/usr/share/gap/lib/fitfree.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 | #############################################################################
##
#W fitfree.gd GAP library Alexander Hulpke
##
##
#Y Copyright (C) 2012 The GAP Group
##
## This file contains functions using the trivial-fitting paradigm.
##
BindGlobal("SylowViaRadical",function(G,prime)
local ser,hom,s,fphom,sf,sg,sp,fp,d,head,mran,nran,mpcgs,ocr,len,pcgs,gens;
ser:=FittingFreeLiftSetup(G);
pcgs:=ser.pcgs;
len:=Length(pcgs);
hom:=ser.factorhom;
s:=SylowSubgroup(Image(hom),prime);
fphom:=IsomorphismFpGroup(s);
fp:=Image(fphom);
sf:=List(GeneratorsOfGroup(Image(fphom)),x->PreImagesRepresentative(fphom,x));
sg:=List(sf,x->PreImagesRepresentative(hom,x));
sp:=[];
RUN_IN_GGMBI:=true; # hack to skip Nice treatment
fphom:=GroupGeneralMappingByImagesNC(Group(sg,One(G)),fp,sg,
GeneratorsOfGroup(fp));
RUN_IN_GGMBI:=false;
for d in [2..Length(ser.depths)] do
mran:=[ser.depths[d-1]..len];
nran:=[ser.depths[d]..len];
head:=InducedPcgsByPcSequenceNC(pcgs,pcgs{mran});
mpcgs:=head mod
InducedPcgsByPcSequenceNC(pcgs,pcgs{nran});
if RelativeOrders(mpcgs)[1]=prime then
if d=Length(ser.depths) then
# last step, no presentation needed
Append(sp,mpcgs);
else
# extend presentation
RUN_IN_GGMBI:=true; # hack to skip Nice treatment
fphom:=LiftFactorFpHom(fphom,Source(fphom),false,false,mpcgs);
RUN_IN_GGMBI:=false;
fp:=Image(fphom);
sp:=Concatenation(sp,mpcgs);
fi;
else
ocr:=rec(group:=Group(Concatenation(head,sg,sp)),modulePcgs:=mpcgs);
ocr.factorfphom:=fphom;
OCOneCocycles(ocr,true);
gens:=GeneratorsOfGroup(ocr.complement);
sg:=gens{[1..Length(sg)]};
sp:=gens{[Length(sg)+1..Length(gens)]};
RUN_IN_GGMBI:=true; # hack to skip Nice treatment
fphom:=GroupGeneralMappingByImagesNC(ocr.complement,fp,gens,
GeneratorsOfGroup(fp));
RUN_IN_GGMBI:=false;
fi;
od;
return SubgroupByFittingFreeData(G,sg,sf,InducedPcgsByPcSequenceNC(pcgs,sp));
end);
InstallMethod(DirectFactorsFittingFreeSocle,"generic",true,
[IsGroup and IsFinite],0,
function(G)
local s,o,a,n,d,f,fn,j,b,i;
s:=Socle(G);
#try to split first according to orbits
if IsPermGroup(G) then
o:=Orbits(s,MovedPoints(s));
f:=[s]; #prefactors
for i in o do
fn:=[];
for j in f do
a:=Stabilizer(j,i,OnTuples);
if Size(a)=Size(j) or Size(a)=1 then
Add(fn,j);
else
b:=Centralizer(j,a);
Add(fn,a);
Add(fn,b);
fi;
od;
f:=fn;
od;
else
f:=[s];
fi;
d:=[];
for i in f do
if IsSimpleGroup(i) then
Add(d,i);
else
n:=Filtered(NormalSubgroups(i),x->Size(x)>1);
# if G is not fitting-free it has a proper normal subgroup of
# prime-power order
if ForAny(n,x->Length(Set(Factors(Size(x))))=1) then
return fail;
fi;
n:=Filtered(n,IsSimpleGroup);
Append(d,n);
fi;
od;
return d;
end);
BindGlobal("ClosureGroupQuick",function(G,U,V)
local o,C;
C:=SubgroupNC(G,Concatenation(GeneratorsOfGroup(U),GeneratorsOfGroup(V)));
o:=List([1..100],x->Order(PseudoRandom(C)));
Add(o,Size(U));
Add(o,Size(V));
if IsPermGroup(G) then
Append(o,List(Orbits(C,MovedPoints(G)),Length));
fi;
o:=Lcm(o);
if Set(Factors(Size(G)))=Set(Factors(o)) then
# all primes in -- useless
return G;
fi;
return C;
end);
# the ``all-halls'' function by brute force Sylow-combination search
BindGlobal("Halleen",function(arg)
local G,gp,p,r,s,c,i,a,pp,prime,sy,k,b,dc,H,e,j,forbid;
G:=arg[1];
gp:=Set(Factors(Size(G)));
if Length(arg)>1 then
r:=arg[2];
forbid:=Difference(gp,r);
p:=Intersection(gp,r);
else
forbid:=[];
p:=gp;
fi;
r:=List(p,x->[[x],[SylowSubgroup(G,x)]]); # real halls
s:=ShallowCopy(r); # real and potential halls to extend
c:=Combinations(p);
c:=Filtered(c,x->Length(x)>1 and Length(x)<Length(gp));
Sort(c,function(a,b) return Length(a)<Length(b);end);
for i in c do
a:=[];
pp:=Product(i);
# now build all new groups by extending the groups that were obtained
# for one prime less. We exclude the smallest prime, as it tends to have
# the largest sylow
prime:=i[1];
sy:=SylowSubgroup(G,prime);
k:=i{[2..Length(i)]};
# b are the groups constructed using the other primes
b:=First(s,x->x[1]=k);
if b=fail then b:=[];
else b:=b[2]; fi;
# those that already contain the prime Sylow just go on
e:=Filtered(b,x->1=Gcd(Index(G,x),prime));
# are any of these actually proper hall?
for H in e do
if IsSubset(i,Factors(Size(H))) then
Add(a,H);
fi;
od;
# the rest should be extended
b:=Filtered(b,x->1<Gcd(Index(G,x),prime));
Info(InfoLattice,1,"Try ",i," from ",k," ",Length(e)," ",Length(b));
for j in b do
dc:=DoubleCosetRepsAndSizes(G,Normalizer(G,sy),Normalizer(G,j));
#Print(Length(dc)," double cosets\n");
for k in dc do
#H:=ClosureGroup(j,sy^k[1]);
H:=ClosureGroupQuick(G,j,sy^k[1]);
# discard whole group and those that have all primes
if Index(G,H)>1 and not ForAll(gp,x->IsInt(Size(H)/x))
and not ForAny(forbid,x->IsInt(Size(H)/x)) then
if ForAll(e,x->H<>x) and
ForAll(e,x->RepresentativeAction(G,H,x)=fail) then
Add(e,H);
if IsSubset(i,Factors(Size(H))) then
if Length(Intersection(Factors(Index(G,H)),i))=0 then
Info(InfoLattice,2,"Found Hall",i," ",Size(H));
else
Info(InfoLattice,2,"Found ",i," ",Size(H));
fi;
Add(a,H);
else
Info(InfoLattice,2,"Too large ",i," ",Size(H));
fi;
fi;
fi;
od;
od;
Add(s,[i,e]);
if Length(a)>0 then
Add(r,[i,a]);
fi;
od;
return r;
end);
BindGlobal("HallsFittingFree",function(G,pi)
local s,d,c,act,o,i,j,h,p,hf,img,n,prd,k,nk,map,ns,all,hl,hcomp,
reps,orb,m,mk,shall,marks,t,thom,b,ntb,hom,dser,pcgs,
fphom,fp,gens,imgs,ocr,elabser,cgens,a,kim,r,z;
# get elementary abelian series from -> to
elabser:=function(from,to)
local ser,a,p;
ser:=[from];
while Size(from)>Size(to) do
a:=from;
from:=DerivedSubgroup(a);
if Size(from)=Size(a) then
# nonsolvable case
return ser;
fi;
p:=Factors(Index(a,from))[1];
from:=ClosureGroup(from,List(GeneratorsOfGroup(a),x->x^p));
Assert(1,HasElementaryAbelianFactorGroup(a,from) and Index(a,from)>1);
Add(ser,from);
od;
return ser;
end;
# needs to go higher
pi:=Set(pi);
prd:=Product(pi);
if ForAny(pi,x->not IsPrimeInt(x)) then
Error("pi must be a set of primes");
fi;
pi:=Filtered(pi,x->IsInt(Size(G)/x));
if Length(pi)=0 then
return [TrivialSubgroup(G)];
elif false and Length(pi)=1 then
return [SylowSubgroup(G,pi[1])];
elif pi=Set(Factors(Size(G))) then
return [G];
fi;
s:=Socle(G);
d:=DirectFactorsFittingFreeSocle(G);
c:=[]; # conjugation info
act:=ActionHomomorphism(G,d);
t:=KernelOfMultiplicativeGeneralMapping(act);
img:=Image(act);
# compute Hall in factor
hf:=HallViaRadical(img,pi);
Info(InfoLattice,1,"Permact factor:",Length(hf)," hall subgroups");
if Length(hf)=0 then
# nothing in the factor
return [];
fi;
# compute b such that b/s is hall in t/s
thom:=NaturalHomomorphismByNormalSubgroupNC(t,s);
b:=HallSubgroup(Image(thom),pi);
b:=PreImage(thom,b);
ntb:=Normalizer(t,b); # likely equal to t or of small index, thus harmless
# also compute halls for socle
o:=Orbits(Image(act),[1..Length(d)]);
hl:=[];
for i in o do
p:=Intersection(Factors(Size(d[i[1]])),pi);
if Length(p)=0 then
h:=[,[TrivialSubgroup(d[i[1]])]];
else
h:=Halleen(d[i[1]],p);
h:=First(h,x->x[1]=p);
fi;
# TODO: Reduce via B-action
if h=fail then
return [];
fi;
h:=h[2];
Info(InfoLattice,2,"Socle factor size ",Size(d[i[1]]),": ",Length(h),
" Hall subgroups");
for j in i do
hl[j]:=Length(h);
od;
n:=List(h,x->Normalizer(d[i[1]],x));
c[i[1]]:=rec(orbit:=i,orbitpos:=1,rep:=One(G),component:=d[i[1]],hall:=h,
norm:=n);
for j in [2..Length(i)] do
c[i[j]]:=rec(orbit:=i,orbitpos:=j,
rep:=PreImagesRepresentative(act,
RepresentativeAction(Image(act),i[1],i[j])),
component:=d[i[j]],hall:=h, norm:=n);
od;
od;
# now form all halls in s
shall:=[];
for p in Cartesian(List(hl,x->[1..x])) do
h:=TrivialSubgroup(G);
hcomp:=[];
ns:=TrivialSubgroup(G);
for i in [1..Length(d)] do
hcomp[i]:=c[i].hall[p[i]]^c[i].rep;
h:=ClosureGroup(h,hcomp[i]);
ns:=ClosureGroup(ns,c[i].norm[p[i]]^c[i].rep);
od;
Add(shall,rec(hall:=h,hcomp:=hcomp,ns:=ns));
od;
if Length(shall)=0 then
return [];
fi;
Info(InfoLattice,1,Length(shall)," in socle");
# get elementary abelian series from ntb to b
dser:=elabser(ntb,b);
pcgs:=List([2..Length(dser)],x->ModuloPcgs(dser[x-1],dser[x]));
all:=[];
# run through halls in factor (and correct)
for i in hf do
if Size(i)>1 then
# replace hf's by complements
fphom:=IsomorphismFpGroup(i);
fp:=Range(fphom);
gens:=MappingGeneratorsImages(fphom);
imgs:=gens[2];gens:=gens[1];
gens:=List(gens,x->PreImagesRepresentative(act,x));
# adapt to normalize B
gens:=List(gens,x->x/RepresentativeAction(t,b^x,b));
# now do complements one by one
for j in [1..Length(pcgs)] do
h:=ClosureGroup(dser[j],gens);
RUN_IN_GGMBI:=true; # hack to skip Nice treatment
fphom:=GroupGeneralMappingByImagesNC(h,fp,
Concatenation(GeneratorsOfGroup(dser[j]),gens),
Concatenation(List(GeneratorsOfGroup(dser[j]),x->One(fp)),imgs));
RUN_IN_GGMBI:=false;
ocr:=rec(group:=h,modulePcgs:=pcgs[j],
factorfphom:=fphom);
OCOneCocycles(ocr,true);
gens:=GeneratorsOfGroup(ocr.complement);
od;
# lift presentation with b/s, if necessary
if Size(b)>Size(s) then
h:=ClosureGroup(b,gens);
RUN_IN_GGMBI:=true; # hack to skip Nice treatment
fphom:=GroupGeneralMappingByImagesNC(h,fp,
Concatenation(GeneratorsOfGroup(b),gens),
Concatenation(List(GeneratorsOfGroup(b),x->One(fp)),imgs));
RUN_IN_GGMBI:=false;
# get elementary abelian series from b to s
dser:=elabser(b,s);
pcgs:=List([2..Length(dser)],x->ModuloPcgs(dser[x-1],dser[x]));
for j in pcgs do
RUN_IN_GGMBI:=true; # hack to skip Nice treatment
fphom:=LiftFactorFpHom(fphom,Source(fphom),false,false,j);
RUN_IN_GGMBI:=false;
od;
gens:=MappingGeneratorsImages(fphom);
imgs:=gens[2];gens:=gens[1];
fp:=Image(fphom);
fi;
else
# trivial in factor -- continue with b
hom:=NaturalHomomorphismByNormalSubgroupNC(b,s);
fphom:=IsomorphismFpGroup(Image(hom));
fp:=Image(fphom);
gens:=MappingGeneratorsImages(fphom);
imgs:=gens[2];gens:=gens[1];
gens:=List(gens,x->PreImagesRepresentative(hom,x));
fi;
# now run through the candidates for Hall in S
for j in shall do
k:=j.hall;
# normalize k -- correct gens
cgens:=[];
h:=1;
while cgens<>fail and h<=Length(gens) do
a:=gens[h];
kim:=List(j.hcomp,x->x^a);
# reindex
kim:=kim{ListPerm(Image(act,a)^-1,Length(d))};
z:=1;
while a<>fail and z<=Length(d) do
r:=RepresentativeAction(d[z],kim[z],j.hcomp[z]);
if r<>fail then
a:=a*r;
else
a:=fail;
fi;
z:=z+1;
od;
if a<>fail then
Add(cgens,a);
else
cgens:=fail;
fi;
h:=h+1;
od;
if cgens=[] then
# degenerate case -- nothing in the factor, just use hall in s
Add(all,j.hall);
elif cgens<>fail then
# The s-class of k is fixed and cgens are generators for N_C(K),
# corresponding to gens (and imgs).
dser:=elabser(j.ns,j.hall);
pcgs:=List([2..Length(dser)],x->ModuloPcgs(dser[x-1],dser[x]));
# now do complement to NS(k)/k
for z in [1..Length(pcgs)] do
h:=ClosureGroup(dser[z],cgens);
RUN_IN_GGMBI:=true; # hack to skip Nice treatment
fphom:=GroupGeneralMappingByImagesNC(h,fp,
Concatenation(GeneratorsOfGroup(dser[z]),cgens),
Concatenation(List(GeneratorsOfGroup(dser[z]),x->One(fp)),
imgs));
RUN_IN_GGMBI:=false;
ocr:=rec(group:=h,modulePcgs:=pcgs[z],
factorfphom:=fphom);
OCOneCocycles(ocr,true);
cgens:=GeneratorsOfGroup(ocr.complement);
od;
if Size(dser[Length(dser)])>Size(j.hall) then
gens:=[];
for z in cgens do
b:=Order(z);
a:=Product(Filtered(Factors(b),x->x in pi));
c:=GcdRepresentation(a,b/a);
Add(gens,z^((b/a)*c[2]));
od;
h:=Group(gens);
Info(InfoLattice,2,"Coprimize to ",Size(h));
n:=NormalIntersection(j.ns,h);
if Size(n)>1 then
k:=NormalIntersection(k,h);
if Size(k)>1 then
Error("nonsolvable case with nontrivial k still to do");
fi;
# now work in sylow normalizer -- correct gens to normalize
a:=SylowSubgroup(n,2);
cgens:=[];
for z in gens do
Add(cgens,z->z*RepresentativeAction(n,a^z,a));
od;
h:=Group(cgens);
a:=ComplementClassesRepresentatives(h,NormalIntersection(n,h));
cgens:=GeneratorsOfGroup(h[1]);
else
cgens:=gens;
k:=TrivialSubgroup(G);
fi;
fi;
Add(all,ClosureGroup(k,cgens));
else
Info(InfoLattice,3,"does not work");
fi;
od;
od;
return all;
end);
InstallGlobalFunction(HallViaRadical,function(G,pi)
local ser,hom,s,fphom,sf,sg,sp,fp,d,head,mran,nran,mpcgs,ocr,len,pcgs,
gens,all,indu;
if ForAny(pi,x->not IsPrimeInt(x)) then
Error("pi must be a set of primes");
fi;
ser:=FittingFreeLiftSetup(G);
pcgs:=ser.pcgs;
len:=Length(pcgs);
hom:=ser.factorhom;
if Intersection(pi,Factors(Size(Image(hom))))=[] then
s:=HallSubgroup(Image(ser.pcisom),pi);
sp:=List(Pcgs(s),x->PreImage(ser.pcisom,x));
return [
SubgroupByFittingFreeData(G,[],[],InducedPcgsByPcSequenceNC(pcgs,sp))];
fi;
all:=[];
for s in HallsFittingFree(Image(hom),pi) do
fphom:=IsomorphismFpGroup(s);
fp:=Image(fphom);
sf:=List(GeneratorsOfGroup(Image(fphom)),x->PreImagesRepresentative(fphom,x));
sg:=List(sf,x->PreImagesRepresentative(hom,x));
sp:=[];
RUN_IN_GGMBI:=true; # hack to skip Nice treatment
fphom:=GroupGeneralMappingByImagesNC(Group(sg,One(G)),fp,sg,
GeneratorsOfGroup(fp));
RUN_IN_GGMBI:=false;
for d in [2..Length(ser.depths)] do
mran:=[ser.depths[d-1]..len];
nran:=[ser.depths[d]..len];
head:=InducedPcgsByPcSequenceNC(pcgs,pcgs{mran});
mpcgs:=head mod
InducedPcgsByPcSequenceNC(pcgs,pcgs{nran});
if RelativeOrders(mpcgs)[1] in pi then
if d=Length(ser.depths) then
# last step, no presentation needed
Append(sp,mpcgs);
else
# extend presentation
RUN_IN_GGMBI:=true; # hack to skip Nice treatment
fphom:=LiftFactorFpHom(fphom,Source(fphom),false,false,mpcgs);
RUN_IN_GGMBI:=false;
fp:=Image(fphom);
sp:=Concatenation(sp,mpcgs);
fi;
else
ocr:=rec(group:=Group(Concatenation(head,sg,sp)),modulePcgs:=mpcgs);
ocr.factorfphom:=fphom;
OCOneCocycles(ocr,true);
gens:=GeneratorsOfGroup(ocr.complement);
sg:=gens{[1..Length(sg)]};
sp:=gens{[Length(sg)+1..Length(gens)]};
RUN_IN_GGMBI:=true; # hack to skip Nice treatment
fphom:=GroupGeneralMappingByImagesNC(ocr.complement,fp,gens,
GeneratorsOfGroup(fp));
RUN_IN_GGMBI:=false;
fi;
od;
if Length(pcgs)>0 then
indu:=InducedPcgsByPcSequenceNC(pcgs,sp);
else
indu:=[];
fi;
Add(all,
SubgroupByFittingFreeData(G,sg,sf,indu));
od;
return all;
end);
#############################################################################
##
#M HallSubgroupOp( <G>, <pi> )
##
## Fitting free approach
##
InstallMethod( HallSubgroupOp, "fitting free",true,
[ IsGroup and CanComputeFittingFree,IsList ],0,
function(G,pi)
local l;
if CanEasilyComputePcgs(G) then
TryNextMethod(); # pcgs method is clearly better
fi;
l:=HallViaRadical(G,pi);
if Length(l)=1 then
return l[1];
elif Length(l)=0 then
return fail;
else
return l;
fi;
end);
|