/usr/share/gap/lib/cyclotom.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 | #############################################################################
##
#W cyclotom.gi GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file is being maintained by Thomas Breuer.
## Please do not make any changes without consulting him.
## (This holds also for minor changes such as the removal of whitespace or
## the correction of typos.)
##
## This file contains methods for cyclotomics.
##
#############################################################################
##
#M Conductor( <list> ) . . . . . . . . . . . . . . . . . . . . . for a list
##
## (This works not only for lists of cyclotomics but also for lists of
## lists of cyclotomics etc.)
##
InstallOtherMethod( Conductor,
"for a list",
[ IsList ],
function( list )
local n, entry;
n:= 1;
for entry in list do
n:= LcmInt( n, Conductor( entry ) );
od;
return n;
end );
#############################################################################
##
#M RoundCyc( <cyc> ) . . . . . . . . . . cyclotomic integer near to <cyc>
##
InstallMethod( RoundCyc, "general cyclotomic", [ IsCyclotomic ],
function ( x )
local n, cfs, int, i, c;
n:= Conductor( x );
cfs:= ExtRepOfObj( x );
int:= EmptyPlist( n );
for i in [ 1 .. n ] do
c:= cfs[i];
if IsInt( c ) then
int[i]:= c;
elif c < 0 then
int[i]:= Int( c - 1/2 );
else
int[i]:= Int( c + 1/2 );
fi;
od;
return CycList( int );
end );
#############################################################################
##
#M RoundCycDown( <cyc> ) . . . . . . . . . cyclotomic integer near to <cyc>
## rounding halves down
##
InstallMethod( RoundCycDown, "general cyclotomic", [ IsCyclotomic ],
x -> CycList( List( ExtRepOfObj( x ), RoundCycDown ) ) );
#############################################################################
##
#M ComplexConjugate( <cyc> )
#M ComplexConjugate( <list> )
##
InstallMethod( ComplexConjugate,
"for a cyclotomic",
[ IsCyc ],
cyc -> GaloisCyc( cyc, -1 ) );
InstallMethod( ComplexConjugate,
"for a list",
[ IsList ],
function( list )
local result, i;
result:= [];
for i in [ 1 .. Length( list ) ] do
if IsBound( list[i] ) then
result[i]:= ComplexConjugate( list[i] );
fi;
od;
return result;
end );
#############################################################################
##
#M RealPart( <z> )
#M RealPart( <list> )
##
InstallMethod( RealPart,
"for a scalar",
[ IsScalar ],
z -> ( z + ComplexConjugate( z ) ) / 2 );
InstallMethod( RealPart,
"for a list",
[ IsList ],
function( list )
local result, i;
result:= [];
for i in [ 1 .. Length( list ) ] do
if IsBound( list[i] ) then
result[i]:= RealPart( list[i] );
fi;
od;
return result;
end );
#############################################################################
##
#M ImaginaryPart( <z> )
#M ImaginaryPart( <list> )
##
InstallMethod( ImaginaryPart,
"for a cyclotomic",
[ IsCyc ],
z -> E(4) * ( ComplexConjugate( z ) - z ) / 2 );
InstallMethod( ImaginaryPart,
"for a list",
[ IsList ],
function( list )
local result, i;
result:= [];
for i in [ 1 .. Length( list ) ] do
if IsBound( list[i] ) then
result[i]:= ImaginaryPart( list[i] );
fi;
od;
return result;
end );
#############################################################################
##
#M ExtRepOfObj( <cyc> )
##
## <#GAPDoc Label="ExtRepOfObj:cyclotomics">
## <ManSection>
## <Meth Name="ExtRepOfObj" Arg='cyc' Label="for a cyclotomic"/>
##
## <Description>
## The external representation of a cyclotomic <A>cyc</A> with conductor
## <M>n</M> (see <Ref Func="Conductor" Label="for a cyclotomic"/> is
## the list returned by <Ref Func="CoeffsCyc"/>,
## called with <A>cyc</A> and <M>n</M>.
## <P/>
## <Example><![CDATA[
## gap> ExtRepOfObj( E(5) ); CoeffsCyc( E(5), 5 );
## [ 0, 1, 0, 0, 0 ]
## [ 0, 1, 0, 0, 0 ]
## gap> CoeffsCyc( E(5), 15 );
## [ 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
InstallMethod( ExtRepOfObj,
"for an internal cyclotomic",
[ IsCyc and IsInternalRep ],
COEFFS_CYC );
#############################################################################
##
#F CoeffsCyc( <z>, <N> )
##
InstallGlobalFunction( CoeffsCyc, function( z, N )
local coeffs, # coefficients list (also intermediately)
n, # length of `coeffs'
quo, # factor by that we have to blow up
s, # denominator of `quo' (we have to reduce)
factors, #
second, # product of primes in second reduction step
first,
val,
kk,
pos,
j,
k,
p,
nn,
newcoeffs;
if IsCyc( z ) then
# `z' is an internal cyclotomic, and therefore it is represented
# in the smallest possible cyclotomic field.
coeffs:= ExtRepOfObj( z ); # returns `CoeffsCyc( z, Conductor( z ) )'
n:= Length( coeffs );
quo:= N / n;
if not IsInt( quo ) then
return fail;
fi;
else
# `z' is already a coefficients list
coeffs:= z;
n:= Length( coeffs );
quo:= N / n;
if not IsInt( quo ) then
# Maybe `z' was not represented with respect to
# the smallest possible cyclotomic field.
# Try to reduce `z' until the denominator $s$ disappears.
s:= DenominatorRat( quo );
# step 1.
# First we get rid of
# - the $p$-parts for those primes $p$ that divide both $s$
# and $n / s$, and hence remain in the reduced expression,
# - all primes but the squarefree part of the rest.
factors:= Set( FactorsInt( s ) );
second:= 1;
for p in factors do
if s mod p <> 0 or ( n / s ) mod p <> 0 then
second:= second * p;
fi;
od;
if second mod 2 = 0 then
second:= second / 2;
fi;
first:= s / second;
if first > 1 then
newcoeffs:= ListWithIdenticalEntries( n / first, 0 );
for k in [ 1 .. n ] do
if coeffs[k] <> 0 then
pos:= ( k - 1 ) / first + 1;
if not IsInt( pos ) then
return fail;
fi;
newcoeffs[ pos ]:= coeffs[k];
fi;
od;
n:= n / first;
coeffs:= newcoeffs;
fi;
# step 2.
# Now we process those primes that shall disappear
# in the reduced form.
# Note that $p-1$ of the coefficients congruent modulo $n/p$
# must be equal, and the negative of this value is put at the
# position of the $p$-th element of this congruence class.
if second > 1 then
for p in FactorsInt( second ) do
nn:= n / p;
newcoeffs:= ListWithIdenticalEntries( nn, 0 );
for k in [ 1 .. n ] do
pos:= 0;
if coeffs[k] <> 0 then
val:= coeffs[k];
for j in [ 1 .. p-1 ] do
kk:= ( ( k - 1 + j*nn ) mod n ) + 1;
if coeffs[ kk ] = val then
coeffs[ kk ]:= 0;
elif pos <> 0 or coeffs[kk] <> 0 or kk mod p <> 1 then
return fail;
else
pos:= ( kk - 1 ) / p + 1;
fi;
od;
newcoeffs[ pos ]:= - val;
fi;
od;
n:= nn;
coeffs:= newcoeffs;
od;
fi;
quo:= NumeratorRat( quo );
fi;
fi;
# If necessary then blow up the representation in two steps.
# step 1.
# For each prime `p' not dividing `n' we replace
# `E(n)^k' by $ - \sum_{j=1}^{p-1} `E(n*p)^(p*k+j*n)'$.
if quo <> 1 then
for p in Set( FactorsInt( quo ) ) do
if p <> 2 and n mod p <> 0 then
nn := n * p;
quo := quo / p;
newcoeffs:= ListWithIdenticalEntries( nn, 0 );
for k in [ 1 .. n ] do
if coeffs[k] <> 0 then
for j in [ 1 .. p-1 ] do
newcoeffs[ ( ( (k-1)*p + j*n ) mod nn ) + 1 ]:= -coeffs[k];
od;
fi;
od;
coeffs:= newcoeffs;
n:= nn;
fi;
od;
fi;
# step 2.
# For the remaining divisors of `quo' we have
# `E(n*p)^(k*p)' in the basis for each basis element `E(n)^k'.
if quo <> 1 then
n:= Length( coeffs );
newcoeffs:= ListWithIdenticalEntries( quo*n, 0 );
for k in [ 1 .. Length( coeffs ) ] do
if coeffs[k] <> 0 then
newcoeffs[ (k-1)*quo + 1 ]:= coeffs[k];
fi;
od;
coeffs:= newcoeffs;
fi;
# Return the coefficients list.
return coeffs;
end );
#############################################################################
##
#F IsGaussInt(<x>) . . . . . . . . . test if an object is a Gaussian integer
##
InstallGlobalFunction( IsGaussInt,
x -> IsCycInt( x ) and (Conductor( x ) = 1 or Conductor( x ) = 4) );
#############################################################################
##
#F IsGaussRat( <x> ) . . . . . . . test if an object is a Gaussian rational
##
InstallGlobalFunction( IsGaussRat,
x -> IsCyc( x ) and (Conductor( x ) = 1 or Conductor( x ) = 4) );
##############################################################################
##
#F DescriptionOfRootOfUnity( <root> )
##
## Let $\zeta$ denote the primitive $n$-th root of unity $`E'(n)$,
## and suppose that we know the coefficients of $\pm\zeta^i$ w.r.t.
## the $n$-th Zumbroich basis (see~"ZumbroichBasis").
## These coefficients are either all $1$ or all $-1$.
## More precisely, they arise in the base conversion from (formally)
## successively multiplying $\pm\zeta^i$ by
## $1 = - \sum_{j=1}^{p-1} \zeta^{jn/p}$,
## for suitable prime diviors $p$ of $n$,
## and then treating the summands $\pm\zeta^{i + jn/p}$ in the same way
## until roots in the basis are reached.
## It should be noted that all roots obtained this way are distinct.
##
## Suppose the above procedure must be applied for the primes
## $p_1$, $p_2$, \ldots, $p_r$.
## Then $\zeta^i$ is equal to
## $(-1)^r \sum_{j_1=1}^{p_1-1} \cdots \sum_{j_r=1}^{p_r-1}
## \zeta^{i + \sum_{k=1}^r j_k n/p_k}$.
## The number of summands is $m = \prod_{k=1}^r (p_k-1)$.
## Since these roots are all distinct, we can compute the sum $s$ of their
## exponents modulo $n$ from the known coefficients of $\zeta^i$,
## and we get $s \equiv m ( i + r n/2 ) \pmod{n}$.
## Either $m = 1$ or $m$ is even,
## hence this congruence determines $\zeta^i$ at most up to its sign.
##
## Now suppose that $g = \gcd( m, n )$ is nontrivial.
## Then $i$ is determined only modulo $n/g$, and we have to decide which
## of the $g$ possible values $i$ is.
## This could be done by computing the values $j_{0,p}$ for one
## candidate $i$, where $p$ runs over the prime divisors $p$ of $n$
## for which $m$ is the product of $(p-1)$.
##
## (Recall that each $n$-th root of unity is of the form
## $\prod_{p\in P} \prod_{k_p=1}^{\nu_p-1} \zeta^{j_{k,p}n/p^{k_p+1}}$,
## with $j_{0,p} \in \{ 0, 1, \ldots, p-1 \}$, $j_{k,2} \in \{ 0, 1 \}$
## for $k > 0$, and $j_{k,p} \in \{ -(p-1)/2, \ldots, (p-1)/2 \}$ for
## $p > 2$.
## The root is in the $n$-th Zumbroich basis if and only if $j_{0,2} = 0$
## and $j_{0,p} \not= 0$ for $p > 2$.)
##
## But note that we do not have an easy access to the decomposition
## of $m$ into factors $(p-1)$,
## although in fact this decomposition is unique for $n \leq 65000$.
##
## So the exponent is identified by dividing off one of the candidates
## and then identifying the quotient, which is a $g$-th or $2 g$-th
## root of unity.
## (Note that $g$ is small compared to $n$.
## $m$ divides the product of $(p-1)$ for prime divisors $p$
## that divide $n$ at least with exponent $2$.
## The maximum of $g$ for $n \leq 65000$ is $40$, so $2$ steps suffice
## for these values of $n$.)
##
InstallGlobalFunction( DescriptionOfRootOfUnity, function( root )
local coeffs, # Zumbroich basis coefficients of `root'
n, # conductor of `n'
sum, # sum of exponents with nonzero coefficients
num, # number of nonzero coefficients
i, # loop variable
val, # one coefficient
coeff, # one nonzero coefficient (either `1' or `-1')
exp, # candidate for the exponent
g, # `Gcd( n, num )'
groot; # root in recursion
# Handle the trivial cases that `root' is an integer.
if root = 1 then
return [ 1, 1 ];
elif root = -1 then
return [ 2, 1 ];
fi;
Assert( 1, not IsRat( root ) );
# Compute the Zumbroich basis coefficients,
# and number and sum of exponents with nonzero coefficient (mod `n').
coeffs:= ExtRepOfObj( root );
n:= Length( coeffs );
sum:= 0;
num:= 0;
for i in [ 1 .. n ] do
val:= coeffs[i];
if val <> 0 then
sum:= sum + i;
num:= num + 1;
coeff:= val;
fi;
od;
sum:= sum - num;
# `num' is equal to `1' if and only if `root' or its negative
# belongs to the basis.
# (The coefficient is equal to `-1' if and only if either
# `n' is a multiple of $4$ or
# `n' is odd and `root' is a primitive $2 `n'$-th root of unity.)
if num = 1 then
if coeff < 0 then
if n mod 2 = 0 then
sum:= sum + n/2;
else
sum:= 2*sum + n;
n:= 2*n;
fi;
fi;
Assert( 1, root = E(n)^sum );
return [ n, sum mod n ];
fi;
# Let $N$ be `n' if `n' is even, and equal to $2 `n'$ otherwise.
# The exponent is determined modulo $N / \gcd( N, `num' )$.
g:= GcdInt( n, num );
if g = 1 then
# If `n' and `num' are coprime then `root' is identified up to its sign.
exp:= ( sum / num ) mod n;
if root <> E(n)^exp then
exp:= 2*exp + n;
n:= 2*n;
fi;
elif g = 2 then
# `n' is even, and again `root' is determined up to its sign.
exp:= ( sum / num ) mod ( n / 2 );
if root <> E(n)^exp then
exp:= exp + n / 2;
fi;
else
# Divide off one of the candidates.
# The quotient is a `g'-th or $2 `g'$-th root of unity,
# which can be identified by recursion.
exp:= ( sum / num ) mod ( n / g );
groot:= DescriptionOfRootOfUnity( root * E(n)^(n-exp) );
if n mod 2 = 1 and groot[1] mod 2 = 0 then
exp:= 2*exp;
n:= 2*n;
fi;
exp:= exp + groot[2] * n / groot[1];
fi;
# Return the result.
Assert( 1, root = E(n)^exp );
return [ n, exp mod n ];
end );
#############################################################################
##
#F Atlas1( <n>, <i> ) . . . . . . . . . . . . . . . utility for EB, ..., EH
##
## is the value $\frac{1}{i} \sum{j=1}^{n-1} z_n^{j^i}$
## for $2 \leq i \leq 8$ and $<n> \equiv 1 \pmod{i}$;
## if $i > 2$, <n> should be a prime to get sure that the result is
## well-defined;
## `Atlas1' returns the value given above if it is a cyclotomic integer.
## (see: Conway et al, ATLAS of finite groups, Oxford University Press 1985,
## Chapter 7, Section 10)
##
BindGlobal( "Atlas1", function( n, i )
local atlas, k, pos;
if not IsInt( n ) or n < 1 then
Error( "usage: EB(<n>), EC(<n>), ..., EH(<n>) with appropriate ",
"integer <n>" );
elif n mod i <> 1 then
Error( "<n> not congruent 1 mod ", i );
fi;
if n = 1 then
return 0;
fi;
atlas:= [ 1 .. n ] * 0;
if i mod 2 = 0 then
# Note that `n' is odd in this case.
for k in [ 1 .. QuoInt( n-1, 2 ) ] do
# summand `2 * E(n)^(k^i)'
pos:= ( (k^i) mod n ) + 1;
atlas[ pos ]:= atlas[ pos ] + 2;
od;
else
for k in [ 1 .. QuoInt( n-1, 2 ) ] do
# summand `E(n)^(k^i) + E(n)^(n - k^i)'
pos:= ( (k^i) mod n ) + 1;
atlas[ pos ]:= atlas[ pos ] + 1;
pos:= ( n - pos + 1 ) mod n + 1;
atlas[ pos ]:= atlas[ pos ] + 1;
od;
if n mod 2 = 0 then
# summand `E(n)^( (n/2)^i )'
pos:= ( ( (n/2)^i ) mod n ) + 1;
atlas[ pos ]:= atlas[ pos ] + 1;
fi;
fi;
atlas:= CycList( atlas / i );
if not IsCycInt( atlas ) then
Error( "result divided by ", i, " is not a cyclotomic integer" );
fi;
return atlas;
end );
#############################################################################
##
#F EB( <n> ), EC( <n> ), \ldots, EH( <n> ) . . . some ATLAS irrationalities
##
InstallGlobalFunction( EB, n -> Atlas1( n, 2 ) );
InstallGlobalFunction( EC, n -> Atlas1( n, 3 ) );
InstallGlobalFunction( ED, n -> Atlas1( n, 4 ) );
InstallGlobalFunction( EE, n -> Atlas1( n, 5 ) );
InstallGlobalFunction( EF, n -> Atlas1( n, 6 ) );
InstallGlobalFunction( EG, n -> Atlas1( n, 7 ) );
InstallGlobalFunction( EH, n -> Atlas1( n, 8 ) );
#############################################################################
##
#F NK( <n>, <k>, <d> ) . . . . . . . . . . utility for ATLAS irrationalities
##
## Find the (<d>+1)-st automorphism *nk of order <k> on primitive <n>-th
## roots of unity.
##
## Optimization steps:
## - Since <k> is very small, `PowerModInt' should be avoided, compared to
## powering and then reducing mod <n>.
## - Do not call `Phi' but look at the prime factors of <n> directly.
## - Use multiplication instead of powering for computing squares.
##
InstallGlobalFunction( NK, function( n, k, deriv )
local nk,
nkn, # nk mod n
n1, # n-1
pow, pow2, pow3;
if n <= 2 then
return fail;
fi;
nk:= 1;
nkn:= 1;
n1:= n-1;
if k = 2 then
# We have always `Phi( n ) mod k = 0'.
while true do
if nkn <> 1 then
# `*nk' has order larger than 1.
pow:= (nkn * nkn) mod n;
if pow = 1 then
# `*nk' has order 2.
if deriv = 0 then return nk; fi;
deriv:= deriv - 1;
if nkn <> n1 then
# `**nk' has order larger than 1 and thus equal to 2.
if deriv = 0 then return -nk; fi;
deriv:= deriv - 1;
fi;
fi;
elif nkn <> n1 then
# `**nk' has order larger than 1.
pow:= (nkn * nkn) mod n;
if pow = 1 then
# `**nk' has order dividing 2.
if deriv = 0 then return -nk; fi;
deriv:= deriv - 1;
fi;
fi;
nk:= nk + 1;
nkn:= nk mod n;
od;
elif k in [ 3, 5, 7 ] then # for odd primes
if ( n mod ( k*k ) <> 0 ) and
ForAll( Set( FactorsInt( n ) ), p -> (p-1) mod k <> 0 ) then
return fail;
fi;
while true do
if nkn <> 1 then
# `*nk' has order larger than 1.
pow:= (nkn ^ k) mod n;
if pow = 1 then
# `*nk' has order dividing `k'.
if deriv = 0 then return nk; fi;
deriv:= deriv - 1;
fi;
if nkn <> n1 and pow = n1 then
# `**nk' has order larger than 1 and dividing `k'.
if deriv = 0 then return -nk; fi;
deriv:= deriv - 1;
fi;
elif nkn <> n1 then
# `**nk' has order larger than 1.
pow:= (nkn ^ k) mod n;
if pow = n1 then
# `**nk' has order dividing `k'.
if deriv = 0 then return -nk; fi;
deriv:= deriv - 1;
fi;
fi;
nk:= nk + 1;
nkn:= nk mod n;
od;
elif k = 4 then
# An automorphism of order 4 exists if 4 divides $p-1$ for an odd
# prime divisor $p$ of `n', or if 16 divides `n'.
if ForAll( Set( FactorsInt( n ) ), p -> (p-1) mod k <> 0 )
and n mod 16 <> 0 then
return fail;
fi;
while true do
if nkn <> 1 and nkn <> n1 then
# `*nk' and `**nk' have order at least 2.
pow:= (nkn * nkn) mod n;
if pow <> 1 and ( pow * pow ) mod n = 1 then
# `*nk' (and thus also `**nk') has order 4.
if deriv = 0 then
return nk;
elif deriv = 1 then
return -nk;
fi;
deriv:= deriv - 2;
fi;
fi;
nk:= nk + 1;
nkn:= nk mod n;
od;
elif k = 6 then
# An automorphism of order 6 exists if automorphisms of the orders
# 2 and 3 exist; the former is always true.
if ( n mod 9 <> 0 ) and
ForAll( Set( FactorsInt( n ) ), p -> (p-1) mod 3 <> 0 ) then
return fail;
fi;
while true do
if nkn <> 1 and nkn <> n1 then
# `*nk' and `**nk' have order at least 2.
pow2:= (nkn * nkn) mod n;
if pow2 <> 1 then
# `*nk' (and thus `**nk') has order larger than 2.
pow:= (pow2 ^ 3) mod n;
if pow = 1 then
# `*nk' (and thus `**nk') has order dividing 6.
pow3:= (nkn * pow2) mod n;
if pow3 <> 1 then
if deriv = 0 then return nk; fi;
deriv:= deriv - 1;
fi;
if pow3 <> n1 then
if deriv = 0 then return -nk; fi;
deriv:= deriv - 1;
fi;
fi;
fi;
fi;
nk:= nk + 1;
nkn:= nk mod n;
od;
elif k = 8 then
# An automorphism of order 8 exists if 8 divides $p-1$ for an odd
# prime divisor $p$ of `n', or if 32 divides `n'.
if ForAll( Set( FactorsInt( n ) ), p -> (p-1) mod k <> 0 )
and n mod 32 <> 0 then
return fail;
fi;
while true do
if nkn <> 1 and nkn <> n1 then
# `*nk' and `**nk' have order at least 2.
pow:= (nkn ^ 4) mod n;
if pow <> 1 and ( pow * pow ) mod n = 1 then
# `*nk' (and thus also `**nk') has order 8.
if deriv = 0 then
return nk;
elif deriv = 1 then
return -nk;
fi;
deriv:= deriv - 2;
fi;
fi;
nk:= nk + 1;
nkn:= nk mod n;
od;
fi;
# We have `k < 2' or `k > 8'.
return fail;
end );
#############################################################################
##
#F Atlas2( <n>, <k>, <deriv> ) . . . . . . utility for ATLAS irrationalities
##
BindGlobal( "Atlas2", function( n, k, deriv )
local nk, result, i, pos;
if not ( IsInt( n ) and IsInt( k ) and IsInt( deriv ) ) then
Error( "usage: ATLAS irrationalities require integral arguments" );
fi;
nk:= NK( n, k, deriv );
if nk = fail then
return fail;
fi;
result:= [ 1 .. n ] * 0;
for i in [ 0 .. k-1 ] do
# summand `E(n)^(nk^i);
pos:= ( (nk^i) mod n ) + 1;
result[ pos ]:= result[ pos ] + 1;
od;
return CycList( result );
end );
#############################################################################
##
#F EY(<n>), EY(<n>,<deriv>) . . . . . . . ATLAS irrationalities $y_n$ resp.
#F $y_n^{<deriv>}$
#F ... ES(<n>), ES(<n>,<deriv>) ... $s_n$ resp. $s_n^{<deriv>}$
##
InstallGlobalFunction( EY, function(arg)
if Length(arg)=1 then return Atlas2(arg[1],2,0);
elif Length(arg)=2 then return Atlas2(arg[1],2,arg[2]);
else Error( "usage: EY(n) resp. EY(n,deriv)" ); fi;
end );
InstallGlobalFunction( EX, function(arg)
if Length(arg)=1 then return Atlas2(arg[1],3,0);
elif Length(arg)=2 then return Atlas2(arg[1],3,arg[2]);
else Error( "usage: EX(n) resp. EX(n,deriv)" ); fi;
end );
InstallGlobalFunction( EW, function(arg)
if Length(arg)=1 then return Atlas2(arg[1],4,0);
elif Length(arg)=2 then return Atlas2(arg[1],4,arg[2]);
else Error( "usage: EW(n) resp. EW(n,deriv)" ); fi;
end );
InstallGlobalFunction( EV, function(arg)
if Length(arg)=1 then return Atlas2(arg[1],5,0);
elif Length(arg)=2 then return Atlas2(arg[1],5,arg[2]);
else Error( "usage: EV(n) resp. EV(n,deriv)" ); fi;
end );
InstallGlobalFunction( EU, function(arg)
if Length(arg)=1 then return Atlas2(arg[1],6,0);
elif Length(arg)=2 then return Atlas2(arg[1],6,arg[2]);
else Error( "usage: EU(n) resp. EU(n,deriv)" ); fi;
end );
InstallGlobalFunction( ET, function(arg)
if Length(arg)=1 then return Atlas2(arg[1],7,0);
elif Length(arg)=2 then return Atlas2(arg[1],7,arg[2]);
else Error( "usage: ET(n) resp. ET(n,deriv)" ); fi;
end );
InstallGlobalFunction( ES, function(arg)
if Length(arg)=1 then return Atlas2(arg[1],8,0);
elif Length(arg)=2 then return Atlas2(arg[1],8,arg[2]);
else Error( "usage: ES(n) resp. ES(n,deriv)" ); fi;
end );
#############################################################################
##
#F Atlas3( <n>, <k>, <deriv> ) . . . . . . utility for ATLAS irrationalities
##
BindGlobal( "Atlas3", function( n, k, deriv )
local nk, l, pow, val, i;
nk:= NK( n, k, deriv );
if nk = fail then
return fail;
fi;
l:= 0 * [ 1 .. n ];
pow:= 1;
val:= 1;
for i in [ 1 .. k ] do
l[ pow + 1 ]:= val;
pow:= (nk * pow) mod n;
val:= -val;
od;
return CycList( l );
end );
#############################################################################
##
#F EM( <n>[, <deriv>] ) . . . . . . . . ATLAS irrationality $m_{<n>}$ resp.
## $m_{<n>}^{<deriv>}$
InstallGlobalFunction( EM, function( arg )
local n;
n:= arg[1];
if 2 < Length( arg ) or not IsInt( n ) or n < 3 then
Error( "usage: EM( <n>[, <deriv>] )" );
elif Length( arg ) = 1 then
return Atlas3( n, 2, 0 );
else
return Atlas3( n, 2, arg[2] );
fi;
end );
#############################################################################
##
#F EL( <n>[, <deriv>] ) . . . . . . . . ATLAS irrationality $l_{<n>}$ resp.
## $l_{<n>}^{<deriv>}$
InstallGlobalFunction( EL, function( arg )
local n;
n:= arg[1];
if 2 < Length( arg ) or not IsInt( n ) or n < 3 then
Error( "usage: EL( <n>[, <deriv>] )" );
elif Length( arg ) = 1 then
return Atlas3( n, 4, 0 );
else
return Atlas3( n, 4, arg[2] );
fi;
end );
#############################################################################
##
#F EK( <n>[, <deriv>] ) . . . . . . . . ATLAS irrationality $k_{<n>}$ resp.
## $k_{<n>}^{<deriv>}$
InstallGlobalFunction( EK, function( arg )
local n;
n:= arg[1];
if 2 < Length( arg ) or not IsInt( n ) or n < 3 then
Error( "usage: EK( <n>[, <deriv>] )" );
elif Length( arg ) = 1 then
return Atlas3( n, 6, 0 );
else
return Atlas3( n, 6, arg[2] );
fi;
end );
#############################################################################
##
#F EJ( <n>[, <deriv>] ) . . . . . . . . ATLAS irrationality $j_{<n>}$ resp.
## $j_{<n>}^{<deriv>}$
InstallGlobalFunction( EJ, function( arg )
local n;
n:= arg[1];
if 2 < Length( arg ) or not IsInt( n ) or n < 3 then
Error( "usage: EJ( <n>[, <deriv>] )" );
elif Length( arg ) = 1 then
return Atlas3( n, 8, 0 );
else
return Atlas3( n, 8, arg[2] );
fi;
end );
#############################################################################
##
#F ER( <n> ) . . . . ATLAS irrationality $r_{<n>}$ (pos. square root of <n>)
##
## Different from other {\ATLAS} irrationalities,
## `ER' (and its synonym `Sqrt') can be applied also to noninteger
## rationals.
##
InstallGlobalFunction( ER, function( n )
local factor, factors, pair;
if IsInt( n ) then
if n = 0 then
return 0;
elif n < 0 then
factor:= E(4);
n:= -n;
else
factor:= 1;
fi;
# Split `n' into the product of a square and a squarefree number.
factors:= Collected( Factors( n ) );
n:= 1;
for pair in factors do
if pair[2] mod 2 = 0 then
factor:= factor * pair[1]^(pair[2]/2);
else
n:= n * pair[1];
if pair[2] <> 1 then
factor:= factor * pair[1]^((pair[2]-1)/2);
fi;
fi;
od;
if n mod 4 = 1 then
return factor * ( 2 * EB(n) + 1 );
elif n mod 4 = 2 then
return factor * ( E(8) - E(8)^3 ) * ER( n / 2 );
elif n mod 4 = 3 then
return factor * (-E(4)) * ( 2 * EB(n) + 1 );
fi;
elif IsRat( n ) then
factor:= DenominatorRat( n );
return ER( NumeratorRat( n ) * factor ) / factor;
else
Error( "argument must be rational" );
fi;
end );
#############################################################################
##
#F EI( <n> ) . . . . ATLAS irrationality $i_{<n>}$ (the square root of -<n>)
##
InstallGlobalFunction( EI, n -> E(4) * ER(n) );
#############################################################################
##
#M Sqrt( <rat> ) . . . . . . . . . . . . . . . . . square root of rationals
##
InstallMethod( Sqrt,
"for a rational",
[ IsRat ],
ER );
#############################################################################
##
#F StarCyc( <cyc> ) . . . . the unique nontrivial Galois conjugate of <cyc>
##
InstallGlobalFunction( StarCyc, function( cyc )
local n, gens, cand, exp, img;
n:= Conductor( cyc );
if n = 1 then
return fail;
fi;
gens:= Flat( GeneratorsPrimeResidues( n ).generators );
cand:= fail;
for exp in gens do
img:= GaloisCyc( cyc, exp );
if img <> cyc then
if cand = fail then
cand:= img;
elif cand <> img then
return fail;
fi;
fi;
od;
for exp in gens do
img:= GaloisCyc( cand, exp );
if img <> cyc and img <> cand then
return fail;
fi;
od;
return cand;
end );
#############################################################################
##
#F AtlasIrrationality( <irratname> )
##
InstallGlobalFunction( AtlasIrrationality, function( irratname )
local len, pos, sign, pos2, coeff, letts, funcs, recurse, lpos, N,
dashes, irrat, qN, gal, oldpos;
# Check the argument.
if not IsString( irratname ) or IsEmpty( irratname ) then
return fail;
fi;
len:= Length( irratname );
# Get the first sign.
pos:= 1;
sign:= 1;
if irratname[1] = '-' then
sign:= -1;
pos:= 2;
elif irratname[1] = '+' then
pos:= 2;
fi;
# Get the first coefficient.
if pos <= len and IsDigitChar( irratname[ pos ] ) then
pos2:= pos;
while pos2 <= len and IsDigitChar( irratname[ pos2 ] ) do
pos2:= pos2+1;
od;
coeff:= sign * Int( irratname{ [ pos .. pos2-1 ] } );
pos:= pos2;
else
coeff:= sign;
fi;
if len < pos then
return coeff;
fi;
# Get the first atomic irrationality (with dashes).
letts:= "bcdefghijklmrstuvwxyz";
funcs:= List( "BCDEFGHIJKLMRSTUVWXY", x -> ValueGlobal( [ 'E', x ] ) );
Add( funcs, E );
# Is the coefficient an integer summand?
if irratname[ pos ] in "+-" then
recurse:= AtlasIrrationality( irratname{ [ pos ..
Length( irratname ) ] } );
if recurse = fail then
return fail;
else
return coeff + recurse;
fi;
fi;
lpos:= Position( letts, irratname[ pos ] );
if lpos = fail then
return fail;
fi;
pos:= pos + 1;
dashes:= 0;
while pos <= len and irratname[ pos ] in "\'\"" do
dashes:= dashes + 1;
if irratname[ pos ] = '\"' then
dashes:= dashes + 1;
fi;
pos:= pos + 1;
od;
pos2:= pos;
while pos2 <= len and IsDigitChar( irratname[ pos2 ] ) do
pos2:= pos2+1;
od;
if pos2 = pos and lpos = 8 then
N:= 1;
else
N:= Int( irratname{ [ pos .. pos2 - 1 ] } );
fi;
if dashes = 0 then
qN:= funcs[ lpos ]( N );
else
qN:= funcs[ lpos ]( N, dashes );
fi;
pos:= pos2;
irrat:= coeff * qN;
if len < pos then
return irrat;
fi;
# Get the Galois automorphism.
if irratname[ pos ] = '*' then
pos:= pos + 1;
if pos <= len and irratname[ pos ] = '*' then
pos:= pos + 1;
pos2:= pos;
while pos2 <= len and IsDigitChar( irratname[ pos2 ] ) do
pos2:= pos2 + 1;
od;
gal:= Int( irratname{ [ pos .. pos2-1 ] } );
if gal = 0 then
irrat:= ComplexConjugate( irrat );
else
irrat:= GaloisCyc( irrat, -gal );
fi;
pos:= pos2;
elif len < pos or irratname[ pos ] in "+-&" then
irrat:= StarCyc( irrat );
else
pos2:= pos;
while pos2 <= len and IsDigitChar( irratname[ pos2 ] ) do
pos2:= pos2 + 1;
od;
gal:= Int( irratname{ [ pos .. pos2-1 ] } );
irrat:= GaloisCyc( irrat, gal );
pos:= pos2;
fi;
fi;
while pos <= len do
# Get ampersand summands.
if irratname[ pos ] = '&' then
pos2:= pos + 1;
while pos2 <= len and IsDigitChar( irratname[ pos2 ] ) do
pos2:= pos2 + 1;
od;
gal:= Int( irratname{ [ pos+1 .. pos2-1 ] } );
irrat:= irrat + coeff * GaloisCyc( qN, gal );
pos:= pos2;
elif irratname[ pos ] in "+-" then
if irratname[ pos ] = '+' then
sign:= 1;
oldpos:= pos+1;
else
sign:= -1;
oldpos:= pos;
fi;
pos2:= pos + 1;
while pos2 <= len and IsDigitChar( irratname[ pos2 ] ) do
pos2:= pos2 + 1;
od;
if pos2 = pos + 1 then
coeff:= sign;
else
coeff:= sign * Int( irratname{ [ pos+1 .. pos2-1 ] } );
fi;
pos:= pos2;
if pos <= len then
if irratname[ pos ] = '&' then
pos2:= pos + 1;
while pos2 <= len and IsDigitChar( irratname[ pos2 ] ) do
pos2:= pos2 + 1;
od;
gal:= Int( irratname{ [ pos+1 .. pos2-1 ] } );
irrat:= irrat + coeff * GaloisCyc( qN, gal );
pos:= pos2;
else
recurse:= AtlasIrrationality( irratname{ [ oldpos .. len ] } );
if recurse = fail then
return fail;
fi;
irrat:= irrat + recurse;
pos:= len+1;
fi;
else
irrat:= irrat + coeff;
fi;
else
return fail;
fi;
od;
# Return the result.
return irrat;
end );
#############################################################################
##
#F Quadratic( <cyc>[, <rat>] ) . information about quadratic irrationalities
##
InstallGlobalFunction( Quadratic, function( arg )
local cyc,
rat,
denom,
coeffs, # Zumbroich basis coefficients of `cyc'
facts, # factors of conductor of `cyc'
factsset, # set of `facts'
two_part, # 2-part of the conductor of `cyc'
root, # `root' component of the result
a, # `a' component of the result
b, # `b' component of the result
d, # `d' component of the result
ATLAS, # string that expresses `cyc' in {\sf ATLAS} format
ATLAS2, # another string, maybe shorter ...
display; # string that shows a way to input `cyc'
cyc:= arg[1];
rat:= Length( arg ) = 2 and arg[2] = true;
if not IsCyc( cyc ) then
return fail;
fi;
denom:= DenominatorCyc( cyc );
if not ( rat or denom = 1 ) then
return fail;
fi;
if IsRat( cyc ) then
return rec(
a := NumeratorRat( cyc ),
b := 0,
root := 1,
d := denom,
ATLAS := String( cyc ),
display := String( cyc )
);
fi;
if denom <> 1 then
cyc:= cyc * denom;
fi;
coeffs:= ExtRepOfObj( cyc );
facts:= FactorsInt( Length( coeffs ) );
factsset:= Set( facts );
two_part:= Number( facts, x -> x = 2 );
# Compute candidates for `a', `b', `root', `d'.
if two_part = 0 and Length( facts ) = Length( factsset ) then
root:= Length( coeffs );
if root mod 4 = 3 then
root:= -root;
fi;
a:= StarCyc( cyc );
if a = fail then
return fail;
fi;
# Set `a' to the trace of `cyc' over the rationals.
a:= cyc + a;
if Length( factsset ) mod 2 = 0 then
b:= 2 * coeffs[2] - a;
else
b:= 2 * coeffs[2] + a;
fi;
if a mod 2 = 0 and b mod 2 = 0 then
a:= a / 2;
b:= b / 2;
d:= 1;
else
d:= 2;
fi;
elif two_part = 2 and Length( facts ) = Length( factsset ) + 1 then
root:= Length( coeffs ) / 4;
if root = 1 then
a:= coeffs[1];
b:= - coeffs[2];
else
a:= coeffs[5];
if Length( factsset ) mod 2 = 0 then a:= -a; fi;
b:= - coeffs[ root + 5 ];
fi;
if root mod 4 = 1 then
root:= -root;
b:= -b;
fi;
d:= 1;
elif two_part = 3 then
root:= Length( coeffs ) / 4;
if root = 2 then
a:= coeffs[1];
b:= coeffs[2];
if b = coeffs[4] then
root:= -2;
fi;
else
a:= coeffs[9];
if Length( factsset ) mod 2 = 0 then a:= -a; fi;
b:= coeffs[ root / 2 + 9 ];
if b <> - coeffs[ 3 * root / 2 - 7 ] then
root:= -root;
elif ( root / 2 ) mod 4 = 3 then
b:= -b;
fi;
fi;
d:= 1;
else
return fail;
fi;
# Check whether the candidates `a', `b', `d', `root' are correct.
if d * cyc <> a + b * ER( root ) then
return fail;
fi;
# Compute a string for the irrationality in {\ATLAS} format.
if d = 2 then
# Necessarily `root' is congruent 1 mod 4, only $b_{'root'}$ possible.
# We have $'cyc' = ('a' + `b') / 2 + `b' b_{'root'}$.
if a + b = 0 then
if b = 1 then
ATLAS:= "";
elif b = -1 then
ATLAS:= "-";
else
ATLAS:= ShallowCopy( String( b ) );
fi;
elif b = 1 then
ATLAS:= Concatenation( String( ( a + b ) / 2 ), "+" );
elif b = -1 then
ATLAS:= Concatenation( String( ( a + b ) / 2 ), "-" );
elif 0 < b then
ATLAS:= Concatenation( String( ( a + b ) / 2 ), "+", String( b ) );
else
ATLAS:= Concatenation( String( ( a + b ) / 2 ), String( b ) );
fi;
Append( ATLAS, "b" );
if 0 < root then
Append( ATLAS, String( root ) );
else
Append( ATLAS, String( -root ) );
fi;
else
# `d' = 1, so we may use $i_{'root'}$ and $r_{'root'}$.
if a = 0 then
ATLAS:= "";
else
ATLAS:= ShallowCopy( String( a ) );
fi;
if a <> 0 and b > 0 then Append( ATLAS, "+" ); fi;
if b = -1 then
Append( ATLAS, "-" );
elif b <> 1 then
Append( ATLAS, String( b ) );
fi;
if root > 0 then
ATLAS:= Concatenation( ATLAS, "r", String( root ) );
elif root = -1 then
Append( ATLAS, "i" );
else
ATLAS:= Concatenation( ATLAS, "i", String( -root ) );
fi;
if ( root - 1 ) mod 4 = 0 then
# In this case, also $b_{|'root'|}$ is possible.
# Note that here the coefficients are never equal to $\pm 1$.
if a = -b then
ATLAS2:= String( 2 * b );
else
ATLAS2:= Concatenation( String( a+b ), "+", String( 2*b ) );
fi;
if root > 0 then
ATLAS2:= Concatenation( ATLAS2, "b", String( root ) );
else
ATLAS2:= Concatenation( ATLAS2, "b", String( -root ) );
fi;
if Length( ATLAS2 ) < Length( ATLAS ) then
ATLAS:= ATLAS2;
fi;
fi;
fi;
if denom <> 1 then
ATLAS:= Concatenation( "(", ATLAS, ")/", String( denom ) );
fi;
ConvertToStringRep( ATLAS );
# Compute a string used by the `Display' function for character tables.
if a = 0 then
if b = 1 then
display:= "";
elif b = -1 then
display:= "-";
else
display:= Concatenation( String( b ), "*" );
fi;
elif b = 1 then
display:= Concatenation( String( a ), "+" );
elif b = -1 then
display:= Concatenation( String( a ), "-" );
elif 0 < b then
display:= Concatenation( String( a ), "+", String( b ), "*" );
else
display:= Concatenation( String( a ), String( b ), "*" );
fi;
Append( display, Concatenation( "Sqrt(", String( root ), ")" ) );
d:= d * denom;
if d <> 1 then
if a <> 0 then
display:= Concatenation( "(", display, ")" );
fi;
display:= Concatenation( display, "/", String( d ) );
fi;
ConvertToStringRep( display );
# Return the result.
return rec(
a := a,
b := b,
root := root,
d := d,
ATLAS := ATLAS,
display := display
);
end );
#############################################################################
##
#M GaloisMat( <mat> ) . . . . . . . . . . . . . for a matrix of cyclotomics
##
## Note that we must not mix up plain lists and class functions, since
## these objects lie in different families.
##
InstallMethod( GaloisMat,
"for a matrix of cyclotomics",
[ IsMatrix and IsCyclotomicCollColl ],
function( mat )
local warned, # at most one warning will be printed if `mat' grows
ncha, # number of rows in `mat'
nccl, # number of columns in `mat'
galoisfams, # list with information about conjugate characters:
# 1 means rational character,
# -1 means character with undefs,
# 0 means dependent irrational character,
# [ .. ] means leading irrational character.
n, # conductor of irrationalities in `mat'
genexp, # generators of prime residues mod `n'
generators, # permutation of `mat' induced by elements in `genexp'
X, # one row of `mat'
i, j, # loop over rows of `mat'
irrats, # set of irrationalities in `X'
fusion, # positions of `irrats' in `X'
k, l, m, # loop variables
generator,
irratsimages,
automs,
family,
orders,
exp,
image,
oldorder,
cosets,
auto,
conj,
blocklength,
innerlength;
warned := false;
ncha := Length( mat );
mat := ShallowCopy( mat );
# Step 1:
# Find the minimal cyclotomic field $Q_n$ containing all irrational
# entries of <mat>.
galoisfams:= [];
n:= 1;
for i in [ 1 .. ncha ] do
if ForAny( mat[i], IsUnknown ) then
galoisfams[i]:= -1;
elif ForAll( mat[i], IsRat ) then
galoisfams[i]:= 1;
else
n:= LcmInt( n, Conductor( mat[i] ) );
fi;
od;
# Step 2:
# Compute generators for Aut( Q(n):Q ), that is,
# compute generators for (Z/nZ)* and convert them to exponents.
if 1 < n then
# Each Galois automorphism induces a permutation of rows.
# Compute the permutations for each generating automorphism.
# (Initialize with the identity permutation.)
genexp:= Flat( GeneratorsPrimeResidues( n ).generators );
generators:= List( genexp, x -> [ 1 .. ncha ] );
else
# The matrix is rational.
generators:= [];
fi;
# Step 3:
# For each character X, find and complete the family of conjugates.
if 0 < ncha then
nccl:= Length( mat[1] );
fi;
for i in [ 1 .. ncha ] do
if not IsBound( galoisfams[i] ) then
# We have found an independent character that is not integral
# and contains no unknowns.
X:= mat[i];
for j in [ i+1 .. ncha ] do
if mat[j] = X then
galoisfams[j]:= Unknown();
InfoWarning( 1, "GaloisMat: row ", i, " is equal to row ", j );
fi;
od;
# Initialize the list of distinct irrationalities of `X'
# (not ordered).
# Each Galois automorphism induces a permutation of that list
# rather than of the entries of `X' themselves.
irrats:= [];
# Store how to distribute the entries of irrats to `X'.
fusion:= [];
for j in [ 1 .. nccl ] do
if IsCyc( X[j] ) and not IsRat( X[j] ) then
k:= 1;
while k <= Length( irrats ) and X[j] <> irrats[k] do
k:= k+1;
od;
if k > Length( irrats ) then
# This is the first appearance of `X[j]' in `X'.
irrats[k]:= X[j];
fi;
# Store the position in `irrats'.
fusion[j]:= k;
else
fusion[j]:= 0;
fi;
od;
irratsimages:= [ irrats ];
automs:= [ 1 ];
family:= [ i ]; # indices of family members (same ordering as automs)
orders:= []; # orders[k] will be the order of the k-th generator
for j in [ 1 .. Length( genexp ) ] do
exp:= genexp[j];
image:= List( irrats, x -> GaloisCyc( x, exp ) );
oldorder:= Length( automs ); # group order up to now
cosets:= [];
orders[j]:= 1;
while not image in irratsimages do
orders[j]:= orders[j] + 1;
for k in [ 1 .. oldorder ] do
auto:= ( automs[k] * exp ) mod n;
image:= List( irrats, x -> GaloisCyc( x, auto ) );
conj:= []; # the conjugate character
for l in [ 1 .. nccl ] do
if fusion[l] = 0 then
conj[l]:= X[l];
else
conj[l]:= image[ fusion[l] ];
fi;
od;
l:= Position( mat, conj, i );
if l <> fail then
galoisfams[l]:= 0;
Add( family, l );
for m in [ l+1 .. ncha ] do
if mat[m] = conj then galoisfams[m]:= 0; fi;
od;
else
if not warned and 500 < Length( mat ) then
Info( InfoWarning, 1,
"GaloisMat: completion of <mat> will have",
" more than 500 rows" );
warned:= true;
fi;
Add( mat, conj );
galoisfams[ Length( mat ) ]:= 0;
Add( family, Length( mat ) );
fi;
Add( automs, auto );
Add( cosets, image );
od;
exp:= exp * genexp[j];
image:= List( irrats, x -> GaloisCyc( x, exp ) );
od;
irratsimages:= Concatenation( irratsimages, cosets );
od;
# Store the conjugates and automorphisms.
galoisfams[i]:= [ family, automs ];
# Now the length of `family' is the size of the Galois family of the
# row `X'.
# Compute the permutation operation of the generators on the set of
# rows in `family'.
blocklength:= 1;
for j in [ 1 .. Length( genexp ) ] do
innerlength:= blocklength;
blocklength:= blocklength * orders[j];
generator:= [ 1 .. blocklength ];
# `genexp[j]' maps the conjugates under the action of
# $\langle `genexp[1]', \ldots, `genexp[j-1]' \rangle$
# (a set of length `innerlength') as one block to their images,
# preserving the order of succession.
for l in [ 1 .. blocklength - innerlength ] do
generator[l]:= l + innerlength;
od;
# Compute how a power of `genexp[j]' maps back to the block.
exp:= ( genexp[j] ^ orders[j] ) mod n;
for l in [ 1 .. innerlength ] do
generator[ l + blocklength - innerlength ]:=
Position( irratsimages, List( irrats,
x -> GaloisCyc( x, exp*automs[l] ) ) );
od;
# Transfer this operation to the cosets under the operation of
# $\langle `genexp[j+1]',\ldots,`genexp[Length(genexp)]' \rangle$,
# and transfer this to <mat> via `family'.
for k in [ 0 .. Length( family ) / blocklength - 1 ] do
for l in [ 1 .. blocklength ] do
generators[j][ family[ l + k*blocklength ] ]:=
family[ generator[ l ] + k*blocklength ];
od;
od;
od;
fi;
od;
# Convert the `generators' component to a set of generating permutations.
generators:= Set( List( generators, PermList ) );
RemoveSet( generators, () ); # `generators' arose from `PermList'
if IsEmpty( generators ) then
generators:= [ () ]; # `generators' arose from `PermList'
fi;
# Return the result.
return rec(
mat := mat,
galoisfams := galoisfams,
generators := generators
);
end );
#############################################################################
##
#M RationalizedMat( <mat> ) . . . . . . list of rationalized rows of <mat>
##
InstallMethod( RationalizedMat,
"for a matrix",
[ IsMatrix ],
function( mat )
local i, rationalizedmat, rationalfams;
rationalfams:= GaloisMat( mat );
mat:= rationalfams.mat;
rationalfams:= rationalfams.galoisfams;
rationalizedmat:= [];
for i in [ 1 .. Length( mat ) ] do
if rationalfams[i] = 1 or rationalfams[i] = -1 then
# The row is rational or contains unknowns.
Add( rationalizedmat, mat[i] );
elif IsList( rationalfams[i] ) then
# The row is a leading character of a family.
Add( rationalizedmat, Sum( mat{ rationalfams[i][1] } ) );
fi;
od;
return rationalizedmat;
end );
InstallOtherMethod( RationalizedMat,
"for an empty list",
[ IsList and IsEmpty ],
empty -> [] );
#############################################################################
##
#M IsGeneratorsOfMagmaWithInverses( <cycs> ) . . for a coll. of cyclotomics
##
## Disallow to create groups of cyclotomics because the `\^' operator has
## a meaning for cyclotomics that makes it not compatible with that for
## groups:
## `E(4)^-1' is the *inverse* of `E(4)',
## but in the group generated by `E(4)',
## {\GAP} would use this term for the *conjugate* of `E(4)' by `-1'.
##
InstallMethod( IsGeneratorsOfMagmaWithInverses,
"for a collection of cyclotomics (return false)",
[ IsCyclotomicCollection ],
SUM_FLAGS, # override everything else
function( gens )
Info( InfoWarning, 1,
"no groups of cyclotomics allowed because of incompatible ^" );
return false;
end );
#############################################################################
##
## Functions for factorizing polynomials over fields of cyclotomics
## (For arbitrary number fields, the explicit embedding of the field of
## rationals may cause that the functions below do not work.)
##
#############################################################################
##
#M FactorsSquarefree( <R>, <cycpol>, <opt> )
##
## The function uses Algorithm~3.6.4 in~\cite{Coh93}.
## (The record <opt> is ignored.)
##
InstallMethod( FactorsSquarefree,
"for a polynomial over a field of cyclotomics",
IsCollsElmsX,
[ IsAbelianNumberFieldPolynomialRing, IsUnivariatePolynomial, IsRecord ],
function( R, U, opt )
local coeffring, theta, xind, yind, x, y, T, coeffs, G, powers, pow, i,
B, c, val, j, k, N, factors;
if IsRationalsPolynomialRing( R ) then
TryNextMethod();
fi;
# Let $K = \Q(\theta)$ be a number field,
# $T \in \Q[X]$ the minimal monic polynomial of $\theta$.
# Let $U(X) be a monic squarefree polynomial in $K[x]$.
coeffring:= CoefficientsRing( R );
theta:= PrimitiveElement( coeffring );
xind:= IndeterminateNumberOfUnivariateRationalFunction( U );
if xind = 1 then
yind:= 2;
else
yind:= 1;
fi;
x:= Indeterminate( Rationals, xind );
y:= Indeterminate( Rationals, yind );
# Let $U(X) = \sum_{i=0}^m u_i X^i$ and write $u_i = g_i(\theta)$
# for some polynomial $g_i \in \Q[X]$.
# Set $G(X,Y) = \sum_{i=0}^m g_i(Y) X^i \in \Q[X,Y]$.
coeffs:= CoefficientsOfUnivariatePolynomial( U );
if ForAll( coeffs, IsRat ) then
G:= U;
else
powers:= [ 1 ];
pow:= 1;
for i in [ 2 .. DegreeOverPrimeField( coeffring ) ] do
pow:= pow * theta;
powers[i]:= pow;
od;
B:= Basis( coeffring, powers );
G:= Zero( U );
for i in [ 1 .. Length( coeffs ) ] do
if IsRat( coeffs[i] ) then
G:= G + coeffs[i] * x^i;
else
c:= Coefficients( B, coeffs[i] );
val:= c[1];
for j in [ 2 .. Length( c ) ] do
val:= val + c[j] * y^(j-1);
od;
G:= G + val * x^i;
fi;
od;
fi;
# Set $k = 0$.
k:= 0;
# Compute $N(X) = R_Y( T(Y), G(X - kY,Y) )$
# where $R_Y$ denotes the resultant with respect to the variable $Y$.
# If $N(X)$ is not squarefree, increase $k$.
T:= MinimalPolynomial( Rationals, theta, yind );
repeat
k:= k+1;
N:= Resultant( T, Value( G, [ x, y ], [ x-k*y, y ] ), y );
until DegreeOfUnivariateLaurentPolynomial( Gcd( N, Derivative(N) ) ) = 0;
# Let $N = \prod_{i=1}^g N_i$ be a factorization of $N$.
# For $1 \leq i \leq g$, set $A_i(X) = \gcd( U(X), N_i(X + k \theta) )$.
# The desired factorization of $U(X)$ is $\prod_{i=1}^g A_i$.
factors:= List( Factors( PolynomialRing( Rationals, [ xind ] ), N ),
f -> Gcd( R, U, Value( f, x + k*theta ) ) );
return Filtered( factors,
x -> DegreeOfUnivariateLaurentPolynomial( x ) <> 0 );
end );
#############################################################################
##
#M Factors( <R>, <cycpol> ) . for a polynomial over a field of cyclotomics
##
InstallMethod( Factors,
"for a polynomial over a field of cyclotomics",
IsCollsElms,
[ IsAbelianNumberFieldPolynomialRing, IsUnivariatePolynomial ],
function( R, pol )
local irrfacs, coeffring, i, factors, ind, coeffs, val,
lc, der, g, factor, q;
if IsRationalsPolynomialRing( R ) then
TryNextMethod();
fi;
# Check whether the desired factorization is already stored.
irrfacs:= IrrFacsPol( pol );
coeffring:= CoefficientsRing( R );
i:= PositionProperty( irrfacs, pair -> pair[1] = coeffring );
if i <> fail then
return ShallowCopy(irrfacs[i][2]);
fi;
# Handle (at most) linear polynomials.
if DegreeOfLaurentPolynomial( pol ) < 2 then
factors:= [ pol ];
StoreFactorsPol( coeffring, pol, factors );
return factors;
fi;
# Compute the valuation, split off the indeterminate as a zero.
ind:= IndeterminateNumberOfLaurentPolynomial( pol );
coeffs:= CoefficientsOfLaurentPolynomial( pol );
val:= coeffs[2];
coeffs:= coeffs[1];
factors:= ListWithIdenticalEntries( val,
IndeterminateOfUnivariateRationalFunction( pol ) );
if Length( coeffs ) = 1 then
# The polynomial is a power of the indeterminate.
factors[1]:= coeffs[1] * factors[1];
StoreFactorsPol( coeffring, pol, factors );
return factors;
elif Length( coeffs ) = 2 then
# The polynomial is a linear polynomial times a power of the indet.
factors[1]:= coeffs[2] * factors[1];
factors[ val+1 ]:= LaurentPolynomialByExtRepNC( FamilyObj( pol ),
[ coeffs[1] / coeffs[2], 1 ], 0, ind );
StoreFactorsPol( coeffring, pol, factors );
return factors;
fi;
# We really have to compute the factorization.
# First split the polynomial into leading coefficient and monic part.
lc:= coeffs[ Length( coeffs ) ];
if not IsOne( lc ) then
coeffs:= coeffs / lc;
fi;
if val = 0 then
pol:= pol / lc;
else
pol:= LaurentPolynomialByExtRepNC( FamilyObj( pol ), coeffs, 0, ind );
fi;
# Now compute the quotient of `pol' by the g.c.d. with its derivative,
# and factorize the squarefree part.
der:= Derivative( pol );
g:= Gcd( R, pol, der );
if DegreeOfLaurentPolynomial( g ) = 0 then
Append( factors, FactorsSquarefree( R, pol, rec() ) );
else
for factor in FactorsSquarefree( R, Quotient( R, pol, g ), rec() ) do
Add( factors, factor );
q:= Quotient( R, g, factor );
while q <> fail do
Add( factors, factor );
g:= q;
q:= Quotient( R, g, factor );
od;
od;
fi;
# Sort the factorization.
Sort( factors );
# Adjust the first factor by the constant term.
Assert( 2, DegreeOfLaurentPolynomial(g) = 0 );
if not IsOne( g ) then
lc:= g * lc;
fi;
if not IsOne( lc ) then
factors[1]:= lc * factors[1];
fi;
# Store the factorization.
Assert( 2, Product( factors ) = pol );
StoreFactorsPol( coeffring, pol, factors );
# Return the factorization.
return factors;
end );
#############################################################################
##
#F DenominatorCyc( <cyc> )
##
InstallGlobalFunction( DenominatorCyc, function( cyc )
if IsRat( cyc ) then
return DenominatorRat( cyc );
else
return Lcm( List( COEFFS_CYC( cyc ), DenominatorRat ) );
fi;
end );
#############################################################################
#
# The following code is meant to allow comparisons between some select
# cyclotomics domains. So you can do things like
# Integers = GaussianRationals;
# IsSubset(Rationals, PositiveIntegers);
# without GAP running into an error. However, this code currently only
# works for a small fixed set of domains. It will not, for example, work
# with cyclotomic field extensions, or manually defined rings over the
# integers such as ClosureRing(1, E(3)).
# It would be nice if we eventually, were able to compare and intersect
# such objects, too.
#
# The following are three lists of equal length. At position i of the first
# list is a certain known cyclotomic (semi)ring. At position i of the second
# list is the corresponding filter. At position i of the third list is a
# finite list which can act as a "proxy" for the corresponding semiring when
# it comes to comparing it for inclusion resp. computing intersections with
# any of the other semirings.
# To simplify the code using these lists, the final entry of each list is
# fail, resp. the trivial filter IsObject.
BindGlobal("CompareCyclotomicCollectionHelper_Semirings", [
PositiveIntegers, NonnegativeIntegers,
Integers, GaussianIntegers,
Rationals, GaussianRationals,
Cyclotomics, fail
] );
BindGlobal("CompareCyclotomicCollectionHelper_Filters", [
IsPositiveIntegers, IsNonnegativeIntegers,
IsIntegers, IsGaussianIntegers,
IsRationals, IsGaussianRationals,
IsWholeFamily, IsObject
] );
BindGlobal("CompareCyclotomicCollectionHelper_Proxies", [
[ 1 ], [ 0, 1 ],
[ -1, 0, 1 ], [ -1, 0, 1, E(4) ],
[ -1, 0, 1/2, 1 ], [ -1, 0, 1, 1/2, E(4) ],
[ -1, 0, 1, 1/2, E(4), E(9) ], fail
] );
BindGlobal("CompareCyclotomicCollectionHelper", function (A, B)
local a, b;
a := PositionProperty( CompareCyclotomicCollectionHelper_Filters, p -> p(A) );
b := PositionProperty( CompareCyclotomicCollectionHelper_Filters, p -> p(B) );
return CompareCyclotomicCollectionHelper_Proxies{[a,b]};
end );
InstallMethod( \=, "for certain cyclotomic semirings",
[IsCyclotomicCollection and IsSemiringWithOne,
IsCyclotomicCollection and IsSemiringWithOne],
function (A,B)
local ab;
ab := CompareCyclotomicCollectionHelper(A, B);
# It suffices if we "recognize" at least on of A and B; but if we
# recognize neither, we give up.
if ab = [fail,fail] then TryNextMethod(); fi;
return ab[1] = ab[2];
end );
InstallMethod( IsSubset, "for certain cyclotomic semirings",
[IsCyclotomicCollection and IsSemiringWithOne,
IsCyclotomicCollection and IsSemiringWithOne],
function (A,B)
local ab;
ab := CompareCyclotomicCollectionHelper(A, B);
# Verify that we recognized both A and B, otherwise give up.
if fail in ab then TryNextMethod(); fi;
return IsSubset(ab[1], ab[2]);
end );
InstallMethod( Intersection2, "for certain cyclotomic semirings",
[IsCyclotomicCollection and IsSemiringWithOne,
IsCyclotomicCollection and IsSemiringWithOne],
function (A,B)
local ab, i;
ab := CompareCyclotomicCollectionHelper(A, B);
# Verify that we recognized both A and B, otherwise give up.
if fail in ab then TryNextMethod(); fi;
i := Position( CompareCyclotomicCollectionHelper_Proxies, Intersection2( ab[1], ab[2] ) );
return CompareCyclotomicCollectionHelper_Semirings[i];
end );
#############################################################################
##
#E
|