/usr/share/gap/lib/field.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 | #############################################################################
##
#W field.gd GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares the operations for division rings.
##
#############################################################################
##
## <#GAPDoc Label="[1]{field}">
## <Index>fields</Index>
## <Index>division rings</Index>
## A <E>division ring</E> is a ring (see Chapter <Ref Chap="Rings"/>)
## in which every non-zero element has an inverse.
## The most important class of division rings are the commutative ones,
## which are called <E>fields</E>.
## <P/>
## &GAP; supports finite fields
## (see Chapter <Ref Chap="Finite Fields"/>) and
## abelian number fields
## (see Chapter <Ref Chap="Abelian Number Fields"/>),
## in particular the field of rationals
## (see Chapter <Ref Chap="Rational Numbers"/>).
## <P/>
## This chapter describes the general &GAP; functions for fields and
## division rings.
## <P/>
## If a field <A>F</A> is a subfield of a commutative ring <A>C</A>,
## <A>C</A> can be considered as a vector space over the (left) acting
## domain <A>F</A> (see Chapter <Ref Chap="Vector Spaces"/>).
## In this situation, we call <A>F</A> the <E>field of definition</E> of
## <A>C</A>.
## <P/>
## Each field in &GAP; is represented as a vector space over a subfield
## (see <Ref Func="IsField"/>), thus each field is in fact a
## field extension in a natural way,
## which is used by functions such as
## <Ref Func="Norm"/> and <Ref Func="Trace" Label="for a field element"/>
## (see <Ref Sect="Galois Action"/>).
## <#/GAPDoc>
##
#T Note that the families of a division ring and of its left acting domain
#T may be different!!
#############################################################################
##
#P IsField( <D> )
##
## <#GAPDoc Label="IsField">
## <ManSection>
## <Prop Name="IsField" Arg='D'/>
##
## <Description>
## A <E>field</E> is a commutative division ring
## (see <Ref Func="IsDivisionRing"/>
## and <Ref Func="IsCommutative"/>).
## <Example><![CDATA[
## gap> IsField( GaloisField(16) ); # the field with 16 elements
## true
## gap> IsField( Rationals ); # the field of rationals
## true
## gap> q:= QuaternionAlgebra( Rationals );; # noncommutative division ring
## gap> IsField( q ); IsDivisionRing( q );
## false
## true
## gap> mat:= [ [ 1 ] ];; a:= Algebra( Rationals, [ mat ] );;
## gap> IsDivisionRing( a ); # algebra not constructed as a division ring
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "IsField", IsDivisionRing and IsCommutative );
InstallTrueMethod( IsCommutative, IsDivisionRing and IsFinite );
#############################################################################
##
#A PrimeField( <D> )
##
## <#GAPDoc Label="PrimeField">
## <ManSection>
## <Attr Name="PrimeField" Arg='D'/>
##
## <Description>
## The <E>prime field</E> of a division ring <A>D</A> is the smallest field
## which is contained in <A>D</A>.
## For example, the prime field of any field in characteristic zero
## is isomorphic to the field of rational numbers.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "PrimeField", IsDivisionRing );
#############################################################################
##
#P IsPrimeField( <D> )
##
## <#GAPDoc Label="IsPrimeField">
## <ManSection>
## <Prop Name="IsPrimeField" Arg='D'/>
##
## <Description>
## A division ring is a prime field if it is equal to its prime field
## (see <Ref Func="PrimeField"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsPrimeField", IsDivisionRing );
InstallIsomorphismMaintenance( IsPrimeField,
IsField and IsPrimeField, IsField );
#############################################################################
##
#A DefiningPolynomial( <F> )
##
## <#GAPDoc Label="DefiningPolynomial">
## <ManSection>
## <Attr Name="DefiningPolynomial" Arg='F'/>
##
## <Description>
## is the defining polynomial of the field <A>F</A> as a field extension
## over the left acting domain of <A>F</A>.
## A root of the defining polynomial can be computed with
## <Ref Func="RootOfDefiningPolynomial"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "DefiningPolynomial", IsField );
#############################################################################
##
#A DegreeOverPrimeField( <F> )
##
## <#GAPDoc Label="DegreeOverPrimeField">
## <ManSection>
## <Attr Name="DegreeOverPrimeField" Arg='F'/>
##
## <Description>
## is the degree of the field <A>F</A> over its prime field
## (see <Ref Func="PrimeField"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "DegreeOverPrimeField", IsDivisionRing );
InstallIsomorphismMaintenance( DegreeOverPrimeField,
IsDivisionRing, IsDivisionRing );
#############################################################################
##
#A GeneratorsOfDivisionRing( <D> )
##
## <#GAPDoc Label="GeneratorsOfDivisionRing">
## <ManSection>
## <Attr Name="GeneratorsOfDivisionRing" Arg='D'/>
##
## <Description>
## generators with respect to addition, multiplication, and taking inverses
## (the identity cannot be omitted ...)
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "GeneratorsOfDivisionRing", IsDivisionRing );
#############################################################################
##
#A GeneratorsOfField( <F> )
##
## <#GAPDoc Label="GeneratorsOfField">
## <ManSection>
## <Attr Name="GeneratorsOfField" Arg='F'/>
##
## <Description>
## generators with respect to addition, multiplication, and taking
## inverses.
## This attribute is the same as <Ref Func="GeneratorsOfDivisionRing"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "GeneratorsOfField", GeneratorsOfDivisionRing );
#############################################################################
##
#A NormalBase( <F>[, <elm>] )
##
## <#GAPDoc Label="NormalBase">
## <ManSection>
## <Attr Name="NormalBase" Arg='F[, elm]'/>
##
## <Description>
## Let <A>F</A> be a field that is a Galois extension of its subfield
## <C>LeftActingDomain( <A>F</A> )</C>.
## Then <Ref Func="NormalBase"/> returns a list of elements in <A>F</A>
## that form a normal basis of <A>F</A>, that is,
## a vector space basis that is closed under the action of the Galois group
## (see <Ref Oper="GaloisGroup" Label="of field"/>) of <A>F</A>.
## <P/>
## If a second argument <A>elm</A> is given,
## it is used as a hint for the algorithm to find a normal basis with the
## algorithm described in <Cite Key="Art68"/>.
## <Example><![CDATA[
## gap> NormalBase( CF(5) );
## [ -E(5), -E(5)^2, -E(5)^3, -E(5)^4 ]
## gap> NormalBase( CF(4) );
## [ 1/2-1/2*E(4), 1/2+1/2*E(4) ]
## gap> NormalBase( GF(3^6) );
## [ Z(3^6)^2, Z(3^6)^6, Z(3^6)^18, Z(3^6)^54, Z(3^6)^162, Z(3^6)^486 ]
## gap> NormalBase( GF( GF(8), 2 ) );
## [ Z(2^6), Z(2^6)^8 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "NormalBase", IsField );
DeclareOperation( "NormalBase", [ IsField, IsScalar ] );
#############################################################################
##
#A PrimitiveElement( <D> )
##
## <#GAPDoc Label="PrimitiveElement">
## <ManSection>
## <Attr Name="PrimitiveElement" Arg='D'/>
##
## <Description>
## is an element of <A>D</A> that generates <A>D</A> as a division ring
## together with the left acting domain.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "PrimitiveElement", IsDivisionRing );
#############################################################################
##
#A PrimitiveRoot( <F> )
##
## <#GAPDoc Label="PrimitiveRoot">
## <ManSection>
## <Attr Name="PrimitiveRoot" Arg='F'/>
##
## <Description>
## A <E>primitive root</E> of a finite field is a generator of its
## multiplicative group.
## A primitive root is always a primitive element
## (see <Ref Func="PrimitiveElement"/>),
## the converse is in general not true.
## <!-- % For example, <C>Z(9)^2</C> is a primitive element for <C>GF(9)</C> but not a -->
## <!-- % primitive root. -->
## <Example><![CDATA[
## gap> f:= GF( 3^5 );
## GF(3^5)
## gap> PrimitiveRoot( f );
## Z(3^5)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "PrimitiveRoot", IsField and IsFinite );
#############################################################################
##
#A RootOfDefiningPolynomial( <F> )
##
## <#GAPDoc Label="RootOfDefiningPolynomial">
## <ManSection>
## <Attr Name="RootOfDefiningPolynomial" Arg='F'/>
##
## <Description>
## is a root in the field <A>F</A> of its defining polynomial as a field
## extension over the left acting domain of <A>F</A>.
## The defining polynomial can be computed with
## <Ref Func="DefiningPolynomial"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "RootOfDefiningPolynomial", IsField );
#############################################################################
##
#O AsDivisionRing( [<F>, ]<C> )
#O AsField( [<F>, ]<C> )
##
## <#GAPDoc Label="AsDivisionRing">
## <ManSection>
## <Oper Name="AsDivisionRing" Arg='[F, ]C'/>
## <Oper Name="AsField" Arg='[F, ]C'/>
##
## <Description>
## If the collection <A>C</A> can be regarded as a division ring then
## <C>AsDivisionRing( <A>C</A> )</C> is the division ring that consists of
## the elements of <A>C</A>, viewed as a vector space over its prime field;
## otherwise <K>fail</K> is returned.
## <P/>
## In the second form, if <A>F</A> is a division ring contained in <A>C</A>
## then the returned division ring is viewed as a vector space over
## <A>F</A>.
## <P/>
## <Ref Func="AsField"/> is just a synonym for <Ref Func="AsDivisionRing"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "AsDivisionRing", [ IsCollection ] );
DeclareOperation( "AsDivisionRing", [ IsDivisionRing, IsCollection ] );
DeclareSynonym( "AsField", AsDivisionRing );
#############################################################################
##
#O ClosureDivisionRing( <D>, <obj> )
##
## <ManSection>
## <Oper Name="ClosureDivisionRing" Arg='D, obj'/>
##
## <Description>
## <Ref Func="ClosureDivisionRing"/> returns the division ring generated by
## the elements of the division ring <A>D</A> and <A>obj</A>,
## which can be either an element or a collection of elements,
## in particular another division ring.
## The left acting domain of the result equals that of <A>D</A>.
## </Description>
## </ManSection>
##
DeclareOperation( "ClosureDivisionRing", [ IsDivisionRing, IsObject ] );
DeclareSynonym( "ClosureField", ClosureDivisionRing );
#############################################################################
##
#A Subfields( <F> )
##
## <#GAPDoc Label="Subfields">
## <ManSection>
## <Attr Name="Subfields" Arg='F'/>
##
## <Description>
## is the set of all subfields of the field <A>F</A>.
## <!-- or shall we allow to ask, e.g., for subfields of quaternion algebras?-->
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Subfields", IsField );
#############################################################################
##
#O FieldExtension( <F>, <poly> )
##
## <#GAPDoc Label="FieldExtension">
## <ManSection>
## <Oper Name="FieldExtension" Arg='F, poly'/>
##
## <Description>
## is the field obtained on adjoining a root of the irreducible polynomial
## <A>poly</A> to the field <A>F</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "FieldExtension", [ IsField, IsUnivariatePolynomial ] );
#############################################################################
##
## <#GAPDoc Label="[2]{field}">
## Let <M>L > K</M> be a field extension of finite degree.
## Then to each element <M>\alpha \in L</M>, we can associate a
## <M>K</M>-linear mapping <M>\varphi_{\alpha}</M> on <M>L</M>,
## and for a fixed <M>K</M>-basis of <M>L</M>,
## we can associate to <M>\alpha</M> the matrix <M>M_{\alpha}</M>
## (over <M>K</M>) of this mapping.
## <P/>
## The <E>norm</E> of <M>\alpha</M> is defined as the determinant of
## <M>M_{\alpha}</M>,
## the <E>trace</E> of <M>\alpha</M> is defined as the trace of
## <M>M_{\alpha}</M>,
## the <E>minimal polynomial</E> <M>\mu_{\alpha}</M> and the
## <E>trace polynomial</E> <M>\chi_{\alpha}</M> of <M>\alpha</M>
## are defined as the minimal polynomial
## (see <Ref Sect="MinimalPolynomial" Label="over a field"/>)
## and the characteristic polynomial
## (see <Ref Func="CharacteristicPolynomial"/> and
## <Ref Func="TracePolynomial"/>) of <M>M_{\alpha}</M>.
## (Note that <M>\mu_{\alpha}</M> depends only on <M>K</M> whereas
## <M>\chi_{\alpha}</M> depends on both <M>L</M> and <M>K</M>.)
## <P/>
## Thus norm and trace of <M>\alpha</M> are elements of <M>K</M>,
## and <M>\mu_{\alpha}</M> and <M>\chi_{\alpha}</M> are polynomials over
## <M>K</M>, <M>\chi_{\alpha}</M> being a power of <M>\mu_{\alpha}</M>,
## and the degree of <M>\chi_{\alpha}</M> equals the degree of the field
## extension <M>L > K</M>.
## <P/>
## The <E>conjugates</E> of <M>\alpha</M> in <M>L</M> are those roots of
## <M>\chi_{\alpha}</M> (with multiplicity) that lie in <M>L</M>;
## note that if only <M>L</M> is given, there is in general no way to access
## the roots outside <M>L</M>.
## <P/>
## Analogously, the <E>Galois group</E> of the extension <M>L > K</M> is
## defined as the group of all those field automorphisms of <M>L</M> that
## fix <M>K</M> pointwise.
## <P/>
## If <M>L > K</M> is a Galois extension then the conjugates of
## <M>\alpha</M> are all roots of <M>\chi_{\alpha}</M> (with multiplicity),
## the set of conjugates equals the roots of <M>\mu_{\alpha}</M>,
## the norm of <M>\alpha</M> equals the product and the trace of
## <M>\alpha</M> equals the sum of the conjugates of <M>\alpha</M>,
## and the Galois group in the sense of the above definition equals
## the usual Galois group,
## <P/>
## Note that <C>MinimalPolynomial( <A>F</A>, <A>z</A> )</C> is a polynomial
## <E>over</E> <A>F</A>,
## whereas <C>Norm( <A>F</A>, <A>z</A> )</C> is the norm of the element
## <A>z</A> <E>in</E> <A>F</A>
## w.r.t. the field extension
## <C><A>F</A> > LeftActingDomain( <A>F</A> )</C>.
## <#/GAPDoc>
##
#############################################################################
##
## <#GAPDoc Label="[3]{field}">
## The default methods for field elements are as follows.
## <Ref Func="MinimalPolynomial"/> solves a system of linear equations,
## <Ref Func="TracePolynomial"/> computes the appropriate power of the
## minimal
## polynomial,
## <Ref Func="Norm"/> and <Ref Func="Trace" Label="for a field element"/>
## values are obtained as coefficients of the characteristic polynomial,
## and <Ref Func="Conjugates"/> uses the factorization of the
## characteristic polynomial.
## <P/>
## For elements in finite fields and cyclotomic fields, one wants to do the
## computations in a different way since the field extensions in question
## are Galois extensions, and the Galois groups are well-known in these
## cases.
## More general,
## if a field is in the category
## <C>IsFieldControlledByGaloisGroup</C> then
## the default methods are the following.
## <Ref Func="Conjugates"/> returns the sorted list of images
## (with multiplicity) of the element under the Galois group,
## <Ref Func="Norm"/> computes the product of the conjugates,
## <Ref Func="Trace" Label="for a field element"/> computes the sum of the
## conjugates,
## <Ref Func="TracePolynomial"/> and <Ref Func="MinimalPolynomial"/> compute
## the product of linear factors <M>x - c</M> with <M>c</M> ranging over the
## conjugates and the set of conjugates, respectively.
## <#/GAPDoc>
##
#############################################################################
##
#C IsFieldControlledByGaloisGroup( <obj> )
##
## <ManSection>
## <Filt Name="IsFieldControlledByGaloisGroup" Arg='obj' Type='Category'/>
##
## <Description>
## (The meaning is explained above.)
## </Description>
## </ManSection>
##
DeclareCategory( "IsFieldControlledByGaloisGroup", IsField );
#############################################################################
##
#M IsFieldControlledByGaloisGroup( <finfield> )
##
## For finite fields and abelian number fields
## (independent of the representation of their elements),
## we know the Galois group and have a method for `Conjugates' that does
## not use `MinimalPolynomial'.
## Currently fields created with `AlgebraicExtension' do not support this
## approach, so we do not install the implication from
## `IsField and IsFinite'.
##
InstallTrueMethod( IsFieldControlledByGaloisGroup,
IsField and IsFFECollection );
#############################################################################
##
#A Conjugates( [<L>, [<K>, ]]<z> ) . . . . . . conjugates of a field element
##
## <#GAPDoc Label="Conjugates">
## <ManSection>
## <Attr Name="Conjugates" Arg='[L, [K, ]]z'/>
##
## <Description>
## <Ref Func="Conjugates"/> returns the list of <E>conjugates</E>
## of the field element <A>z</A>.
## If two fields <A>L</A> and <A>K</A> are given then the conjugates are
## computed w.r.t. the field extension <A>L</A><M> > </M><A>K</A>,
## if only one field <A>L</A> is given then
## <C>LeftActingDomain( <A>L</A> )</C> is taken as default for the subfield
## <A>K</A>,
## and if no field is given then <C>DefaultField( <A>z</A> )</C> is taken
## as default for <A>L</A>.
## <P/>
## The result list will contain duplicates if <A>z</A> lies in a
## proper subfield of <A>L</A>, or of the default field of <A>z</A>,
## respectively.
## The result list need not be sorted.
## <P/>
## <Example><![CDATA[
## gap> Norm( E(8) ); Norm( CF(8), E(8) );
## 1
## 1
## gap> Norm( CF(8), CF(4), E(8) );
## -E(4)
## gap> Norm( AsField( CF(4), CF(8) ), E(8) );
## -E(4)
## gap> Trace( E(8) ); Trace( CF(8), CF(8), E(8) );
## 0
## E(8)
## gap> Conjugates( CF(8), E(8) );
## [ E(8), E(8)^3, -E(8), -E(8)^3 ]
## gap> Conjugates( CF(8), CF(4), E(8) );
## [ E(8), -E(8) ]
## gap> Conjugates( CF(16), E(8) );
## [ E(8), E(8)^3, -E(8), -E(8)^3, E(8), E(8)^3, -E(8), -E(8)^3 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Conjugates", IsScalar );
DeclareOperation( "Conjugates", [ IsField, IsField, IsScalar ] );
DeclareOperation( "Conjugates", [ IsField, IsScalar ] );
#############################################################################
##
#A Norm( [<L>, [<K>, ]]<z> ) . . . . . . . . . . . norm of a field element
##
## <#GAPDoc Label="Norm">
## <ManSection>
## <Attr Name="Norm" Arg='[L, [K, ]]z'/>
##
## <Description>
## <Ref Func="Norm"/> returns the norm of the field element <A>z</A>.
## If two fields <A>L</A> and <A>K</A> are given then the norm is computed
## w.r.t. the field extension <A>L</A><M> > </M><A>K</A>,
## if only one field <A>L</A> is given then
## <C>LeftActingDomain( <A>L</A> )</C> is taken as
## default for the subfield <A>K</A>,
## and if no field is given then <C>DefaultField( <A>z</A> )</C> is taken
## as default for <A>L</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Norm", IsScalar );
DeclareOperation( "Norm", [ IsField, IsScalar ] );
DeclareOperation( "Norm", [ IsField, IsField, IsScalar ] );
#############################################################################
##
#A Trace( [<L>, [<K>, ]]<z> ) . . . . . . . . . . trace of a field element
#A Trace( <mat> ) . . . . . . . . . . . . . . . . . . . . trace of a matrix
##
## <#GAPDoc Label="Trace">
## <ManSection>
## <Heading>Traces of field elements and matrices</Heading>
## <Attr Name="Trace" Arg='[L, [K, ]]z' Label="for a field element"/>
## <Attr Name="Trace" Arg='mat' Label="for a matrix"/>
##
## <Description>
## <Ref Func="Trace" Label="for a field element"/> returns the trace of the
## field element <A>z</A>.
## If two fields <A>L</A> and <A>K</A> are given then the trace is computed
## w.r.t. the field extension <M><A>L</A> > <A>K</A></M>,
## if only one field <A>L</A> is given then
## <C>LeftActingDomain( <A>L</A> )</C> is taken as
## default for the subfield <A>K</A>,
## and if no field is given then <C>DefaultField( <A>z</A> )</C> is taken
## as default for <A>L</A>.
## <P/>
## The <E>trace of a matrix</E> is the sum of its diagonal entries.
## Note that this is <E>not</E> compatible with the definition of
## <Ref Func="Trace" Label="for a field element"/> for field elements,
## so the one-argument version is not suitable when matrices shall be
## regarded as field elements.
## <!-- forbid <C>Trace</C> as short form for <C>TraceMat</C>?-->
## <!-- crossref. to <C>TraceMat</C>?-->
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Trace", IsScalar );
DeclareAttribute( "Trace", IsMatrix );
DeclareOperation( "Trace", [ IsField, IsScalar ] );
DeclareOperation( "Trace", [ IsField, IsField, IsScalar ] );
#############################################################################
##
#O TracePolynomial( <L>, <K>, <z>[, <inum>] )
##
## <#GAPDoc Label="TracePolynomial">
## <ManSection>
## <Oper Name="TracePolynomial" Arg='L, K, z[, inum]'/>
##
## <Description>
## <Index Subkey="for field elements">characteristic polynomial</Index>
## returns the polynomial that is the product of <M>(X - c)</M>
## where <M>c</M> runs over the conjugates of <A>z</A>
## in the field extension <A>L</A> over <A>K</A>.
## The polynomial is returned as a univariate polynomial over <A>K</A>
## in the indeterminate number <A>inum</A> (defaulting to 1).
## <P/>
## This polynomial is sometimes also called the
## <E>characteristic polynomial</E> of <A>z</A> w.r.t. the field
## extension <M><A>L</A> > <A>K</A></M>.
## Therefore methods are installed for
## <Ref Func="CharacteristicPolynomial"/>
## that call <Ref Oper="TracePolynomial"/> in the case of field extensions.
## <P/>
## <Example><![CDATA[
## gap> TracePolynomial( CF(8), Rationals, E(8) );
## x_1^4+1
## gap> TracePolynomial( CF(16), Rationals, E(8) );
## x_1^8+2*x_1^4+1
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "TracePolynomial", [ IsField, IsField, IsScalar ] );
DeclareOperation( "TracePolynomial",
[ IsField, IsField, IsScalar, IsPosInt ] );
#############################################################################
##
#A GaloisGroup( <F> )
##
## <#GAPDoc Label="GaloisGroup:field">
## <ManSection>
## <Attr Name="GaloisGroup" Arg='F' Label="of field"/>
##
## <Description>
## The <E>Galois group</E> of a field <A>F</A> is the group of all
## field automorphisms of <A>F</A> that fix the subfield
## <M>K = </M><C>LeftActingDomain( <A>F</A> )</C> pointwise.
## <P/>
## Note that the field extension <M><A>F</A> > K</M> need <E>not</E> be
## a Galois extension.
## <Example><![CDATA[
## gap> g:= GaloisGroup( AsField( GF(2^2), GF(2^12) ) );;
## gap> Size( g ); IsCyclic( g );
## 6
## true
## gap> h:= GaloisGroup( CF(60) );;
## gap> Size( h ); IsAbelian( h );
## 16
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "GaloisGroup", IsField );
#############################################################################
##
#A ComplexConjugate( <z> )
#A RealPart( <z> )
#A ImaginaryPart( <z> )
##
## <#GAPDoc Label="ComplexConjugate">
## <ManSection>
## <Attr Name="ComplexConjugate" Arg='z'/>
## <Attr Name="RealPart" Arg='z'/>
## <Attr Name="ImaginaryPart" Arg='z'/>
##
## <Description>
## For a cyclotomic number <A>z</A>,
## <Ref Func="ComplexConjugate"/> returns
## <C>GaloisCyc( <A>z</A>, -1 )</C>,
## see <Ref Func="GaloisCyc" Label="for a cyclotomic"/>.
## For a quaternion <M><A>z</A> = c_1 e + c_2 i + c_3 j + c_4 k</M>,
## <Ref Func="ComplexConjugate"/> returns
## <M>c_1 e - c_2 i - c_3 j - c_4 k</M>,
## see <Ref Func="IsQuaternion"/>.
## <P/>
## When <Ref Func="ComplexConjugate"/> is called with a list then the result
## is the list of return values of <Ref Func="ComplexConjugate"/>
## for the list entries in the corresponding positions.
## <P/>
## When <Ref Func="ComplexConjugate"/> is defined for an object <A>z</A>
## then <Ref Func="RealPart"/> and <Ref Func="ImaginaryPart"/> return
## <C>(<A>z</A> + ComplexConjugate( <A>z</A> )) / 2</C> and
## <C>(<A>z</A> - ComplexConjugate( <A>z</A> )) / 2 i</C>, respectively,
## where <C>i</C> denotes the corresponding imaginary unit.
## <P/>
## <Example><![CDATA[
## gap> GaloisCyc( E(5) + E(5)^4, 2 );
## E(5)^2+E(5)^3
## gap> GaloisCyc( E(5), -1 ); # the complex conjugate
## E(5)^4
## gap> GaloisCyc( E(5) + E(5)^4, -1 ); # this value is real
## E(5)+E(5)^4
## gap> GaloisCyc( E(15) + E(15)^4, 3 );
## E(5)+E(5)^4
## gap> ComplexConjugate( E(7) );
## E(7)^6
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "ComplexConjugate", IsScalar );
DeclareAttribute( "ComplexConjugate", IsList );
DeclareAttribute( "RealPart", IsScalar );
DeclareAttribute( "RealPart", IsList );
DeclareAttribute( "ImaginaryPart", IsScalar );
DeclareAttribute( "ImaginaryPart", IsList );
#############################################################################
##
#O DivisionRingByGenerators( [<F>, ]<gens> ) . . . . div. ring by generators
##
## <#GAPDoc Label="DivisionRingByGenerators">
## <ManSection>
## <Oper Name="DivisionRingByGenerators" Arg='[F, ]gens'/>
## <Oper Name="FieldByGenerators" Arg='[F, ]gens'/>
##
## <Description>
## Called with a field <A>F</A> and a list <A>gens</A> of scalars,
## <Ref Func="DivisionRingByGenerators"/> returns the division ring over
## <A>F</A> generated by <A>gens</A>.
## The unary version returns the division ring as vector space over
## <C>FieldOverItselfByGenerators( <A>gens</A> )</C>.
## <P/>
## <Ref Oper="FieldByGenerators"/> is just a synonym for
## <Ref Oper="DivisionRingByGenerators"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "DivisionRingByGenerators",
[ IsDivisionRing, IsCollection ] );
DeclareSynonym( "FieldByGenerators", DivisionRingByGenerators );
#############################################################################
##
#O FieldOverItselfByGenerators( [ <z>, ... ] )
##
## <#GAPDoc Label="FieldOverItselfByGenerators">
## <ManSection>
## <Oper Name="FieldOverItselfByGenerators" Arg='[ z, ... ]'/>
##
## <Description>
## This operation is needed for the call of
## <Ref Func="Field" Label="for several generators"/> or
## <Ref Oper="FieldByGenerators"/> without explicitly given subfield,
## in order to construct a left acting domain for such a field.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "FieldOverItselfByGenerators", [ IsCollection ] );
#############################################################################
##
#O DefaultFieldByGenerators( [ <z>, ... ] ) . . default field by generators
##
## <#GAPDoc Label="DefaultFieldByGenerators">
## <ManSection>
## <Oper Name="DefaultFieldByGenerators" Arg='[ z, ... ]'/>
##
## <Description>
## returns the default field containing the elements <A>z</A>, <M>\ldots</M>.
## This field may be bigger than the smallest field containing these
## elements.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "DefaultFieldByGenerators", [ IsCollection ] );
#############################################################################
##
#F Field( <z>, ... ) . . . . . . . . . field generated by a list of elements
#F Field( [<F>, ]<list> )
##
## <#GAPDoc Label="Field">
## <ManSection>
## <Func Name="Field" Arg='z, ...' Label="for several generators"/>
## <Func Name="Field" Arg='[F, ]list'
## Label="for (a field and) a list of generators"/>
##
## <Description>
## <Ref Func="Field" Label="for several generators"/> returns the smallest
## field <M>K</M> that contains all the elements <M><A>z</A>, \ldots</M>,
## or the smallest field <M>K</M> that contains all elements in the list
## <A>list</A>.
## If no subfield <A>F</A> is given, <M>K</M> is constructed as a field over
## itself, i.e. the left acting domain of <M>K</M> is <M>K</M>.
## Called with a field <A>F</A> and a list <A>list</A>,
## <Ref Func="Field" Label="for (a field and) a list of generators"/>
## constructs the field generated by <A>F</A> and the elements in
## <A>list</A>, as a vector space over <A>F</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Field" );
#T why not `DivisionRing', and `Field' as a (more or less) synonym?
#############################################################################
##
#F DefaultField( <z>, ... ) . . . . . default field containing a collection
#F DefaultField( <list> )
##
## <#GAPDoc Label="DefaultField">
## <ManSection>
## <Func Name="DefaultField" Arg='z, ...' Label="for several generators"/>
## <Func Name="DefaultField" Arg='list' Label="for a list of generators"/>
##
## <Description>
## <Ref Func="DefaultField" Label="for several generators"/> returns a field
## <M>K</M> that contains all the elements <M><A>z</A>, \ldots</M>,
## or a field <M>K</M> that contains all elements in the list <A>list</A>.
## <P/>
## This field need not be the smallest field in which the elements lie,
## cf. <Ref Func="Field" Label="for several generators"/>.
## For example, for elements from cyclotomic fields
## <Ref Func="DefaultField" Label="for several generators"/> returns
## the smallest cyclotomic field in which the elements lie,
## but the elements may lie in a smaller number field
## which is not a cyclotomic field.
## <Example><![CDATA[
## gap> Field( Z(4) ); Field( [ Z(4), Z(8) ] ); # finite fields
## GF(2^2)
## GF(2^6)
## gap> Field( E(9) ); Field( CF(4), [ E(9) ] ); # abelian number fields
## CF(9)
## AsField( GaussianRationals, CF(36) )
## gap> f1:= Field( EB(5) ); f2:= DefaultField( EB(5) );
## NF(5,[ 1, 4 ])
## CF(5)
## gap> f1 = f2; IsSubset( f2, f1 );
## false
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "DefaultField" );
#############################################################################
##
#F Subfield( <F>, <gens> ) . . . . . . . subfield of <F> generated by <gens>
#F SubfieldNC( <F>, <gens> )
##
## <#GAPDoc Label="Subfield">
## <ManSection>
## <Func Name="Subfield" Arg='F, gens'/>
## <Func Name="SubfieldNC" Arg='F, gens'/>
##
## <Description>
## Constructs the subfield of <A>F</A> generated by <A>gens</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Subfield" );
DeclareGlobalFunction( "SubfieldNC" );
#############################################################################
##
#A FrobeniusAutomorphism( <F> ) . Frobenius automorphism of a finite field
##
## <#GAPDoc Label="FrobeniusAutomorphism">
## <ManSection>
## <Attr Name="FrobeniusAutomorphism" Arg='F'/>
##
## <Description>
## <Index Subkey="Frobenius, field">homomorphisms</Index>
## <Index Subkey="Frobenius">field homomorphisms</Index>
## <Index Key="CompositionMapping" Subkey="for Frobenius automorphisms">
## <C>CompositionMapping</C></Index>
## returns the Frobenius automorphism of the finite field <A>F</A>
## as a field homomorphism (see <Ref Sect="Ring Homomorphisms"/>).
## <P/>
## <Index>Frobenius automorphism</Index>
## The <E>Frobenius automorphism</E> <M>f</M> of a finite field <M>F</M> of
## characteristic <M>p</M> is the function that takes each element <M>z</M>
## of <M>F</M> to its <M>p</M>-th power.
## Each field automorphism of <M>F</M> is a power of <M>f</M>.
## Thus <M>f</M> is a generator for the Galois group of <M>F</M> relative to
## the prime field of <M>F</M>,
## and an appropriate power of <M>f</M> is a generator of the Galois group
## of <M>F</M> over a subfield
## (see <Ref Oper="GaloisGroup" Label="of field"/>).
## <P/>
## <Example><![CDATA[
## gap> f := GF(16);
## GF(2^4)
## gap> x := FrobeniusAutomorphism( f );
## FrobeniusAutomorphism( GF(2^4) )
## gap> Z(16) ^ x;
## Z(2^4)^2
## gap> x^2;
## FrobeniusAutomorphism( GF(2^4) )^2
## ]]></Example>
## <P/>
## <Index Key="Image" Subkey="for Frobenius automorphisms"><C>Image</C>
## </Index>
## The image of an element <M>z</M> under the <M>i</M>-th power of <M>f</M>
## is computed as the <M>p^i</M>-th power of <M>z</M>.
## The product of the <M>i</M>-th power and the <M>j</M>-th power of
## <M>f</M> is the <M>k</M>-th power of <M>f</M>, where <M>k</M> is
## <M>i j \bmod </M> <C>Size(<A>F</A>)</C><M>-1</M>.
## The zeroth power of <M>f</M> is <C>IdentityMapping( <A>F</A> )</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "FrobeniusAutomorphism", IsField );
#############################################################################
##
#F IsFieldElementsSpace( <V> )
##
## <ManSection>
## <Func Name="IsFieldElementsSpace" Arg='V'/>
##
## <Description>
## If an <M>F</M>-vector space <A>V</A> is in the filter <C>IsFieldElementsSpace</C> then
## this expresses that <A>V</A> consists of elements in a field, and that <A>V</A> is
## handled via the mechanism of nice bases (see <Ref ???="..."/>) in the following way.
## Let <M>K</M> be the default field generated by the vector space generators of
## <A>V</A>.
## Then the <C>NiceFreeLeftModuleInfo</C> value of <A>V</A> is an <M>F</M>-basis <M>B</M> of <M>K</M>,
## and the <C>NiceVector</C> value of <M>v \in <A>V</A></M> is defined as
## <C>Coefficients</C><M>( B, v )</M>.
## <P/>
## So it is assumed that methods for computing a basis for the
## <M>F</M>-vector space <M>K</M> are known;
## for example, one can compute a Lenstra basis (see <Ref ???="..."/>) if <M>K</M> is an
## abelian number field,
## and take successive powers of a primitive root if <M>K</M> is a finite field
## (see <Ref ???="..."/>).
## </Description>
## </ManSection>
##
DeclareHandlingByNiceBasis( "IsFieldElementsSpace",
"for free left modules of field elements" );
#############################################################################
##
#O NthRoot( <F>, <a>, <n> )
##
## <ManSection>
## <Oper Name="NthRoot" Arg='F, a, n'/>
##
## <Description>
## returns one <A>n</A>th root of <A>a</A> if such a root exists in <A>F</A>
## and returns <K>fail</K> otherwise.
## </Description>
## </ManSection>
##
DeclareOperation( "NthRoot", [ IsField, IsScalar, IsPosInt ] );
#############################################################################
##
#E
|