/usr/share/gap/lib/dt.g is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 | #############################################################################
##
#W dt.g GAP library Wolfgang Merkwitz
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file initializes Deep Thought.
##
## Deep Thought deals with trees. A tree < tree > is a concatenation of
## several nodes where each node is a 5-tuple of immediate integers. If
## < tree > is an atom it contains only one node, thus it is itself a
## 5-tuple. If < tree > is not an atom we obtain its list representation by
##
## < tree > := topnode(<tree>) concat left(<tree>) concat right(<tree>) .
##
## Let us denote the i-th node of <tree> by (<tree>, i) and the tree rooted
## at (<tree>, i) by tree(<tree>, i). Let <a> be tree(<tree>, i)
## The first entry of (<tree>, i) is pos(a),
## and the second entry is num(a). The third entry of (<tree>, i) gives a
## mark.(<tree>, i)[3] = 1 means that (<tree>, i) is marked,
## (<tree>, i)[3] = 0 means that (<tree>, i) is not marked. The fourth entry
## of (<tree>, i) contains the number of knodes of tree(<tree>, i). The
## fifth entry of (<tree>, i) finally contains a boundary for
## pos( tree(<tree>, i) ). (<tree>, i)[5] <= 0 means that
## pos( tree(<tree>, i) ) is unbounded. If tree(<tree>, i) is an atom we
## already know that pos( tree(<tree>, i) ) is unbound. Thus we then can
## use the fifth component of (<tree>, i) to store the side. In this case
## (<tree>, i)[5] = -1 means that tree(<tree>, i) is an atom from the
## right hand word, and (<tree>, i)[5] = -2 means that tree(<tree>, i) is
## an atom from the left hand word.
##
## A second important data structure deep thought deals with is a deep
## thought monomial. A deep thought monomial g_<tree> is a product of
## binomial coefficients with a coefficient c. Deep thought monomials
## are represented in this implementation by formula
## vectors, which are lists of integers. The first entry of a formula
## vector is 0, to distinguish formula vectors from trees. The second
## entry is the coefficient c, and the third and fourth entries are
## num( left(tree) ) and num( right(tree) ). The remaining part of the
## formula vector is a concatenation of pairs of integers. A pair (i, j)
## with i > 0 represents binomial(x_i, j). A pair (0, j) represents
## binomial(y_gen, j) when word*gen^power is calculated.
##
## Finally deep thought has to deal with pseudorepresentatives. A
## pseudorepresentative <a> is stored in list of length 4. The first entry
## stores left( <a> ), the second entry contains right( <a> ), the third
## entry contains num( <a> ) and the last entry finally gives a boundary
## for pos( <b> ) for all trees <b> which are represented by <a>.
##
#############################################################################
##
#F Mkavec(<pr>) . . . . . . . . . . . . . . . . . . compute the avec for <pr>
##
## 'Mkavec' returns the avec for the pc-presentation <pr>.
##
BindGlobal( "Mkavec", function(pr)
local i,j,vec;
vec := [];
vec[Length(pr)] := 1;
for i in [Length(pr)-1,Length(pr)-2..1] do
j := Length(pr);
while j >= 1 do
if j = vec[i+1] then
vec[i] := j;
j := 0;
else
j := j-1;
if j < i and IsBound(pr[i][j]) then
vec[i] := j+1;
j := 0;
fi;
if j > i and IsBound(pr[j][i]) then
vec[i] := j+1;
j := 0;
fi;
fi;
od;
od;
for i in [1..Length(pr)] do
if vec[i] < i+1 then
vec[i] := i+1;
fi;
od;
return vec;
end );
#############################################################################
##
#F IsEqualMonomial(<vec1>, <vec2>) . . . . . . . . test if <vec1> and <vec2>
## represent the same monomial
##
## 'IsEqualMonomial' returns "true" if <vec1> and <vec2> represent the same
## monomial, and "false" otherwise.
BindGlobal( "IsEqualMonomial", function(vec1,vec2)
local i,j;
if Length(vec1) <> Length(vec2) then
return false;
fi;
# Since the first four entries of a formula vector doesn't contain
# any information about the monomial it represents, it suffices to
# compare the remaining entries.
for i in [5..Length(vec1)] do
if not vec1[i] = vec2[i] then
return false;
fi;
od;
return true;
end );
#############################################################################
##
#F Ordne2(<vector>) . . . . . . . . . . . . . . . . . sort a formula vector
##
## 'Ordne2' sorts the pairs of integers in the formula vector <vector>
## representing the binomial coefficients such that
## <vector>[5] < <vector>[7] < .. < vector[m-1], where m is the length
## of <vector>. This is done for a easier comparison of formula vectors.
##
BindGlobal( "Ordne2", function(vector)
local i,list1,list2;
list1 := vector{[5,7..Length(vector)-1]};
list2 := vector{[6,8..Length(vector)]};
SortParallel(list1,list2);
for i in [1..Length(list1)] do
vector[ 2*i+3 ] := list1[i];
vector[ 2*i+4 ] := list2[i];
od;
end );
#############################################################################
##
#F Fueghinzu(<evlist>,<evlistvec>,<formvec>,<pr>) . . . add a formula vector
## to a list
##
## 'Fueghinzu' adds the formula vector <formvec> to the list <evlist>,
## computes the corresponding coefficient vector and adds the latter to
## the list <evlistvec>.
##
BindGlobal( "Fueghinzu", function(evlist, evlistvec, formvec, pr)
local i,j,k;
Add(evlist, formvec);
k := [];
for i in [1..Length(pr)] do
k[i] := 0;
od;
j := pr[ formvec[3] ][ formvec[4] ];
# the coefficient that the monomial represented by <formvec> has
# in each polynomial f_l is obtained by multiplying <formvec>[2]
# with the exponent which the group generator g_l has in the
# in the word representing the commutator of g_(formvec[3]) and
# g_(formvec[4]) in the presentation <pr>.
for i in [3,5..Length(j)-1] do
k[ j[i] ] := formvec[2]*j[i+1];
od;
Add(evlistvec, k);
end );
#############################################################################
##
#F Dt_add( <pol>, <pols>, <pr> )
##
## Dt_add adds the deep thought monomial <pol> to the list of polynomials
## <pols>, such that afterwards <pols> represents a simplified polynomial.
##
BindGlobal( "Dt_add", function(pol, pols, pr)
local i,j,k,rel, pos, flag;
# first sort the deep thought monomial <pol> to compare it with the
# monomials contained in <pols>.
Ordne2(pol);
# then look which component of <pols> contains <pol> in case that
# <pol> is contained in <pols>.
pos := DT_evaluation(pol);
if not IsBound( pols[pos] ) then
# create the component <pols>[<pos>] and add <pol> to it
pols[pos] := rec( evlist := [], evlistvec := [] );
Fueghinzu( pols[pos].evlist, pols[pos].evlistvec, pol, pr );
return;
fi;
flag := 0;
for k in [1..Length( pols[pos].evlist ) ] do
# look for <pol> in <pols>[<pos>] and if <pol> is contained in
# <pols>[<pos>] then adjust the corresponding coefficient vector.
if IsEqualMonomial( pol, pols[pos].evlist[k] ) then
rel := pr[ pol[3] ][ pol[4] ];
for j in [3,5..Length(rel)-1] do
pols[pos].evlistvec[k][ rel[j] ] :=
pols[pos].evlistvec[k][ rel[j] ] + pol[2]*rel[j+1];
od;
flag := 1;
break;
fi;
od;
if flag = 0 then
# <pol> is not contained in <pols>[<pos>] so add it to <pols>[<pos>]
Fueghinzu(pols[pos].evlist, pols[pos].evlistvec, pol, pr);
fi;
end );
#############################################################################
##
#F Konvertiere(<sortedpols>)
##
## 'Konvertiere' converts the list of formula vectors <sortedpols>. Before
## applying <Konvertiere> <sortedpols> is a list of records with the
## components <evlist> and <evlistvec> where <evlist> contains deep thought
## monomials and <evlistvec> contains the corresponding coefficient vectors.
## <Konvertiere> merges the <evlist>-compondents of the records contained
## in <sortedpols> into one component <evlist> and the <evlistvec>-coponents
## into one component <evlistvec>.
##
BindGlobal( "Konvertiere", function(sortedpols)
local k,res;
if Length(sortedpols) = 0 then
return 0;
fi;
res := rec(evlist := [],
evlistvec :=[]);
for k in sortedpols do
Append(res.evlist, k.evlist);
Append(res.evlistvec, k.evlistvec);
od;
return res;
end );
#############################################################################
##
#F Konvert2(<evlistvec>) . . . . . . . . . . . . convert coefficient vectors
##
## 'Konvert2' converts the coefficient vectors in the list <evlistvec>.
## Before applying <Konvert2> an entry <evlistvec>[i][j] = k means that
## the deep thought monomial <evlist>[i] occurs in the polynomial f_j with
## coefficient k. After applying <Konvert2> a pair [j, k] occuring in
## <eclistvec>[i] means that <evlist>[i] occurs in f_j with coefficient k.
##
BindGlobal( "Konvert2", function(evlistvec, pr)
local i,j,res;
for i in [1..Length(evlistvec)] do
res := [];
for j in [1..Length(evlistvec[i])] do
if evlistvec[i][j] <> 0 then
Append(res, [j, evlistvec[i][j] ]);
fi;
od;
evlistvec[i] := res;
od;
end );
#############################################################################
##
#F CalcOrder( <word>, <dtrws> )
##
## CalcOrder computes the order of the word <word> in the group determined
## by the rewriting system <dtrws>
##
CalcOrder := function(word, dtrws)
local gcd, m, pcp;
if Length(word) = 0 then
return 1;
fi;
if not IsBound(dtrws![PC_EXPONENTS][ word[1] ]) then
return 0;
fi;
gcd := Gcd(dtrws![PC_EXPONENTS][ word[1] ], word[2]);
m := QuoInt( dtrws![PC_EXPONENTS][ word[1] ], gcd);
gcd := DTPower(word, m, dtrws);
return m*CalcOrder(gcd, dtrws);
end;
MakeReadOnlyGlobal( "CalcOrder" );
#############################################################################
##
#F CompleteOrdersOfRws( <dtrws> )
##
## CompleteOrdersOfRws computes the orders of the generators of the
## deep thought rewriting system <dtrws>
##
BindGlobal( "CompleteOrdersOfRws", function(dtrws)
local i,j;
dtrws![PC_ORDERS] := [];
for i in [dtrws![PC_NUMBER_OF_GENERATORS],dtrws![PC_NUMBER_OF_GENERATORS]-1..1]
do
# Print("determining order of generator ",i,"\n");
if not IsBound( dtrws![PC_EXPONENTS][i] ) then
j := 0;
elif not IsBound( dtrws![PC_POWERS][i] ) then
j := dtrws![PC_EXPONENTS][i];
else
j := dtrws![PC_EXPONENTS][i]*CalcOrder(dtrws![PC_POWERS][i], dtrws);
fi;
if j <> 0 then
dtrws![PC_ORDERS][i] := j;
fi;
od;
end );
#############################################################################
##
#F Redkomprimiere( <list> )
##
## Redkomprimiere removes all empty entries from <list>
##
BindGlobal( "Redkomprimiere", function( list )
local skip, i;
skip := 0;
i := 1;
while i <= Length(list) do
while not IsBound(list[i]) do
skip := skip + 1;
i := i+1;
od;
list[i-skip] := list[i];
i := i+1;
od;
for i in [Length(list)-skip+1..Length(list)] do
Unbind(list[i]);
od;
end );
#############################################################################
##
#F ReduceCoefficientsOfRws( <dtrws> )
##
## ReduceCoefficientsOfRws reduces all coefficients of each deep thought
## polynomial f_l modulo the order of the l-th generator.
##
BindGlobal( "ReduceCoefficientsOfRws", function(dtrws)
local i,j,k,l, pseudoreps;
pseudoreps := dtrws![PC_DEEP_THOUGHT_POLS];
i := 1;
while IsRecord(pseudoreps[i]) do
for j in [1..Length(pseudoreps[i].evlistvec)] do
for k in [2,4..Length(pseudoreps[i].evlistvec[j])] do
if IsBound( dtrws![PC_ORDERS][ pseudoreps[i].evlistvec[j][k-1] ] )
and (pseudoreps[i].evlistvec[j][k] > 0 or
pseudoreps[i].evlistvec[j][k] <
-dtrws![PC_ORDERS][ pseudoreps[i].evlistvec[j][k-1] ]/2)
then
pseudoreps[i].evlistvec[j][k] :=
pseudoreps[i].evlistvec[j][k] mod
dtrws![PC_ORDERS][ pseudoreps[i].evlistvec[j][k-1] ];
fi;
od;
Compress( pseudoreps[i].evlistvec[j] );
if Length( pseudoreps[i].evlistvec[j] ) = 0 then
Unbind( pseudoreps[i].evlistvec[j] );
Unbind( pseudoreps[i].evlist[j] );
fi;
od;
Redkomprimiere( pseudoreps[i].evlistvec );
Redkomprimiere( pseudoreps[i].evlist );
i := i+1;
od;
end );
#############################################################################
##
## GetMax( <tree>, <number>, <pr> )
##
## GetMax returns the maximal value for pos(tree) if num(tree) = <number>.
##
BindGlobal( "GetMax", function(tree, number, pr)
local rel, max, position;
if Length(tree) = 5 then
return tree[5];
else
if Length(tree) = 4 then
if Length(tree[1]) = 4 then
if Length(tree[2]) = 4 then
rel := pr[ tree[1][3] ][ tree[2][3] ];
else
rel := pr[ tree[1][3] ][ tree[2][2] ];
fi;
else
if Length(tree[2]) = 4 then
rel := pr[ tree[1][2] ][ tree[2][3] ];
else
rel := pr[ tree[1][2] ][ tree[2][2] ];
fi;
fi;
else
rel := pr[ tree[7] ][ tree[ 5*(tree[9]+1)+2 ] ];
fi;
position := Position(rel, number) + 1;
if rel[position] < 0 or rel[position] > 100 then
return 0;
else
return rel[position];
fi;
fi;
end );
#############################################################################
##
#F GetNumRight( <tree> )
##
## GetNumRight returns num( right( tree ) ).
##
BindGlobal( "GetNumRight", function(tree)
if Length(tree) <> 4 then
return tree[ 5*(tree[9]+1)+2 ];
fi;
if Length(tree[2]) <> 4 then
return tree[2][2];
fi;
return tree[2][3];
end );
###########################################################################
##
#F Calcrepsn(<n>, <avec>, <pr>, <max>
##
## 'Calcrepsn' returns the polynomials f_{n1}1,..,f_{nm} which have to be
## evaluated when computing word*g_n^(y_n). Here m denotes the composition
## length of the nilpotent group G given by the presentation <pr>. This is
## done by first calculating a complete sytem of <n>-pseudorepresentatives
## for the presentation <pr> with bondary <max>. Then this sytem is used
## to get the required polynomials
##
## If g_n is in the center of the group determined by the presentation <pr>
## then there don't exist any representatives exept for the atoms and
## finally 0 will be returned.
##
BindGlobal( "Calcrepsn", function(n, avec, pr, max)
local i,j,k,l, # loop variables
x,y,z,a,b,c, # trees
reps, # list of pseudorepresentatives
pols, # stores the dt polynomials
boundary, # boundary for loop
hilf,
pos,
start,
max1, max2; # maximal values for pos(x) and pos(y)
reps:=[];
pols := [];
for i in [n..Length(pr)] do
# initialize reps[i] to contain representatives for the atoms
if i <> n then
reps[i] := [ [1,i,0,1,-2] ];
else
reps[i] := [ [1,i,0,1,-1] ];
fi;
od;
# first compute the pseudorepresentatives which are also represenatives
for i in [n..max] do
if i < avec[n] then
boundary := i-1;
else
boundary := avec[n]-1;
fi;
# to get the representatives of the non-atoms loop over j and k
# and determine the representatives for all trees <z> with
# num(<z>) = i, num( left(<z>) ) = j, num( right(<z>) ) = k
# Since for all 1 <= l <= m the group generated by
# {g_(avec[l]),..,g_m} is in the center of the the group generated
# by {g_l,..,g_m} it suffices to loop over all
# j <= min(i-1, avec[n]-1). Also it is sufficient only to loop over
# k while avec[k] is bigger than j.
for j in [n+1..boundary] do
k := n;
while k <= j-1 and avec[k] > j do
if IsBound(pr[j][k]) and pr[j][k][3] = i then
if k = n then
start := 1;
else
start := 2;
fi;
for x in [start..Length(reps[j])] do
for y in reps[k] do
if Length(reps[j][x]) = 5
or k >= reps[j][x][ 5*(reps[j][x][9]+1)+2 ]
then
max1 := GetMax(reps[j][x], j, pr);
max2 := GetMax(y, k, pr);
z := [1,i,0, reps[j][x][4]+y[4]+1, 0];
Append(z,reps[j][x]);
Append(z,y);
z[7] := j;
z[10] := max1;
z[ 5*(z[9]+1)+2 ] := k;
z[ 5*(z[9]+1)+5 ] := max2;
UnmarkTree(z);
# now get all representatives <z'> with
# left(<z'>) = left(<z>) ( = <x> ) and
# right(<z'>)=right(<z>) ( = <y> ) and
# num(<z'>) = o where o is an integer
# contained in pr[j][k].
FindNewReps(z, reps, pr, avec[n]-1);
fi;
od;
od;
fi;
k := k+1;
od;
od;
od;
# now get the "real" pseudorepresentatives
for i in [max+1..Length(pr)] do
if i < avec[n] then
boundary := i-1;
else
boundary := avec[n]-1;
fi;
for j in [n+1..boundary] do
k := n;
while k <= j-1 and avec[k] > j do
if IsBound(pr[j][k]) and pr[j][k][3] = i then
if k = n then
start := 1;
else
start := 2;
fi;
for x in [start..Length(reps[j])] do
for y in reps[k] do
if Length(reps[j][x]) = 5
or k >= GetNumRight(reps[j][x]) then
# since reps[j] and reps[k] may contain
# pseudorepresentatives which are trees
# as well as "real" pseudorepresentatives
# it is necessary to take several cases into
# consideration.
max1 := GetMax(reps[j][x], j, pr);
max2 := GetMax(y, k, pr);
if Length(reps[j][x]) <> 4 then
if reps[j][x][2] <> j then
# we have to ensure that
# num( <reps>[j][x] ) = j when we
# construct a new pseudorepresentative
# out of it.
a := ShallowCopy(reps[j][x]);
a[2] := j;
else
a := reps[j][x];
fi;
a[5] := max1;
else
if reps[j][x][3] <> j then
# we have to ensure that
# num( <reps>[j][x] ) = j when we
# construct a new pseudorepresentative
# out of it.
a := ShallowCopy(reps[j][x]);
a[3] := j;
else
a := reps[j][x];
fi;
a[4] := max1;
fi;
if Length(y) <> 4 then
if y[2] <> k then
# we have to ensure that num(<y>) = k
# when we construct a new
# pseudorepresentative out of it.
b := ShallowCopy(y);
b[2] := k;
else
b := y;
fi;
b[5] := max2;
else
if y[3] <> k then
# we have to ensure that num(<y>) = k
# when we construct a new
# pseudorepresentative out of it.
b := ShallowCopy(y);
b[3] := k;
else
b := y;
fi;
b[4] := max2;
fi;
# now finally construct the
# pseudorepresentative and add it to
# reps
z := [a, b, i, 0];
if i >= avec[n] then
Add(reps[i], z);
else
l := 3;
while l <= Length(pr[j][k]) and
pr[j][k][l] < avec[n] do
Add(reps[ pr[j][k][l] ], z);
l := l+2;
od;
fi;
fi;
od;
od;
fi;
k := k+1;
od;
od;
od;
# now use the pseudorepresentatives to get the desired polynomials
for i in [n..Length(pr)] do
for j in [2..Length(reps[i])] do
# the first case: reps[i][j] is a "real" pseudorepresentative
if Length(reps[i][j]) = 4 then
if reps[i][j][3] = i then
GetPols(reps[i][j], pr, pols);
fi;
# the second case: reps[i][j] is a tree
elif reps[i][j][1] <> 0 then
if reps[i][j][2] = i then
UnmarkTree(reps[i][j]);
hilf := MakeFormulaVector(reps[i][j], pr);
Dt_add(hilf, pols, pr);
fi;
# the third case: reps[i][j] is a deep thought monomial
else
Dt_add(reps[i][j], pols, pr);
fi;
od;
Unbind(reps[i]);
od;
# finally convert the polynomials to the final state
pols := Konvertiere(pols);
if pols <> 0 then
Konvert2(pols.evlistvec, pr);
fi;
return(pols);
end );
#############################################################################
##
#F Calcreps2( <pr> ) . . . . . . . . . . compute the Deep-Thought-polynomials
##
## 'Calcreps2' returns the polynomials which have to be evaluated when
## computing word*g_n^(y_n) for all <dtbound> <= n <= m where m is the
## number of generators in the given presentation <pr>.
##
BindGlobal( "Calcreps2", function(pr, max, dtbound)
local i,reps,avec,max2, max1;
reps := [];
avec := Mkavec(pr);
if max >= Length(pr) then
max1 := Length(pr);
else
max1 := max;
fi;
for i in [dtbound..Length(pr)] do
if i >= max1 then
max1 := Length(pr);
fi;
reps[i] := Calcrepsn(i, avec, pr, max1);
od;
max2 := 1;
for i in [1..Length(reps)] do
if IsRecord(reps[i]) then
max2 := i;
fi;
od;
for i in [1..max2] do
if not IsRecord(reps[i]) then
reps[i] := 1;
fi;
od;
return reps;
end );
#############################################################################
##
#E dt.g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
|