;
Ee:= E(q);
Ee:= List( [ 0 .. q-1 ], i -> Ee^i );
irreducibles:= List( info.lin, rep ->
Character( tbl, Ee{ ( ( exps * rep ) / gcd mod q ) + 1 } ) );
# Compute the nonlinear irreducibles.
if not IsEmpty( info.nonlin ) then
evl:= [];
for i in [ 2 .. Length( ccl ) ] do
t:= [];
for j in [ 1 .. lg ] do
for k in [ 1 .. exps[i][j] ] do
Add( t, j );
od;
od;
evl[ i-1 ]:= t;
od;
for rep in info.nonlin do
gcd:= GcdInt( Gcd( List( rep, x -> Gcd( x.diag ) ) ), info.exponent );
Ee:= E( info.exponent / gcd );
deg:= Length( rep[1].perm );
chi:= [ deg ];
idmat:= rec( perm := [ 1 .. deg ], diag := [ 1 .. deg ] * 0 );
for j in evl do
# Compute the value of the representation at the representative.
t:= idmat;
for k in j do
t:= mulmoma( t, rep[k] );
od;
# Compute the character value.
trace:= 0;
for k in [ 1 .. deg ] do
if t.perm[k] = k then
trace:= trace + Ee^( t.diag[k] / gcd );
fi;
od;
Add( chi, trace );
od;
Add( irreducibles, Character( tbl, chi ) );
od;
fi;
# Return the result.
return irreducibles;
end );
#############################################################################
##
#F InducedRepresentationImagesRepresentative( <rep>, <H>, <R>, <g> )
##
## Let $<rep>_H$ denote the restriction of the group homomorphism <rep> to
## the group <H>, and $\phi$ the induced representation of $<rep>_H$ to $G$,
## where <R> is a transversal of <H> in $G$.
## `InducedRepresentationImagesRepresentative' returns the image of the
## element <g> of $G$ under $\phi$.
##
InstallGlobalFunction( InducedRepresentationImagesRepresentative,
function( rep, H, R, g )
local len, blocks, i, k, kinv, j;
len:= Length( R );
blocks:= [];
for i in [ 1 .. len ] do
k:= R[i] * g;
kinv:= Inverse( k );
j:= PositionProperty( R, r -> r * kinv in H );
blocks[i]:= [ i, j, ImagesRepresentative( rep, k / R[j] ) ];
od;
return BlockMatrix( blocks, len, len );
end );
#############################################################################
##
#F InducedRepresentation( <rep>, <G> ) . . . . induced matrix representation
#F InducedRepresentation( <rep>, <G>, <R> )
#F InducedRepresentation( <rep>, <G>, <R>, <H> )
##
## Let <rep> be a matrix representation of the group $H$, which is a
## subgroup of the group <G>.
## `InducedRepresentation' returns the induced matrix representation of <G>.
##
## The optional third argument <R> is a right transversal of $H$ in <G>.
## If the fourth optional argument <H> is given then it must be a subgroup
## of the source of <rep>, and the induced representation of the restriction
## of <rep> to <H> is computed.
##
InstallGlobalFunction( InducedRepresentation, function( arg )
local rep, G, H, R, gens, images, map;
# Get and check the arguments.
if Length( arg ) = 2 and IsGroupHomomorphism( arg[1] )
and IsGroup( arg[2] ) then
rep := arg[1];
G := arg[2];
H := Source( rep );
R := RightTransversal( G, H );
elif Length( arg ) = 3 and IsGroupHomomorphism( arg[1] )
and IsGroup( arg[2] )
and IsHomogeneousList( arg[3] ) then
rep := arg[1];
G := arg[2];
R := arg[3];
H := Source( rep );
elif Length( arg ) = 4 and IsGroupHomomorphism( arg[1] )
and IsGroup( arg[2] )
and IsHomogeneousList( arg[3] )
and IsGroup( arg[4] ) then
rep := arg[1];
G := arg[2];
R := arg[3];
H := arg[4];
else
Error( "usage: InducedRepresentation(<rep>,<G>[,<R>[,<H>]])" );
fi;
# Handle a trivial case.
if Length( R ) = 1 then
return rep;
fi;
# Construct the images of the generators of <G>.
gens:= GeneratorsOfGroup( G );
images:= List( gens,
g -> InducedRepresentationImagesRepresentative( rep, H, R, g ) );
# Construct and return the homomorphism.
map:= GroupHomomorphismByImagesNC( G, GroupByGenerators( images ),
gens, images );
SetIsSurjective( map, true );
return map;
end );
#############################################################################
##
#M <rep> ^ <G>
##
InstallOtherMethod( \^,
"for group homomorphism and group (induction)",
[ IsGroupHomomorphism, IsGroup ],
function( rep, G )
if IsMatrixGroup( Range( rep ) ) and IsSubset( Source( rep ), G ) then
return InducedRepresentation( rep, G );
else
TryNextMethod();
fi;
end );
#############################################################################
##
#E
|