/usr/share/gap/lib/fpsemi.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 | #############################################################################
##
#W fpsemi.gi GAP library Andrew Solomon and Isabel Araújo
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations for finitely presented semigroups.
##
#############################################################################
##
#M ElementOfFpSemigroup( <fam>, <elm> )
##
InstallMethod( ElementOfFpSemigroup,
"for a family of f.p. semigroup elements, and an assoc. word",
true,
[ IsElementOfFpSemigroupFamily, IsAssocWord ],
0,
function( fam, elm )
return Objectify( fam!.defaultType, [ Immutable( elm ) ] );
end );
#############################################################################
##
#M UnderlyingElement( <elm> ) . . . . . . for element of f.p. semigroup
##
InstallMethod( UnderlyingElement,
"for an element of an f.p. semigroup (default repres.)",
true,
[ IsElementOfFpSemigroup and IsPackedElementDefaultRep ],
0,
obj -> obj![1] );
#############################################################################
##
#M FpSemigroupOfElementOfFpSemigroup( <elm> )
##
## returns the fp semigroup to which <elm> belongs to
##
InstallMethod( FpSemigroupOfElementOfFpSemigroup,
"for an element of an fp semigroup",
true,
[IsElementOfFpSemigroup],
0,
elm -> CollectionsFamily(FamilyObj(elm))!.wholeSemigroup);
#############################################################################
##
#M \*( <x1>, <x2> )
##
InstallMethod( \*,
"for two elements of a f.p. semigroup",
IsIdenticalObj,
[ IsElementOfFpSemigroup, IsElementOfFpSemigroup ],
0,
function( x1, x2 )
return ElementOfFpSemigroup(FamilyObj(x1),
UnderlyingElement(x1)*UnderlyingElement(x2));
end );
#############################################################################
##
#M \<( <x1>, <x2> )
##
##
InstallMethod( \<,
"for two elements of a f.p. semigroup",
IsIdenticalObj,
[ IsElementOfFpSemigroup, IsElementOfFpSemigroup ],
0,
function( x1, x2 )
local S, RWS;
S := CollectionsFamily(FamilyObj(x1))!.wholeSemigroup;
RWS := ReducedConfluentRewritingSystem(S);
return ReducedForm(RWS, UnderlyingElement(x1)) <
ReducedForm(RWS, UnderlyingElement(x2));
end );
#############################################################################
##
#M \=( <x1>, <x2> )
##
##
InstallMethod( \=,
"for two elements of a f.p. semigroup",
IsIdenticalObj,
[ IsElementOfFpSemigroup, IsElementOfFpSemigroup ],
0,
function( x1, x2 )
local S, RWS;
# This line could be improved - find out how it's done
# for groups
S := CollectionsFamily(FamilyObj(x1))!.wholeSemigroup;
RWS := ReducedConfluentRewritingSystem(S);
return ReducedForm(RWS, UnderlyingElement(x1)) =
ReducedForm(RWS, UnderlyingElement(x2));
end );
#############################################################################
##
#M PrintObj( <elm> )
##
InstallMethod( PrintObj, "for an f.p. semigroup element",
true, [ IsElementOfFpSemigroup], 0,
function( elm )
PrintObj(elm![1]);
end );
#############################################################################
##
#M String( <elm> )
##
InstallMethod( String, "for an f.p. semigroup element",
true, [ IsElementOfFpSemigroup], 0,
function( elm )
return String(elm![1]);
end );
#############################################################################
##
#M FpGrpMonSmgOfFpGrpMonSmgElement(<elm>)
##
InstallMethod(FpGrpMonSmgOfFpGrpMonSmgElement,
"for an element of an fp semigroup", true,
[IsElementOfFpSemigroup], 0,
x -> CollectionsFamily(FamilyObj(x))!.wholeSemigroup);
#############################################################################
##
#M FactorFreeSemigroupByRelations(<F>,<rels>) .. Create an FpSemigroup
##
## Note: If the semigroup has fewer relations than generators,
## then the semigroup is certainly infinite.
##
InstallGlobalFunction( FactorFreeSemigroupByRelations,
function( F, rels )
local S, fam, gens, r;
# Check that the relations are all lists of length 2
for r in rels do
if Length(r) <> 2 then
Error("A relation should be a list of length 2");
fi;
od;
# Create a new family.
fam := NewFamily( "FamilyElementsFpSemigroup", IsElementOfFpSemigroup );
# Create the default type for the elements -
# putting IsElementOfFpSemigroup ensures that lists of these things
# have CategoryCollections(IsElementOfFpSemigroup).
fam!.freeSemigroup := F;
fam!.relations := Immutable( rels );
fam!.defaultType := NewType( fam, IsElementOfFpSemigroup
and IsPackedElementDefaultRep );
# Create the semigroup.
S := Objectify(
NewType( CollectionsFamily( fam ),
IsSemigroup and IsFpSemigroup and IsAttributeStoringRep),
rec() );
# Mark <S> to be the 'whole semigroup' of its later subsemigroups.
FamilyObj( S )!.wholeSemigroup := S;
# Create generators of the semigroup.
gens:= List( GeneratorsOfSemigroup( F ),
s -> ElementOfFpSemigroup( fam, s ) );
SetGeneratorsOfSemigroup( S, gens );
if Length(gens) > Length(rels) then
SetIsFinite(S, false);
fi;
return S;
end);
#############################################################################
##
#M HomomorphismFactorSemigroup(<F>, <C> )
##
## for free semigroup and congruence
##
InstallMethod(HomomorphismFactorSemigroup,
"for a free semigroup and a congruence",
true,
[ IsFreeSemigroup, IsSemigroupCongruence ],
0,
function(s, c)
local
fp; # the semigroup under construction
if not s = Source(c) then
TryNextMethod();
fi;
fp := FactorFreeSemigroupByRelations(s, GeneratingPairsOfMagmaCongruence(c));
return MagmaHomomorphismByFunctionNC(s, fp,
x->ElementOfFpSemigroup(ElementsFamily(FamilyObj(fp)),x) );
end);
#############################################################################
##
#M HomomorphismFactorSemigroup(<F>, <C> )
##
## for fp semigroup and congruence
##
InstallMethod(HomomorphismFactorSemigroup,
"for an fp semigroup and a congruence",
true,
[ IsFpSemigroup, IsSemigroupCongruence ],
0,
function(s, c)
local
srels, # the relations of c
frels, # srels converted into pairs of words in the free semigroup
fp; # the semigroup under construction
if not s = Source(c) then
TryNextMethod();
fi;
# make the relations, relations of the free semigroup
srels := GeneratingPairsOfMagmaCongruence(c);
frels := List(srels, x->[UnderlyingElement(x[1]),UnderlyingElement(x[2])]);
fp := FactorFreeSemigroupByRelations(FreeSemigroupOfFpSemigroup(s),
Concatenation(frels, RelationsOfFpSemigroup(s)));
return MagmaHomomorphismByFunctionNC(s, fp,
x->ElementOfFpSemigroup(ElementsFamily(FamilyObj(fp)),UnderlyingElement(x)) );
end);
#############################################################################
##
#M FreeSemigroupOfFpSemigroup( S )
##
## Underlying free semigroup of an fp semigroup
##
InstallMethod( FreeSemigroupOfFpSemigroup,
"for a finitely presented semigroup",
true,
[ IsSubsemigroupFpSemigroup and IsWholeFamily ], 0,
T -> ElementsFamily( FamilyObj( T ) )!.freeSemigroup );
#############################################################################
##
#M Size( <G> ) . . . . . . . . . . . . . . . . . . . for a free semigroup
##
InstallMethod( Size,
"for a free semigroup",
true,
[ IsFreeSemigroup ], 0,
function( G )
if IsTrivial( G ) then
return 1;
else
return infinity;
fi;
end );
#############################################################################
##
#M FreeGeneratorsOfFpSemigroup( S )
##
## Generators of the underlying free semigroup
##
InstallMethod( FreeGeneratorsOfFpSemigroup,
"for a finitely presented semigroup",
true,
[ IsSubsemigroupFpSemigroup and IsWholeFamily ], 0,
T -> GeneratorsOfSemigroup( FreeSemigroupOfFpSemigroup( T ) ) );
#############################################################################
##
#M ViewObj( S )
##
## View a semigroup S
##
InstallMethod( ViewObj,
"for a free semigroup with generators",
true,
[ IsSemigroup and IsFreeSemigroup and HasGeneratorsOfMagma ], 0,
function( S )
Print( "<free semigroup on the generators ",GeneratorsOfSemigroup(S),">");
end );
InstallMethod( ViewObj,
"for a fp semigroup with generators",
true,
[ IsSubsemigroupFpSemigroup and IsWholeFamily and IsSemigroup
and HasGeneratorsOfMagma ], 0,
function( S )
Print( "<fp semigroup on the generators ",
FreeGeneratorsOfFpSemigroup(S),">");
end );
#############################################################################
##
#M RelationsOfFpSemigroup( F )
##
InstallOtherMethod( RelationsOfFpSemigroup,
"method for a free semigroup",
true,
[ IsFreeSemigroup ], 0,
F -> [] );
InstallMethod( RelationsOfFpSemigroup,
"for finitely presented semigroup",
true,
[ IsSubsemigroupFpSemigroup and IsWholeFamily ], 0,
S -> ElementsFamily( FamilyObj( S ) )!.relations );
############################################################################
##
#O NaturalHomomorphismByGenerators( <f>, <s> )
##
## returns a mapping from the free semigroup <f> with <n> generators to the
## semigroup <s> with <n> generators, which maps the ith generator to the
## ith generator.
##
BindGlobal("FreeSemigroupNatHomByGeneratorsNC",
function(f, s)
return MagmaHomomorphismByFunctionNC(f, s,
function(w)
local
i, # loop var
prodt, # product in the target semigroup
gens, # generators of the target semigroup
v; # ext rep as <gen>, <exp> pairs
if Length(w) = 0 then
return One(Representative(s));
fi;
gens := GeneratorsOfSemigroup(s);
v := ExtRepOfObj(w);
prodt := gens[v[1]]^v[2];
for i in [2 .. Length(v)/2] do
prodt := prodt*gens[v[2*i-1]]^v[2*i];
od;
return prodt;
end);
end);
InstallMethod( NaturalHomomorphismByGenerators,
"for a free semigroup and semigroup",
true,
[ IsFreeSemigroup, IsSemigroup and HasGeneratorsOfMagma], 0,
function(f, s)
if Size(GeneratorsOfMagma(f)) <> Size(GeneratorsOfMagma(s)) then
Error("Semigroups must have the same rank.");
fi;
return FreeSemigroupNatHomByGeneratorsNC(f, s);
end);
InstallMethod( NaturalHomomorphismByGenerators,
"for an fp semigroup and semigroup",
true,
[ IsFpSemigroup, IsSemigroup and HasGeneratorsOfSemigroup], 0,
function(f, s)
local
psi; # the homom from the free semi
if Size(GeneratorsOfSemigroup(f)) <> Size(GeneratorsOfSemigroup(s)) then
Error("Semigroups must have the same rank.");
fi;
psi := FreeSemigroupNatHomByGeneratorsNC(FreeSemigroupOfFpSemigroup(f), s);
# check that the relations hold
if Length(
Filtered(RelationsOfFpSemigroup(f), x->x[1]^psi <> x[2]^psi))>0 then
return fail;
fi;
# now create the homomorphism from the fp semi
return MagmaHomomorphismByFunctionNC(f, s, e->UnderlyingElement(e)^psi);
end);
#############################################################################
##
#E
|