This file is indexed.

/usr/share/gap/lib/dt.g is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
#############################################################################
##
#W  dt.g                        GAP library                 Wolfgang Merkwitz
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file initializes Deep Thought.
##
##  Deep Thought deals with trees.  A tree < tree > is a concatenation of 
##  several nodes where each node is a 5-tuple of immediate integers.  If
##  < tree > is an atom it contains only one node,  thus it is itself a
##  5-tuple. If < tree > is not an atom we obtain its list representation by
##
##  < tree >  :=  topnode(<tree>) concat left(<tree>) concat right(<tree>) .
##
##  Let us denote the i-th node of <tree> by (<tree>, i)  and the tree rooted 
##  at (<tree>, i) by tree(<tree>, i).  Let <a> be tree(<tree>, i)
##  The first entry of (<tree>, i) is pos(a),
##  and the second entry is num(a). The third entry of (<tree>, i) gives a 
##  mark.(<tree>, i)[3] = 1  means that (<tree>, i) is marked,  
##  (<tree>, i)[3] = 0 means that (<tree>, i) is not marked. The fourth entry
##  of (<tree>, i) contains the number of knodes of tree(<tree>, i).  The
##  fifth entry of (<tree>, i) finally contains a boundary for 
##  pos( tree(<tree>, i) ).  (<tree>, i)[5] <= 0 means that 
##  pos( tree(<tree>, i) ) is unbounded.  If tree(<tree>, i) is an atom we
##  already know that pos( tree(<tree>, i) ) is unbound.  Thus we then can
##  use the fifth component of (<tree>, i) to store the side.  In this case
##  (<tree>, i)[5] = -1 means  that tree(<tree>, i) is an atom from the
##  right hand word, and (<tree>, i)[5] = -2 means that tree(<tree>, i) is
##  an atom from the left hand word.
##
##  A second important data structure deep thought deals with is a deep
##  thought monomial. A deep thought monomial g_<tree> is a product of
##  binomial coefficients with a coefficient c. Deep thought monomials
##  are represented in this implementation by formula
##  vectors,  which are lists of integers.  The first entry of a formula
##  vector is 0,  to distinguish formula vectors from trees.  The second
##  entry is the coefficient c,  and the third and fourth entries are
##  num( left(tree) ) and num( right(tree) ).  The remaining part of the
##  formula vector is a concatenation of pairs of integers.  A pair (i, j)
##  with i > 0 represents binomial(x_i, j).  A pair (0, j) represents
##  binomial(y_gen, j) when word*gen^power is calculated.
##
##  Finally deep thought has to deal with pseudorepresentatives. A
##  pseudorepresentative <a> is stored in list of length 4. The first entry
##  stores left( <a> ),  the second entry contains right( <a> ),  the third
##  entry contains num( <a> ) and the last entry finally gives a boundary
##  for pos( <b> ) for all trees <b> which are represented by <a>.
##




#############################################################################
##
#F  Mkavec(<pr>) . . . . . . . . . . . . . . . . . . compute the avec for <pr>
##
##  'Mkavec' returns the avec for the pc-presentation <pr>.
##
BindGlobal( "Mkavec", function(pr)
    local  i,j,vec;

    vec := [];
    vec[Length(pr)] := 1;
    for  i in [Length(pr)-1,Length(pr)-2..1]  do
	j := Length(pr);
	while  j >= 1  do
	    if  j = vec[i+1]  then
	   	vec[i] := j;
		j := 0;
 	    else
		j := j-1;
     		if  j < i  and  IsBound(pr[i][j])  then
		    vec[i] := j+1;
		    j := 0;
		fi;
		if  j > i  and  IsBound(pr[j][i])  then
		    vec[i] := j+1;
		    j := 0;
		fi;
	    fi;
	od;
    od;
    for  i in [1..Length(pr)]  do
	if  vec[i] < i+1  then
	    vec[i] := i+1;
	fi;
    od;
    return vec;
end );



#############################################################################
##
#F  IsEqualMonomial(<vec1>, <vec2>) . . . . . . . . test if <vec1> and <vec2> 
##                                                represent the same monomial
##
##  'IsEqualMonomial' returns "true" if <vec1> and <vec2> represent the same 
##  monomial, and "false" otherwise.
BindGlobal( "IsEqualMonomial", function(vec1,vec2)
    local  i,j;
  
    if  Length(vec1) <> Length(vec2)  then
	return false;
    fi;
    #  Since the first four entries of a formula vector doesn't contain
    #  any information about the monomial it represents,  it suffices to
    #  compare the remaining entries.
    for  i in [5..Length(vec1)]  do
	if  not vec1[i] = vec2[i]  then
	    return false;
	fi;
    od;
    return true;
end );




#############################################################################
##
#F  Ordne2(<vector>) . . . . . . . . . . . . . . . . . sort a formula vector
##
##  'Ordne2' sorts the pairs of integers in the formula vector <vector>
##  representing the binomial coefficients such that 
##  <vector>[5] < <vector>[7] < .. < vector[m-1],  where m is the length
##  of <vector>.  This is done for a easier comparison of formula vectors.
##
BindGlobal( "Ordne2", function(vector)
    local  i,list1,list2;
    
    list1 := vector{[5,7..Length(vector)-1]};
    list2 := vector{[6,8..Length(vector)]};
    SortParallel(list1,list2);
    for  i in [1..Length(list1)]  do
        vector[ 2*i+3 ] := list1[i];
        vector[ 2*i+4 ] := list2[i];
    od;
end );


#############################################################################
##
#F  Fueghinzu(<evlist>,<evlistvec>,<formvec>,<pr>) . . . add a formula vector 
##                                                       to a list
##
##  'Fueghinzu' adds the formula vector <formvec> to the list <evlist>,
##  computes the corresponding coefficient vector and adds the latter to
##  the list <evlistvec>.
##
BindGlobal( "Fueghinzu", function(evlist, evlistvec, formvec, pr)
    local    i,j,k;

    Add(evlist, formvec);
    k := [];
    for  i in [1..Length(pr)]  do
	k[i] := 0;
    od;
    j := pr[ formvec[3] ][ formvec[4] ];
    #  the coefficient that the monomial represented by <formvec> has
    #  in each polynomial f_l is obtained by multiplying <formvec>[2]
    #  with the exponent which the group generator g_l has in the
    #  in the word representing the commutator of g_(formvec[3]) and
    #  g_(formvec[4]) in the presentation <pr>.
    for  i in [3,5..Length(j)-1]  do
	k[ j[i] ] := formvec[2]*j[i+1];
    od;
    Add(evlistvec, k);
end );


#############################################################################
##
#F  Dt_add( <pol>, <pols>, <pr> )
##
##  Dt_add adds the deep thought monomial <pol> to the list of polynomials
##  <pols>,  such that afterwards <pols> represents a simplified polynomial.
##
BindGlobal( "Dt_add", function(pol, pols, pr)
    local  i,j,k,rel, pos, flag;
    
    # first sort the deep thought monomial <pol> to compare it with the
    # monomials contained in <pols>.
    Ordne2(pol);
    # then look which component of <pols> contains <pol> in case that
    # <pol> is contained in <pols>.
    pos := DT_evaluation(pol);
    if  not IsBound( pols[pos] )  then
        # create the component <pols>[<pos>] and add <pol> to it
        pols[pos] := rec( evlist := [], evlistvec := [] );
        Fueghinzu( pols[pos].evlist, pols[pos].evlistvec, pol, pr );
        return;
    fi;
    flag := 0;
    for  k in [1..Length( pols[pos].evlist ) ]  do
        # look for <pol> in <pols>[<pos>] and if <pol> is contained in
        # <pols>[<pos>] then adjust the corresponding coefficient vector.
        if  IsEqualMonomial( pol, pols[pos].evlist[k] )  then
            rel := pr[ pol[3] ][ pol[4] ];
            for  j in [3,5..Length(rel)-1]  do
                pols[pos].evlistvec[k][ rel[j] ] := 
                  pols[pos].evlistvec[k][ rel[j] ] + pol[2]*rel[j+1];
            od;
            flag := 1;
            break;
        fi;
    od;
    if  flag = 0  then
        # <pol> is not contained in <pols>[<pos>] so add it to <pols>[<pos>]
        Fueghinzu(pols[pos].evlist, pols[pos].evlistvec, pol, pr);
    fi;
end );


#############################################################################
##
#F  Konvertiere(<sortedpols>)
##
##  'Konvertiere' converts the list of formula vectors <sortedpols>. Before
##  applying <Konvertiere> <sortedpols> is a list of records with the
##  components <evlist> and <evlistvec> where <evlist> contains deep thought
##  monomials and <evlistvec> contains the corresponding coefficient vectors.
##  <Konvertiere> merges the <evlist>-compondents of the records contained
##  in <sortedpols> into one component <evlist> and the <evlistvec>-coponents
##  into one component <evlistvec>.
##
BindGlobal( "Konvertiere", function(sortedpols)
    local  k,res;
    
    if  Length(sortedpols) = 0  then
        return  0;
    fi;
    res := rec(evlist := [], 
               evlistvec :=[]);
    for  k in sortedpols  do
        Append(res.evlist, k.evlist);
        Append(res.evlistvec, k.evlistvec);
    od;
    return res;
end );


#############################################################################
##
#F  Konvert2(<evlistvec>) . . . . . . . . . . . . convert coefficient vectors
##
##  'Konvert2' converts the coefficient vectors in the list <evlistvec>.
##  Before applying <Konvert2> an entry <evlistvec>[i][j] = k means that
##  the deep thought monomial <evlist>[i] occurs in the polynomial f_j with
##  coefficient k. After applying <Konvert2> a pair [j, k] occuring in
##  <eclistvec>[i] means that <evlist>[i] occurs in f_j with coefficient k.
##
BindGlobal( "Konvert2", function(evlistvec, pr)
    local i,j,res;

    for  i in [1..Length(evlistvec)]  do
	res := [];
        for  j in [1..Length(evlistvec[i])]  do
            if  evlistvec[i][j] <> 0  then
                Append(res, [j, evlistvec[i][j] ]);
            fi;
        od;
	evlistvec[i] := res;
    od;
end );



#############################################################################
##
#F  CalcOrder( <word>, <dtrws> )
##
##  CalcOrder computes the order of the word <word> in the group determined
##  by the rewriting system <dtrws>
##
CalcOrder := function(word, dtrws)
    local gcd, m, pcp;
    
    if  Length(word) = 0  then
        return 1;
    fi;
    if  not IsBound(dtrws![PC_EXPONENTS][ word[1] ])  then
        return 0;
    fi;
    gcd := Gcd(dtrws![PC_EXPONENTS][ word[1] ], word[2]);
    m := QuoInt( dtrws![PC_EXPONENTS][ word[1] ], gcd);
    gcd := DTPower(word, m, dtrws);
    return  m*CalcOrder(gcd, dtrws);
end;
MakeReadOnlyGlobal( "CalcOrder" );


#############################################################################
##
#F  CompleteOrdersOfRws( <dtrws> )
##
##  CompleteOrdersOfRws computes the orders of the generators of the
##  deep thought rewriting system <dtrws>
##
BindGlobal( "CompleteOrdersOfRws", function(dtrws)
    local  i,j;
    
    dtrws![PC_ORDERS] := [];
    for  i in [dtrws![PC_NUMBER_OF_GENERATORS],dtrws![PC_NUMBER_OF_GENERATORS]-1..1]
         do
        # Print("determining order of generator ",i,"\n");
        if  not IsBound( dtrws![PC_EXPONENTS][i] )  then
            j := 0;
        elif  not IsBound( dtrws![PC_POWERS][i] )  then
            j := dtrws![PC_EXPONENTS][i];
        else
            j := dtrws![PC_EXPONENTS][i]*CalcOrder(dtrws![PC_POWERS][i], dtrws);
        fi;
        if  j <> 0  then
            dtrws![PC_ORDERS][i] := j;
        fi;
    od;
end );


#############################################################################
##
#F  Redkomprimiere( <list> )
##
##  Redkomprimiere removes all empty entries from <list>
##
BindGlobal( "Redkomprimiere", function( list )
    local  skip, i;
    
    skip := 0;
    i := 1;
    while  i <= Length(list)  do
        while  not IsBound(list[i])  do
            skip := skip + 1;
            i := i+1;
        od;
        list[i-skip] := list[i];
        i := i+1;
    od;
    for  i in  [Length(list)-skip+1..Length(list)]  do
        Unbind(list[i]);
    od;
end );



#############################################################################
##
#F  ReduceCoefficientsOfRws( <dtrws> )
##
##  ReduceCoefficientsOfRws reduces all coefficients of each deep thought
##  polynomial f_l modulo the order of the l-th generator.
##
BindGlobal( "ReduceCoefficientsOfRws", function(dtrws)
    local  i,j,k,l, pseudoreps;
    
    pseudoreps := dtrws![PC_DEEP_THOUGHT_POLS];
    i := 1;
    while  IsRecord(pseudoreps[i])  do
        for  j in [1..Length(pseudoreps[i].evlistvec)]  do
            for  k in [2,4..Length(pseudoreps[i].evlistvec[j])]  do
                if  IsBound( dtrws![PC_ORDERS][ pseudoreps[i].evlistvec[j][k-1] ] )
                    and  (pseudoreps[i].evlistvec[j][k] > 0  or
                          pseudoreps[i].evlistvec[j][k] <
                          -dtrws![PC_ORDERS][ pseudoreps[i].evlistvec[j][k-1] ]/2)
                    then
                    pseudoreps[i].evlistvec[j][k] := 
                      pseudoreps[i].evlistvec[j][k] mod 
                      dtrws![PC_ORDERS][ pseudoreps[i].evlistvec[j][k-1] ];
                fi;
            od;
            Compress( pseudoreps[i].evlistvec[j] );
            if  Length( pseudoreps[i].evlistvec[j] ) = 0  then
                Unbind( pseudoreps[i].evlistvec[j] );
                Unbind( pseudoreps[i].evlist[j] );
            fi;
        od;
        Redkomprimiere( pseudoreps[i].evlistvec );
        Redkomprimiere( pseudoreps[i].evlist );
        i := i+1;
    od;
end );


#############################################################################
##
##  GetMax( <tree>, <number>, <pr> )
##  
##  GetMax returns the maximal value for pos(tree) if num(tree) = <number>.  
##
BindGlobal( "GetMax", function(tree, number, pr)
    local rel, max, position;
    
    if  Length(tree) = 5  then
        return tree[5];
    else
        if  Length(tree) = 4  then
            if  Length(tree[1]) = 4  then
                if  Length(tree[2]) = 4  then
                    rel := pr[ tree[1][3] ][ tree[2][3] ];
                else
                    rel := pr[ tree[1][3] ][ tree[2][2] ];
                fi;
            else
                if  Length(tree[2]) = 4  then
                    rel := pr[ tree[1][2] ][ tree[2][3] ];
                else
                    rel := pr[ tree[1][2] ][ tree[2][2] ];
                fi;
            fi;
        else
            rel := pr[ tree[7] ][ tree[ 5*(tree[9]+1)+2 ] ];
        fi;
        position := Position(rel, number) + 1;
        if  rel[position] < 0  or  rel[position] > 100  then
            return 0;
        else
            return rel[position];
        fi;
    fi;
end );


#############################################################################
##
#F  GetNumRight( <tree> )
##  
##  GetNumRight  returns num( right( tree ) ).
##
BindGlobal( "GetNumRight", function(tree)
    
    if Length(tree) <> 4  then
        return  tree[ 5*(tree[9]+1)+2 ];
    fi;
    if Length(tree[2]) <> 4  then
        return  tree[2][2];
    fi;
    return  tree[2][3];
end );



###########################################################################
##
#F  Calcrepsn(<n>, <avec>, <pr>, <max>
##
##  'Calcrepsn' returns the polynomials f_{n1}1,..,f_{nm} which have to be
##  evaluated when computing word*g_n^(y_n).  Here m denotes the composition 
##  length of the nilpotent group G given by the presentation <pr>.  This is 
##  done  by first calculating a complete sytem of <n>-pseudorepresentatives
##  for the presentation <pr> with bondary <max>. Then this sytem is used
##  to get the required polynomials
##
##  If g_n is in the center of the group determined by the presentation <pr>
##  then there don't exist any representatives exept for the atoms and 
##  finally 0 will be returned.
##
BindGlobal( "Calcrepsn", function(n, avec, pr, max)
    
    local i,j,k,l,       #  loop variables
          x,y,z,a,b,c,   #  trees
          reps,          #  list of pseudorepresentatives
          pols,          #  stores the dt polynomials
          boundary,      #  boundary for loop
          hilf,
          pos,
          start,
          max1, max2;    #  maximal values for pos(x) and pos(y)   
    reps:=[];
    pols := [];

    for i  in [n..Length(pr)]  do
        #  initialize reps[i] to contain representatives for the atoms
        if  i <> n  then
            reps[i] := [ [1,i,0,1,-2] ];
        else
            reps[i] := [ [1,i,0,1,-1] ];
        fi;
    od;
    #  first compute the pseudorepresentatives which are also represenatives
    for  i in [n..max]  do
        if  i < avec[n]  then
            boundary := i-1;
        else
            boundary := avec[n]-1;
        fi;
        #  to get the representatives of the non-atoms loop over j and k
        #  and determine the representatives for all trees <z> with
        #  num(<z>) = i,  num( left(<z>) ) = j,  num( right(<z>) ) = k
        #  Since for all 1 <= l <= m the group generated by 
        #  {g_(avec[l]),..,g_m} is in the center of the the group generated  
        #  by {g_l,..,g_m} it suffices to loop over all 
        #  j <= min(i-1, avec[n]-1). Also it is sufficient only to loop over
        #  k while avec[k] is bigger than j.
        for j in [n+1..boundary] do
            k := n;
            while  k <= j-1  and  avec[k] > j  do
                if  IsBound(pr[j][k])  and  pr[j][k][3] = i  then
                    if  k = n  then
                        start := 1;
                    else
                        start := 2;
                    fi;
                    for x in [start..Length(reps[j])] do
                        for y in reps[k] do
                            if Length(reps[j][x]) = 5  
                               or  k >= reps[j][x][ 5*(reps[j][x][9]+1)+2 ]  
                               then
                                max1 := GetMax(reps[j][x], j, pr);
                                max2 := GetMax(y, k, pr);
                                z := [1,i,0, reps[j][x][4]+y[4]+1, 0];
                                Append(z,reps[j][x]);
                                Append(z,y);
                                z[7] := j;
                                z[10] := max1;
                                z[ 5*(z[9]+1)+2 ] := k;
                                z[ 5*(z[9]+1)+5 ] := max2;
                                UnmarkTree(z);
                                #  now get all representatives <z'> with
                                #  left(<z'>) = left(<z>)  ( = <x> ) and
                                #  right(<z'>)=right(<z>) ( = <y> ) and
                                #  num(<z'>) = o where o is an integer
                                #  contained in pr[j][k].
                                FindNewReps(z, reps, pr, avec[n]-1);
                            fi;
                        od;
                    od;
                fi;
                k := k+1;
            od;
        od;
    od;
    #  now get the "real" pseudorepresentatives
    for  i in [max+1..Length(pr)]  do
        if  i < avec[n]  then
            boundary := i-1;
        else
            boundary := avec[n]-1;
        fi;
        for j in [n+1..boundary] do
            k := n;
            while  k <= j-1  and  avec[k] > j  do
                if  IsBound(pr[j][k])  and  pr[j][k][3] = i  then
                    if  k = n  then
                        start := 1;
                    else
                        start := 2;
                    fi;
                    for x in [start..Length(reps[j])]  do
                        for y in reps[k]  do
                            if Length(reps[j][x]) = 5  
                               or  k >= GetNumRight(reps[j][x])  then
                                # since reps[j] and reps[k] may contain
                                # pseudorepresentatives which are trees
                                # as well as "real" pseudorepresentatives
                                # it is necessary to take several cases into
                                # consideration.
                                max1 := GetMax(reps[j][x], j, pr);
                                max2 := GetMax(y, k, pr);
                                if  Length(reps[j][x]) <> 4  then
                                    if  reps[j][x][2] <> j  then
                                        # we have to ensure that 
                                        # num( <reps>[j][x] ) = j when we
                                        # construct a new pseudorepresentative
                                        # out of it.
                                        a := ShallowCopy(reps[j][x]);
                                        a[2] := j;
                                    else
                                        a := reps[j][x];
                                    fi;
                                    a[5] := max1;
                                else
                                    if  reps[j][x][3] <> j  then
                                        # we have to ensure that 
                                        # num( <reps>[j][x] ) = j when we
                                        # construct a new pseudorepresentative
                                        # out of it.
                                        a := ShallowCopy(reps[j][x]);
                                        a[3] := j;
                                    else
                                        a := reps[j][x];
                                    fi;
                                    a[4] := max1;
                                fi;
                                if  Length(y) <> 4  then
                                    if  y[2] <> k  then
                                        # we have to ensure that num(<y>) = k
                                        # when we construct a new
                                        # pseudorepresentative out of it.
                                        b := ShallowCopy(y);
                                        b[2] := k;
                                    else
                                        b := y;
                                    fi;
                                    b[5] := max2;
                                else
                                    if  y[3] <> k  then
                                        # we have to ensure that num(<y>) = k
                                        # when we construct a new
                                        # pseudorepresentative out of it.
                                        b := ShallowCopy(y);
                                        b[3] := k;
                                    else
                                        b := y;
                                    fi;
                                    b[4] := max2;
                                fi;
                                # now finally construct the 
                                # pseudorepresentative and add it to
                                # reps
                                z := [a, b, i, 0];
                                if  i >= avec[n]  then
                                    Add(reps[i], z);
                                else
                                    l := 3;
                                    while  l <= Length(pr[j][k])  and
                                      pr[j][k][l] < avec[n]  do
                                        Add(reps[ pr[j][k][l] ], z);
                                        l := l+2;
                                    od;
                                fi;
                            fi;
                        od;
                    od;
                fi;
                k := k+1;
            od;
        od;
    od;
    # now use the pseudorepresentatives to get the desired polynomials
    for  i in [n..Length(pr)]  do
        for  j in [2..Length(reps[i])]  do
            # the first case: reps[i][j] is a "real" pseudorepresentative
            if  Length(reps[i][j]) = 4  then
                if  reps[i][j][3] = i  then
                    GetPols(reps[i][j], pr, pols);
                fi;
            # the second case: reps[i][j] is a tree    
            elif  reps[i][j][1] <> 0  then
                if  reps[i][j][2] = i  then
                    UnmarkTree(reps[i][j]);
                    hilf := MakeFormulaVector(reps[i][j], pr);
                    Dt_add(hilf, pols, pr);
                fi;
            # the third case: reps[i][j] is a deep thought monomial    
            else
                Dt_add(reps[i][j], pols, pr);
            fi;
       od;
       Unbind(reps[i]);
   od;
   # finally convert the polynomials to the final state
   pols := Konvertiere(pols);
   if  pols <> 0  then
      Konvert2(pols.evlistvec, pr);
   fi;
   return(pols);
end );


#############################################################################
##
#F  Calcreps2( <pr> ) . . . . . . . . . . compute the Deep-Thought-polynomials
##
##  'Calcreps2' returns the polynomials which have to be evaluated when
##  computing word*g_n^(y_n) for all <dtbound> <= n <= m where m is the 
##  number of generators in the given presentation <pr>.
##
BindGlobal( "Calcreps2", function(pr, max, dtbound)
    local  i,reps,avec,max2, max1;
    
    reps := [];
    avec := Mkavec(pr);
    if  max >= Length(pr)  then
        max1 := Length(pr);
    else
        max1 := max;
    fi;
    for  i in [dtbound..Length(pr)]  do
        if  i >= max1  then
            max1 := Length(pr);
        fi;
        reps[i] := Calcrepsn(i, avec, pr, max1);
    od;
    max2 := 1;
    for  i in [1..Length(reps)]  do
        if  IsRecord(reps[i])  then
            max2 := i;
        fi;
    od;
    for  i in [1..max2]  do
        if  not IsRecord(reps[i])  then
            reps[i] := 1;
        fi;
    od;
    return reps;
end );


#############################################################################
##
#E  dt.g  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here