/usr/share/gap/lib/fieldfin.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 | #############################################################################
##
#W fieldfin.gi GAP library Werner Nickel
#W & Martin Schönert
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains methods for finite fields. Note that we must
## distinguish finite fields and fields that consist of `FFE's. (The image
## of the natural embedding of the field `GF(<q>)' into a field of rational
## functions is of course a finite field but its elements are not `FFE's
## since this would be a property given by their family.)
##
## Special methods for `FFE's can be found in the file `ffe.gi'.
##
## 1. Miscellaneous Functions
## 2. Groups of FFEs
## 3. Bases of Finite Fields
## 4. Automorphisms of Finite Fields
##
#############################################################################
##
## 1. Miscellaneous Functions
##
#############################################################################
##
#M GeneratorsOfLeftModule( <F> ) . . . . the vectors of the canonical basis
##
InstallMethod( GeneratorsOfLeftModule,
"for a finite field (return the vectors of the canonical basis)",
[ IsField and IsFinite ],
function( F )
local z;
z:= RootOfDefiningPolynomial( F );
return List( [ 0 .. Dimension( F ) - 1 ], i -> z^i );
#T call of `UseBasis' ?
end );
#############################################################################
##
#M Random( <F> ) . . . . . . . . . . . . random element from a finite field
##
## We have special methods for finite prime fields and for fields with
## primitive root, for efficiency reasons.
## All other cases are handled by the vector space methods.
##
InstallMethod( Random,
"for a finite prime field",
[ IsField and IsPrimeField and IsFinite ],
F -> Random(1,Size(F)) * One( F ) );
InstallMethod( Random,
"for a finite field with known primitive root",
[ IsField and IsFinite and HasPrimitiveRoot ],
function ( F )
local rnd;
rnd := Random( 0, Size( F )-1 );
if rnd = 0 then
rnd := Zero( F );
else
rnd := PrimitiveRoot( F )^rnd;
fi;
return rnd;
end );
#############################################################################
##
#M Units( <F> ) . . . . . . . . . . . . . . . . . . . . via `PrimitiveRoot'
##
InstallMethod( Units,
"for a finite field",
[ IsField and IsFinite ],
F -> GroupByGenerators( [ PrimitiveRoot( F ) ] ) );
#############################################################################
##
#M \=( <F>, <G> ) . . . . . . . . . . . . . . . . . . for two finite fields
##
## Note that for two finite fields in the same family,
## it suffices to check the dimensions as vector spaces over the (common)
## prime field.
##
InstallMethod( \=,
"for two finite fields in the same family",
IsIdenticalObj,
[ IsField and IsFinite, IsField and IsFinite ],
function ( F, G )
return DegreeOverPrimeField( F ) = DegreeOverPrimeField( G );
end );
#############################################################################
##
#M IsSubset( <F>, <G> ) . . . . . . . . . . . . . . . for two finite fields
##
## Note that for two finite fields in the same family,
## it suffices to check the dimensions as vector spaces over the (common)
## prime field.
##
InstallMethod( IsSubset,
"for two finite fields in the same family",
IsIdenticalObj,
[ IsField and IsFinite, IsField and IsFinite ],
function( F, G )
return DegreeOverPrimeField( F ) mod DegreeOverPrimeField( G ) = 0;
end );
#############################################################################
##
#M Subfields( <F> ) . . . . . . . . . . . . . . subfields of a finite field
##
InstallMethod( Subfields,
"for finite field of FFEs",
[ IsField and IsFFECollection ],
function( F )
local d, p;
d:= DegreeOverPrimeField( F );
p:= Characteristic( F );
return List( DivisorsInt( d ), n -> GF( p, n ) );
end );
#############################################################################
##
#M Subfields( <F> ) . . . . . . . . . . . . . . subfields of a finite field
##
InstallMethod( Subfields, "for finite fields that are not FFEs",
[ IsField and IsFinite ],
function( F )
local d, p,l,i,mp,fac,S;
d:= DegreeOverPrimeField( F );
p:= Characteristic( F );
l:=[];
for i in Filtered(DivisorsInt(d),x->x<d) do
mp:=MinimalPolynomial(GF(p),PrimitiveRoot(GF(p^i)));
mp:=Value(mp,X(F),One(F));
fac:=Factors(mp);
fac:=RootsOfUPol(fac[1])[1]; # one root
S:=FieldByGenerators([fac]);
SetDegreeOverPrimeField(S,i);
SetSize(S,p^i);
# hack, as there is no good print routine for subfields
SetName(S,Concatenation("Field([",String(fac),"])"));
Add(l,S);
od;
Add(l,F); # field itself -- save on expensive factorization
return l;
end );
#############################################################################
##
#M PrimeField( <F> ) . . . . . . . . . . . . . . . . . . for a finite field
##
InstallMethod( PrimeField,
"for finite field of FFEs",
[ IsField and IsFFECollection ],
F -> GF( Characteristic( F ) ) );
#############################################################################
##
#M MinimalPolynomial( <F>, <z>, <inum> )
##
InstallMethod( MinimalPolynomial,
"finite field, finite field element, and indet. number",
IsCollsElmsX,
[ IsField and IsFinite, IsScalar, IsPosInt ],
function( F, z, inum )
local df, dz, q, dd, pol, deg, con, i;
# get the field in which <z> lies
df := DegreeOverPrimeField(F);
dz := DegreeOverPrimeField(DefaultField(z));
q := Size(F);
dd := LcmInt(df,dz) / df;
# compute the minimal polynomial simply by multiplying $x-cnj$
pol := [ One(F) ];
deg := 0;
for con in Set( List( [ 0 .. dd-1 ], x -> z^(q^x) ) ) do
pol[deg+2] := pol[deg+1];
for i in [ deg+1, deg .. 2 ] do
pol[i] := pol[i-1] - con*pol[i];
od;
pol[1] := -con*pol[1];
deg := deg + 1;
od;
# return the coefficients list of the minimal polynomial
return UnivariatePolynomial( F, pol, inum );
end );
#############################################################################
##
## 2. Groups of FFEs
##
#############################################################################
##
#M IsHandledByNiceMonomorphism( <G> ) . . . . . . `true' for groups of FFEs
##
InstallTrueMethod( IsHandledByNiceMonomorphism,
IsGroup and IsFFECollection );
#############################################################################
##
#M IsCyclic( <G> ) . . . . . . . . . . . . . . . . groups of FFEs are cyclic
##
InstallTrueMethod( IsCyclic, IsGroup and IsFFECollection );
#############################################################################
##
#M <elm> in <G> . . . . . . . . . . . . . . . . . . . . via `PrimitiveRoot'
##
InstallMethod( \in,
"for groups of FFE",
IsElmsColls,
[ IsFFE, IsGroup and IsFFECollection ],
function( elm, G )
local F;
F:= Field( Concatenation( GeneratorsOfGroup( G ), [ One( G ) ] ) );
return elm in F and not IsZero( elm )
and LogFFE( elm, PrimitiveRoot( F ) ) mod
( ( Size( F ) - 1 ) / Size( G ) ) = 0;
end );
#############################################################################
##
#M Size( <G> ) . . . . . . . . . . . . . . . . . . . . . via `PrimitiveRoot'
##
InstallMethod( Size,
"for groups of FFE",
[ IsGroup and IsFFECollection ],
function( G )
local gens, F, z, k;
if IsTrivial( G ) then
return 1;
fi;
gens := GeneratorsOfGroup( G );
F := Field( gens );
z := PrimitiveRoot( F );
k := Gcd( Integers, List( gens, g -> LogFFE(g, z) ) );
return ( Size( F ) - 1 ) / GcdInt(k, ( Size( F ) - 1 ));
end );
#############################################################################
##
#M AbelianInvariants( <G> ) . . . . . . . . . . . . . . via `PrimitiveRoot'
##
InstallMethod( AbelianInvariants,
"for groups of FFE",
[ IsGroup and IsFFECollection ],
G -> AbelianInvariantsOfList( [Size( G )] ) );
#############################################################################
##
#M CanEasilyComputeWithIndependentGensAbelianGroup( <G> )
##
InstallTrueMethod(CanEasilyComputeWithIndependentGensAbelianGroup,
IsGroup and IsFFECollection);
#############################################################################
##
#M IndependentGeneratorsOfAbelianGroup( <G> ) . . . . . via `PrimitiveRoot'
##
InstallMethod( IndependentGeneratorsOfAbelianGroup,
"for groups of FFE",
[ IsGroup and IsFFECollection ],
function( G )
local F, g, base, ord, o, cf, j;
if IsTrivial( G ) then
return [];
fi;
F := Field( GeneratorsOfGroup( G ) );
g := PrimitiveRoot( F ) ^ ( ( Size( F ) - 1 ) / Size( G ) );
base := [];
ord := [];
o := Order( g );
cf:=Collected( Factors( o ) );
for j in cf do
j := j[1]^j[2];
Add( base, g^(o/j) );
Add( ord, j );
od;
SortParallel(ord,base);
return base;
end );
#############################################################################
##
#M IndependentGeneratorExponents( <G> ) . . . . . . . . via `PrimitiveRoot'
##
InstallMethod( IndependentGeneratorExponents,
"for groups of FFE",
IsCollsElms,
[ IsGroup and IsFFECollection, IsFFE ],
function( G, elm )
local F, z, gens, j, exps;
if IsTrivial( G ) then
return [];
fi;
F := Field( GeneratorsOfGroup( G ) );
z := PrimitiveRoot( F );
gens := IndependentGeneratorsOfAbelianGroup( G );
# We need to compute LogFFE for every element of gens, which is
# in general quite expensive. But if gens was computed by our
# IndependentGeneratorsOfAbelianGroup method, then we actually
# know the LogFFE value. Since verifying this is cheap, try that
# first before resorting to LogFFE.
exps := List( gens, g -> ( Size(F) - 1 ) / Order( g ) );
if ForAny( [ 1 .. Length(exps) ], i -> gens[i] <> z^exps[i] ) then
# We have to do it the hard way...
exps := List( gens, g -> LogFFE( g, z ) );
fi;
j := LogFFE( elm, z );
exps := List( [1..Length(exps)], i -> ( j / exps[i] ) mod Order( gens[i] ) );
Assert( 0, elm = Product( [1..Length(exps)], i -> gens[i]^exps[i]) );
return exps;
end );
#############################################################################
##
## 3. Bases of Finite Fields
##
## *Note*: Bases of *subspaces* of fields which are themselves not fields
## are handled by the mechanism of nice bases (see `field.gi').
##
#############################################################################
##
#R IsBasisFiniteFieldRep( <F> )
##
## Bases of finite fields in the representation `IsBasisFiniteFieldRep'
## are dealt with as follows.
##
## Coefficients w.r.t.~a basis $B = (b_0, b_1, \ldots, b_d)$ of the field
## extension $GF(q^{d+1})$ over $GF(q)$ can be computed as follows.
## $x \in GF(q^{d+1})$ is of the form $x = \sum_{i=0}^d a_i b_i$,
## with $a_i \in GF(q)$, if and only if for $0 \leq k \leq d$ the equation
## $x^{q^k} = \sum_{i=0}^d a_i b_i^{q^k}$ holds.
## Thus we have the matrix equation
## $$
## [ x^{q^k} ]_{k=0}^d = [ a_i ]_{i=0}^d [ b_i^{q^k} ]_{i,k=0}^d ,
## $$
## from which the coefficients $a_i$ can be computed.
## The inverse of the matrix $[ b_i^{q^k} ]_{i,k=0}^d$ is stored in the
## basis as value of the component `inverseBase'.
##
DeclareRepresentation( "IsBasisFiniteFieldRep",
IsAttributeStoringRep,
[ "inverseBase", "d", "q" ] );
InstallTrueMethod( IsFinite, IsBasis and IsBasisFiniteFieldRep );
#############################################################################
##
#M Basis( <F> )
##
## We know a canonical basis for finite fields.
##
InstallMethod( Basis,
"for a finite field (delegate to `CanonicalBasis')",
[ IsField and IsFinite ], CANONICAL_BASIS_FLAGS,
CanonicalBasis );
#############################################################################
##
#M Basis( <F>, <gens> )
#M BasisNC( <F>, <gens> )
##
InstallMethod( Basis,
"for a finite field, and a hom. list",
IsIdenticalObj,
[ IsField and IsFinite, IsFFECollection and IsList ],
function( F, gens )
local B, # the basis, result
q, # size of the subfield
d, # dimension of the extension
mat,
b,b1,
cnjs,
k;
# Set up the basis object.
B:= Objectify( NewType( FamilyObj( gens ),
IsFiniteBasisDefault
and IsBasisFiniteFieldRep ),
rec() );
SetUnderlyingLeftModule( B, F );
SetBasisVectors( B, gens );
# Get the size `q' of the subfield and the dimension `d'
# of the extension with respect to the subfield.
q:= Size( LeftActingDomain( F ) );
d:= Dimension( F );
# Test that the basis vectors really define the
# (unique) finite field extension of degree `d'.
if d <> Length( gens ) then
return fail;
fi;
# Build the matrix `M[i][k] = vectors[i]^(q^k)'.
mat:= [];
for b in gens do
cnjs := [];
b1 := b;
cnjs := [b];
for k in [ 1 .. d-1 ] do
b1 := b1^q;
Add( cnjs, b1 );
od;
Add( mat, cnjs );
od;
# We have a basis if and only if `mat' is invertible.
if Length(mat) > 0 then
mat:= Inverse( mat );
if mat = fail then
return fail;
fi;
else
mat := Immutable(mat);
fi;
# Add the coefficients information.
B!.inverseBase:= mat;
B!.d:= d;
B!.q:= q;
# Return the basis.
return B;
end );
InstallMethod( BasisNC,
"for a finite field, and a hom. list",
IsIdenticalObj,
[ IsField and IsFinite, IsHomogeneousList ], 10,
function( F, gens )
local B, # the basis, result
q, # size of the subfield
d, # dimension of the extension
mat,
b,b1,
cnjs,
k;
# Set up the basis object.
B:= Objectify( NewType( FamilyObj( gens ),
IsFiniteBasisDefault
and IsBasisFiniteFieldRep ),
rec() );
SetUnderlyingLeftModule( B, F );
SetBasisVectors( B, gens );
# Get the size `q' of the subfield and the dimension `d'
# of the extension with respect to the subfield.
q:= Size( LeftActingDomain( F ) );
d:= Dimension( F );
# Build the matrix `M[i][k] = vectors[i]^(q^k)'.
mat:= [];
for b in gens do
cnjs := [b];
b1 := b;
for k in [ 1 .. d-1 ] do
b1 := b1^q;
Add( cnjs, b1 );
od;
Add( mat, cnjs );
od;
# Add the coefficients information.
if Length(mat) > 0 then
B!.inverseBase:= Inverse( mat );
else
B!.inverseBase:= Immutable(mat);
fi;
B!.d:= d;
B!.q:= q;
# Return the basis.
return B;
end );
#############################################################################
##
#M Coefficients( <B>, <z> ) . . . . . . . . . . for basis of a finite field
##
InstallMethod( Coefficients,
"for a basis of a finite field, and a scalar",
IsCollsElms,
[ IsBasis and IsBasisFiniteFieldRep, IsScalar ],
function ( B, z )
local q, d, k, zz;
if not z in UnderlyingLeftModule( B ) then
return fail;
fi;
# Get the size `q' of the subfield and the degree `d' of the extension
# with respect to the subfield.
q := B!.q;
d := B!.d;
# Compute the vector of conjugates of `z'.
zz := [];
for k in [0..d-1] do
Add( zz, z^(q^k) );
od;
# The `inverseBase' component of the basis defines the base change
# to the normal basis.
return zz * B!.inverseBase;
end );
#############################################################################
##
#M LinearCombination( <B>, <coeffs> )
##
InstallMethod( LinearCombination,
"for a basis of a finite field, and a hom. list",
IsIdenticalObj,
[ IsBasis and IsBasisFiniteFieldRep, IsHomogeneousList ],
function ( B, coeffs )
if Length(coeffs) = 0 then
TryNextMethod();
fi;
return coeffs * BasisVectors( B );
#T This calls PROD_LIST_LIST_DEFAULT
#T if both lists are known to be small,
#T and PROD_LIST_LIST_TRY otherwise!
#T Is this method necessary at all??
end );
#############################################################################
##
#M CanonicalBasis( <F> )
##
## The canonical basis of the finite field with $p^n$ elements, viewed over
## its subfield with $p^d$ elements, consists of the vectors `<z> ^ <i>',
## $0 \leq i \< n/d$, where <z> is the primitive root of <F>.
##
InstallMethod( CanonicalBasis,
"for a finite field",
[ IsField and IsFinite ],
function( F )
local z, # primitive root
B; # basis record, result
z:= RootOfDefiningPolynomial( F );
B:= BasisNC( F, List( [ 0 .. Dimension( F ) - 1 ], i -> z ^ i ) );
SetIsCanonicalBasis( B, true );
# Return the basis object.
return B;
end );
#############################################################################
##
#M NormalBase( <F>, <elm> )
##
## For finite fields just search.
##
InstallMethod( NormalBase,
"for a finite field and scalar",
[ IsField and IsFinite, IsScalar ],
function(F, b)
local q, d, z, l, bas, i;
if b=0*b then
b := One(F);
fi;
q := Size(LeftActingDomain(F));
d := Dimension(F);
z := PrimitiveRoot(F);
repeat
l := [b];
for i in [1..d-1] do
Add(l, l[i]^q);
od;
bas := Basis(F, l);
b := b*z;
until bas <> fail;
return l;
end);
#############################################################################
##
## 4. Automorphisms of Finite Fields
##
#############################################################################
##
#R IsFrobeniusAutomorphism( <obj> ) . test if an object is a Frobenius aut.
##
DeclareRepresentation( "IsFrobeniusAutomorphism",
IsFieldHomomorphism
and IsMapping
and IsAttributeStoringRep,
[ "power" ] );
#############################################################################
##
#F FrobeniusAutomorphism(<F>) . . Frobenius automorphism of a finite field
##
BindGlobal( "FrobeniusAutomorphismI", function ( F, i )
local Fam, frob;
# Catch the bad case.
if Size( F ) = 2 then
i:= 1;
else
i:= i mod ( Size( F ) - 1 );
fi;
if i = 1 then
return IdentityMapping( F );
fi;
Fam:= ElementsFamily( FamilyObj( F ) );
# make the mapping object
frob:= Objectify( TypeOfDefaultGeneralMapping( F, F,
IsFrobeniusAutomorphism
and IsSPGeneralMapping
and IsRingWithOneHomomorphism
and IsBijective ),
rec() );
frob!.power := i;
return frob;
end );
InstallMethod( FrobeniusAutomorphism,
"for a field",
[ IsField ],
function ( F )
# check the arguments
if not IsPosRat( Characteristic( F ) ) then
Error( "<F> must be a field of nonzero characteristic" );
fi;
# return the automorphism
return FrobeniusAutomorphismI( F, Characteristic( F ) );
end );
#############################################################################
##
#M \=( <frob1>, <frob2> )
#M \=( <id>, <frob> )
#M \=( <frob>, <id> )
##
InstallMethod( \=,
"for two Frobenius automorphisms",
IsIdenticalObj,
[ IsFrobeniusAutomorphism, IsFrobeniusAutomorphism ],
function( aut1, aut2 )
return Source( aut1 ) = Source( aut2 ) and aut1!.power = aut2!.power;
end );
InstallMethod( \=,
"for identity mapping and Frobenius automorphism",
IsIdenticalObj,
[ IsMapping and IsOne, IsFrobeniusAutomorphism ],
function( id, aut )
return Source( id ) = Source( aut ) and aut!.power = 1;
end );
InstallMethod( \=,
"for Frobenius automorphism and identity mapping",
IsIdenticalObj,
[ IsFrobeniusAutomorphism, IsMapping and IsOne ],
function( aut, id )
return Source( id ) = Source( aut ) and aut!.power = 1;
end );
InstallMethod( ImageElm,
"for Frobenius automorphism and source element",
FamSourceEqFamElm,
[ IsFrobeniusAutomorphism, IsObject ],
function( aut, elm )
return elm ^ aut!.power;
end );
InstallMethod( ImagesElm,
"for Frobenius automorphism and source element",
FamSourceEqFamElm,
[ IsFrobeniusAutomorphism, IsObject ],
function( aut, elm )
return [ elm ^ aut!.power ];
end );
InstallMethod( ImagesSet,
"for Frobenius automorphism and field contained in the source",
CollFamSourceEqFamElms,
[ IsFrobeniusAutomorphism, IsField ],
function( aut, elms )
return elms;
end );
InstallMethod( ImagesRepresentative,
"for Frobenius automorphism and source element",
FamSourceEqFamElm,
[ IsFrobeniusAutomorphism, IsObject ],
function( aut, elm )
return elm ^ aut!.power;
end );
InstallMethod( CompositionMapping2,
"for two Frobenius automorphisms",
IsIdenticalObj,
[ IsFrobeniusAutomorphism, IsFrobeniusAutomorphism ],
function( aut1, aut2 )
if Characteristic( Source( aut1 ) )
= Characteristic( Source( aut2 ) ) then
return FrobeniusAutomorphismI( Source( aut1 ),
aut1!.power * aut2!.power );
else
Error( "Frobenius automorphisms of different characteristics" );
fi;
end );
InstallMethod( InverseGeneralMapping,
"for a Frobenius automorphism",
[ IsFrobeniusAutomorphism ],
aut -> FrobeniusAutomorphismI( Source( aut ),
Size( Source( aut ) ) / aut!.power ) );
InstallMethod( \^,
"for a Frobenius automorphism, and an integer",
[ IsFrobeniusAutomorphism, IsInt ],
function ( aut, i )
return FrobeniusAutomorphismI( Source( aut ),
PowerModInt( aut!.power, i, Size( Source( aut ) ) - 1 ) );
end );
InstallMethod( \<,
"for an identity mapping, and a Frobenius automorphism",
IsIdenticalObj,
[ IsMapping and IsOne, IsFrobeniusAutomorphism ],
function ( id, aut )
local source1, # source of `id'
source2, # source of `aut'
p, # characteristic
root, # primitive root of source
size, # size of source
d, # degree
gen; # generator of cyclic group of subfield
source1:= Source( id );
source2:= Source( aut );
if source1 <> source2 then
return source1 < source2;
elif PrimitiveRoot( source1 )
<> PrimitiveRoot( source2 ) then
return PrimitiveRoot( source1 )
< PrimitiveRoot( source2 );
#T o.k.?
else
p := Characteristic( source1 );
root:= PrimitiveRoot( source1 );
size:= Size( source1 );
for d in DivisorsInt( LogInt( size, p ) ) do
gen:= root^( ( size - 1 ) / ( p^d - 1 ) );
if gen <> gen ^ aut!.power then
return gen < gen ^ aut!.power;
fi;
od;
return false;
fi;
end );
InstallMethod( \<,
"for a Frobenius automorphism, and an identity mapping",
IsIdenticalObj,
[ IsFrobeniusAutomorphism, IsMapping and IsOne ],
function ( aut, id )
local source1, # source of `aut'
source2, # source of `id'
p, # characteristic
root, # primitive root of source
size, # size of source
d, # degree
gen; # generator of cyclic group of subfield
source1:= Source( aut );
source2:= Source( id );
if source1 <> source2 then
return source1 < source2;
elif PrimitiveRoot( source1 )
<> PrimitiveRoot( source2 ) then
return PrimitiveRoot( source1 )
< PrimitiveRoot( source2 );
#T o.k.?
else
p := Characteristic( source1 );
root:= PrimitiveRoot( source1 );
size:= Size( source1 );
for d in DivisorsInt( LogInt( size, p ) ) do
gen:= root^( ( size - 1 ) / ( p^d - 1 ) );
if gen ^ aut!.power <> gen then
return gen ^ aut!.power < gen;
fi;
od;
return false;
fi;
end );
InstallMethod( \<,
"for two Frobenius automorphisms",
IsIdenticalObj,
[ IsFrobeniusAutomorphism, IsFrobeniusAutomorphism ],
function ( aut1, aut2 )
local source1, # source of `aut1'
source2, # source of `aut2'
p, # characteristic
root, # primitive root of source
size, # size of source
d, # degree
gen; # generator of cyclic group of subfield
source1:= Source( aut1 );
source2:= Source( aut2 );
if source1 <> source2 then
return source1 < source2;
elif PrimitiveRoot( source1 )
<> PrimitiveRoot( source2 ) then
return PrimitiveRoot( source1 )
< PrimitiveRoot( source2 );
#T o.k.?
else
p := Characteristic( source1 );
root:= PrimitiveRoot( source1 );
size:= Size( source1 );
for d in DivisorsInt( LogInt( size, p ) ) do
gen:= root^( ( size - 1 ) / ( p^d - 1 ) );
if gen ^ aut1!.power <> gen ^ aut2!.power then
return gen ^ aut1!.power < gen ^ aut2!.power;
fi;
od;
return false;
fi;
end );
InstallMethod( PrintObj,
"for a Frobenius automorphism",
[ IsFrobeniusAutomorphism ],
function ( aut )
if aut!.power = Characteristic( Source( aut ) ) then
Print( "FrobeniusAutomorphism( ", Source( aut ), " )" );
else
Print( "FrobeniusAutomorphism( ", Source( aut ), " )^",
LogInt( aut!.power, Characteristic( Source( aut ) ) ) );
fi;
end );
#############################################################################
##
#M GaloisGroup( <F> ) . . . . . . . . . . . Galois group of a finite field
##
InstallMethod( GaloisGroup,
"for a finite field",
[ IsField and IsFinite ],
F -> GroupByGenerators(
[ FrobeniusAutomorphismI( F, Size( LeftActingDomain(F) ) ) ] ) );
#############################################################################
##
#E
|