/usr/share/gap/lib/ghom.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 | #############################################################################
##
#W ghom.gi GAP library Thomas Breuer
#W Alexander Hulpke
#W Heiko Theißen
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## 1. Functions for creating group general mappings by images
## 2. Functions for creating natural homomorphisms
## 3. Functions for conjugation action
## 4. Functions for ...
##
#############################################################################
##
#F GroupHomomorphismByImages( <G>, <H>, <Ggens>, <Hgens> )
#F GroupHomomorphismByImages( <G>, <H>, <Hgens> )
#F GroupHomomorphismByImages( <G>, <H> )
##
InstallGlobalFunction( GroupHomomorphismByImages,
function( arg )
local hom, G, H, Ggens, Hgens,arrgh;
arrgh:=arg;
if not Length(arrgh) in [2..4]
or not IsGroup(arrgh[1]) #or not IsGroup(arrgh[2])
then Error("for usage, see ?GroupHomomorphismByImages"); fi;
if not IsGroup(arrgh[2]) then
arrgh:=Concatenation([arrgh[1],Group(arrgh[Length(arrgh)])],
arrgh{[2..Length(arrgh)]});
fi;
G := arrgh[1]; H := arrgh[2];
if Length(arrgh) = 2
then Ggens := GeneratorsOfGroup(G); Hgens := GeneratorsOfGroup(H);
elif Length(arrgh) = 3
then Ggens := GeneratorsOfGroup(G); Hgens := arrgh[3];
elif Length(arrgh) = 4
then Ggens := arrgh[3]; Hgens := arrgh[4];
fi;
if Length(Ggens)>0 then
if not (IsDenseList(Ggens) and IsHomogeneousList(Ggens) and
FamilyObj(Ggens)=FamilyObj(G)) then
Error("The generators do not all belong to the source");
fi;
fi;
if Length(Hgens)>0 then
if not (IsDenseList(Hgens) and IsHomogeneousList(Hgens) and
FamilyObj(Hgens)=FamilyObj(H)) then
Error("The images do not all belong to the range");
fi;
fi;
hom:= GroupGeneralMappingByImages( G, H, Ggens, Hgens );
if IsMapping( hom ) then
return hom;
# was GroupHomomorphismByImagesNC( G, H, Ggens, Hgens ), but why
# should we create a new object again?;
else
return fail;
fi;
end );
#############################################################################
##
#M RestrictedMapping(<hom>,<U>)
##
InstallMethod(RestrictedMapping,"try if restriction is proper",
CollFamSourceEqFamElms,[IsGroupGeneralMapping,IsGroup],SUM_FLAGS,
function(hom, U)
if IsSubset (U, Source (hom)) then
return hom;
fi;
TryNextMethod();
end);
#############################################################################
##
#M RestrictedMapping(<hom>,<U>)
##
InstallMethod(RestrictedMapping,"create new GHBI",
CollFamSourceEqFamElms,[IsGroupHomomorphism,IsGroup],0,
function(hom,U)
local rest,gens,imgs,imgp;
gens:=GeneratorsOfGroup(U);
imgs:=List(gens,i->ImageElm(hom,i));
if HasImagesSource(hom) then
imgp:=ImagesSource(hom);
else
imgp:=Subgroup(Range(hom),imgs);
fi;
rest:=GroupHomomorphismByImagesNC(U,imgp,gens,imgs);
if HasIsInjective(hom) and IsInjective(hom) then
SetIsInjective(rest,true);
fi;
if HasIsTotal(hom) and IsTotal(hom) then
SetIsTotal(rest,true);
fi;
return rest;
end);
#############################################################################
##
#M RestrictedMapping(<hom>,<U>)
##
InstallMethod(RestrictedMapping,"injective case: use GeneralRestrictedMapping",
CollFamSourceEqFamElms,[IsGroupHomomorphism and IsInjective,IsGroup],0,
function(hom,U)
if IsGroupGeneralMappingByImages(hom) then # restrictions of GHBI should be GHBI
TryNextMethod();
fi;
return GeneralRestrictedMapping (hom, U, Range(hom));
end);
#############################################################################
##
#M <a> = <b> . . . . . . . . . . . . . . . . . . . . . . . . . . via images
##
InstallMethod( \=, "compare source generator images", IsIdenticalObj,
[ IsGroupGeneralMapping, IsGroupGeneralMapping ], 0,
function( a, b )
local i;
# try to fall back on homomorphism routines
if IsSingleValued(a) and IsSingleValued(b) then
# As both are single valued (and the appropriate flags are now set)
# we will automatically fall in the routines for homomorphisms.
# So this is not an infinite recursion.
#T is this really safe?
a:=MappingGeneratorsImages(a);
return a[2]=List(a[1],i->ImagesRepresentative(b,i));
fi;
# now do the hard test
if Source(a)<>Source(b)
or Range(a)<>Range(b)
or PreImagesRange(a)<>PreImagesRange(b)
or ImagesSource(a)<>ImagesSource(b) then
return false;
fi;
for i in PreImagesRange(a) do
if Set(Images(a,i))<>Set(Images(b,i)) then
return false;
fi;
od;
return true;
end );
#############################################################################
##
#M IsOne( <hom> )
##
InstallMethod(IsOne,"using `MappingGeneratorsImages'",true,
[IsGroupHomomorphism and HasMappingGeneratorsImages],0,
function(a)
local m;
if Source(a)=Range(a) and IsBijective(a) then
m:=MappingGeneratorsImages(a);
return ForAll([1..Length(m[1])],i->m[1][i]=m[2][i]);
fi;
return false;
end);
#############################################################################
##
#M CompositionMapping2( <hom1>, <hom2> ) . . . . . . . . . . . . via images
##
## The composition of two group general mappings can be computed as
## a group general mapping by images, *provided* that
## - elements of the source of the first map can be cheaply decomposed
## in terms of the generators
## (This is needed for computing images with a
## group general mapping by images.)
## and
## - we are *not* in the situation of the composition of a general mapping
## with a nice monomorphism.
## (Here it will usually be better to store the explicit composition
## of two mappings, think of an isomorphism from a matrix group to a
## permutation group, where both the action homomorphism and the
## isomorphism of two permutation groups can compute (pre)images
## efficiently, contrary to the composition when this is written as
## homomorphism by images.)
##
## (If both general mappings know that they are in fact homomorphisms
## then also the result will be a homomorphism; this is not done
## here, however, but rather in function CompositionMapping.)
##
InstallMethod( CompositionMapping2,
"for gp. hom. and gp. gen. mapp., using `MappingGeneratorsImages'",
FamSource1EqFamRange2,
[ IsGroupHomomorphism, IsGroupGeneralMapping ], 0,
function( hom1, hom2 )
local mapi;
if (not KnowsHowToDecompose(Source(hom2))) or IsNiceMonomorphism(hom2) then
TryNextMethod();
fi;
if not IsSubset(Source(hom1),ImagesSource(hom2)) then
TryNextMethod();
fi;
mapi:=MappingGeneratorsImages(hom2);
return GroupGeneralMappingByImagesNC( Source( hom2 ), Range( hom1 ),
mapi[1], List( mapi[2], img ->
ImagesRepresentative( hom1, img ) ) );
end);
# thanks to `MappingGeneratorsImages' this code is now obsolete.
# #############################################################################
# ##
# #M InverseGeneralMapping( <hom> ) . . . . . . . . . . . . . . . via images
# ##
# InstallMethod( InverseGeneralMapping,
# "for PBG-Hom",
# true,
# [ IsPreimagesByAsGroupGeneralMappingByImages ], 0,
# function(hom)
# return InverseGeneralMapping( AsGroupGeneralMappingByImages( hom ) );
# end );
InstallOtherMethod( SetInverseGeneralMapping,"transfer the AsGHBI", true,
[ IsGroupGeneralMappingByAsGroupGeneralMappingByImages and
HasAsGroupGeneralMappingByImages,
IsGeneralMapping ], 0,
function( hom, inv )
SetInverseGeneralMapping( AsGroupGeneralMappingByImages( hom ), inv );
TryNextMethod();
end );
#############################################################################
##
#M ImagesRepresentative( <hom>, <elm> ) . . . . . . . . . . . . via images
##
InstallMethod( ImagesRepresentative, "for `ByAsGroupGeneralMapping' hom",
FamSourceEqFamElm,
[ IsGroupGeneralMappingByAsGroupGeneralMappingByImages,
IsMultiplicativeElementWithInverse ], 0,
function( hom, elm )
return ImagesRepresentative( AsGroupGeneralMappingByImages( hom ), elm );
end );
#############################################################################
##
#M PreImagesRepresentative( <hom>, <elm> ) . . . . . . . . . . . via images
##
InstallMethod( PreImagesRepresentative, "for PBG-Hom", FamRangeEqFamElm,
[ IsPreimagesByAsGroupGeneralMappingByImages,
IsMultiplicativeElementWithInverse ], 0,
function( hom, elm )
if HasIsHandledByNiceMonomorphism(Source(hom)) then
# if we use the `AsGGMBI' directly, it will be a composite through a big
# group
return ImagesRepresentative( InverseGeneralMapping( hom ), elm );
else
return PreImagesRepresentative( AsGroupGeneralMappingByImages( hom ), elm );
fi;
end );
InstallAttributeMethodByGroupGeneralMappingByImages
( CoKernelOfMultiplicativeGeneralMapping, IsGroup );
InstallAttributeMethodByGroupGeneralMappingByImages
( KernelOfMultiplicativeGeneralMapping, IsGroup );
InstallAttributeMethodByGroupGeneralMappingByImages( PreImagesRange, IsGroup );
InstallAttributeMethodByGroupGeneralMappingByImages( ImagesSource, IsGroup );
InstallAttributeMethodByGroupGeneralMappingByImages( IsSingleValued, IsBool );
InstallAttributeMethodByGroupGeneralMappingByImages( IsInjective, IsBool );
InstallAttributeMethodByGroupGeneralMappingByImages( IsTotal, IsBool );
InstallAttributeMethodByGroupGeneralMappingByImages( IsSurjective, IsBool );
#############################################################################
##
#M GroupGeneralMappingByImages( <G>, <H>, <gens>, <imgs> ) . . . . make GHBI
##
BindGlobal("DoGGMBINC",function( G, H, gens, imgs )
local filter, hom,pcgs,imgso,mapi,l,obj_args,p;
hom := rec();
# generators := Immutable( gens ),
# genimages := Immutable( imgs ) );
if Length(gens)<>Length(imgs) then
Error("<gens> and <imgs> must be lists of same length");
fi;
mapi:=[Immutable(gens),Immutable(imgs)];
filter := IsGroupGeneralMappingByImages and HasSource and HasRange
and HasMappingGeneratorsImages;
if IsPermGroup( G ) then
filter := filter and IsPermGroupGeneralMappingByImages;
fi;
if IsPermGroup( H ) then
filter := filter and IsToPermGroupGeneralMappingByImages;
fi;
pcgs:=false; # default: no pc groups code
if IsPcGroup( G ) and IsPrimeOrdersPcgs(Pcgs(G)) then
filter := filter and IsPcGroupGeneralMappingByImages;
pcgs := CanonicalPcgsByGeneratorsWithImages( Pcgs(G), mapi[1], mapi[2] );
if pcgs[1]=Pcgs(G) then
filter:=filter and IsTotal;
fi;
elif IsPcgs( gens ) then
filter := filter and IsGroupGeneralMappingByPcgs;
pcgs:=mapi;
fi;
if pcgs<>false then
hom.sourcePcgs := pcgs[1];
hom.sourcePcgsImages := pcgs[2];
fi;
if IsPcGroup( H ) then
filter := filter and IsToPcGroupGeneralMappingByImages;
fi;
# Do we map a subgroup of a free group or an fp group by a subset of its
# standard generators?
# (So we can used MappedWord for mapping)?
if IsSubgroupFpGroup(G) then
if HasIsWholeFamily(G) and IsWholeFamily(G)
# total on free generators
and Set(FreeGeneratorsOfFpGroup(G))=Set(List(gens,UnderlyingElement))
then
l:=List(gens,UnderlyingElement);
p:=List(l,i->Position(FreeGeneratorsOfFpGroup(G),i));
# test for duplicate generators, same images
if Length(gens)=Length(FreeGeneratorsOfFpGroup(G)) or
ForAll([1..Length(gens)],x->imgs[x]=imgs[Position(l,l[x])]) then
filter := filter and IsFromFpGroupStdGensGeneralMappingByImages;
hom.genpositions:=p;
else
filter := filter and IsFromFpGroupGeneralMappingByImages;
fi;
else
filter := filter and IsFromFpGroupGeneralMappingByImages;
fi;
fi;
if IsSubgroupFpGroup(H) then
filter := filter and IsToFpGroupGeneralMappingByImages;
fi;
obj_args := [
hom,
, # Here the type will be inserted
Source, G,
Range, H,
MappingGeneratorsImages, mapi ];
if HasGeneratorsOfGroup(G)
and IsIdenticalObj(GeneratorsOfGroup(G),mapi[1]) then
Append(obj_args, [PreImagesRange, G]);
filter := filter and IsTotal and HasPreImagesRange;
fi;
if HasGeneratorsOfGroup(H)
and IsIdenticalObj(GeneratorsOfGroup(H),mapi[2]) then
Append(obj_args, [ImagesSource, H]);
filter := filter and IsSurjective and HasImagesSource;
elif pcgs <> false then
# The following code is only guaranteed to be correct if the map is
# single valued.
#if RankFilter(filter) = RankFilter(filter and IsSingleValued) then
# imgso:=SubgroupNC( H, pcgs[2]);
# Append(obj_args, [ImagesSource, imgso]);
#fi;
fi;
obj_args[2] :=
NewType( GeneralMappingsFamily( ElementsFamily( FamilyObj( G ) ),
ElementsFamily( FamilyObj( H ) ) ),
filter );
CallFuncList(ObjectifyWithAttributes, obj_args);
return hom;
end );
InstallMethod( GroupGeneralMappingByImagesNC, "for group, group, list, list",
true, [ IsGroup, IsGroup, IsList, IsList ], 0, DoGGMBINC);
InstallMethod( GroupGeneralMappingByImagesNC, "make onto",
true, [ IsGroup, IsList, IsList ], 0,
function( G, gens, imgs )
return GroupGeneralMappingByImagesNC(G,GroupWithGenerators(imgs),gens,imgs);
end);
# temporarily disabled until we separate GroupGeneralMappingByImages from
# its NC version.
#InstallMethod( GroupGeneralMappingByImages, "for group, group, list, list",
# true, [ IsGroup, IsGroup, IsList, IsList ], 0,
#function( G, H, gens, imgs )
# if not ForAll(gens,x->x in G) then
# Error("generators must lie in source group");
# elif not ForAll(imgs,x->x in H) then
# Error("images must lie in range group");
# fi;
# return GroupGeneralMappingByImagesNC(G,H,gens,imgs);
#end);
#
#InstallMethod( GroupGeneralMappingByImages, "make onto",
# true, [ IsGroup, IsList, IsList ], 0,
#function( G, gens, imgs )
# if not ForAll(gens,x->x in G) then
# Error("generators must lie in source group");
# fi;
# return GroupGeneralMappingByImagesNC(G,gens,imgs);
#end);
InstallMethod( GroupHomomorphismByImagesNC, "for group, group, list, list",
true, [ IsGroup, IsGroup, IsList, IsList ], 0,
function( G, H, gens, imgs )
local hom;
hom := GroupGeneralMappingByImagesNC( G, H, gens, imgs );
SetIsMapping( hom, true );
return hom;
end );
InstallMethod( GroupHomomorphismByImagesNC, "for group, list, list",
true, [ IsGroup, IsList, IsList ], 0,
function( G, gens, imgs )
local hom;
hom := GroupGeneralMappingByImagesNC( G, gens, imgs );
SetIsMapping( hom, true );
return hom;
end );
InstallOtherMethod( GroupHomomorphismByImagesNC, "for group, group, list",
true, [ IsGroup, IsGroup, IsList ], 0,
function( G, H, imgs )
local hom;
hom := GroupGeneralMappingByImagesNC( G, H, GeneratorsOfGroup(G), imgs );
SetIsMapping( hom, true );
return hom;
end );
InstallOtherMethod( GroupHomomorphismByImagesNC, "for group, group",
true, [ IsGroup, IsGroup ], 0,
function( G, H )
local hom;
hom := GroupGeneralMappingByImagesNC( G, H, GeneratorsOfGroup(G),
GeneratorsOfGroup(H) );
SetIsMapping( hom, true );
return hom;
end );
#############################################################################
##
#M MappingGeneratorsImages( <map> ) . . . . . . . . for group homomorphism
##
InstallMethod( MappingGeneratorsImages, "for group homomorphism",
true, [ IsGroupHomomorphism ], 0,
function( map )
local gens;
# temporary workaround for compatibility with external code.
if IsBound(map!.generators) and IsBound(map!.genimages) then
Info(InfoWarning,1,"still using !.gen(erators/images)");
return [map!.generators,map!.genimages];
fi;
gens:= GeneratorsOfGroup( PreImagesRange( map ) );
return [gens, List( gens, g -> ImagesRepresentative( map, g ) ) ];
end );
RedispatchOnCondition(MappingGeneratorsImages,true,
[IsGeneralMapping],[IsGroupHomomorphism],0);
#############################################################################
##
#M AsGroupGeneralMappingByImages( <map> ) . . . . . for group homomorphism
##
InstallMethod( AsGroupGeneralMappingByImages, "for group homomorphism",
true, [ IsGroupHomomorphism ], 0,
function( map )
local mapi,hom;
Range(map); # for surjective action homomorphisms thsi enforces
# computation of the MappingGeneratorsImages as well
mapi:=MappingGeneratorsImages(map);
hom:=GroupHomomorphismByImagesNC(Source(map),Range(map),mapi[1],mapi[2]);
CopyMappingAttributes(map,hom);
return hom;
end );
InstallMethod( AsGroupGeneralMappingByImages, "for group general mapping",
true, [ IsGroupGeneralMapping ], 0,
function( map )
local mapi, cok,hom;
mapi:=MappingGeneratorsImages(map);
cok := GeneratorsOfGroup( CoKernelOfMultiplicativeGeneralMapping( map ) );
hom:=GroupGeneralMappingByImagesNC( Source( map ), Range( map ),
Concatenation( mapi[1],List(cok,g->One(Source(map)))),
Concatenation( mapi[2],cok ) );
CopyMappingAttributes(map,hom);
return hom;
end );
#############################################################################
##
#M AsGroupGeneralMappingByImages( <hom> ) . . . . . . . . . . . . for GHBI
##
InstallMethod( AsGroupGeneralMappingByImages, "for GHBI", true,
[ IsGroupGeneralMappingByImages ],
SUM_FLAGS, # better than everything else
IdFunc );
#############################################################################
##
#M MappingOfWhichItIsAsGGMBI
##
InstallMethod(SetAsGroupGeneralMappingByImages,
"assign MappingOfWhichItIsAsGGMBI",true,
[ IsGroupGeneralMapping and IsAttributeStoringRep,
IsGroupGeneralMapping],0,
function(map,as)
SetMappingOfWhichItIsAsGGMBI(as,map);
TryNextMethod();
end);
#############################################################################
##
#M <hom1> = <hom2> . . . . . . . . . . . . . . . . . . . . . . . . for GHBI
##
InstallMethod( \=,
"homomorphism by images with homomorphism: compare generator images",
IsIdenticalObj,
[ IsGroupHomomorphism and IsGroupGeneralMappingByImages,
IsGroupHomomorphism ], 1,
function( hom1, hom2 )
local i,mapi;
if Source( hom1 ) <> Source( hom2 )
or Range ( hom1 ) <> Range ( hom2 ) then
return false;
fi;
mapi:=MappingGeneratorsImages(hom1);
if IsGroupGeneralMappingByImages( hom2 )
and Length(MappingGeneratorsImages(hom2)[1]) < Length(mapi[1]) then
return hom2 = hom1;
fi;
for i in [ 1 .. Length( mapi[1] ) ] do
if ImagesRepresentative( hom2, mapi[1][i] ) <> mapi[2][ i ] then
return false;
fi;
od;
return true;
end );
InstallMethod( \=,
"homomorphism with general mapping: test b=a",
IsIdenticalObj,
[ IsGroupHomomorphism,
IsGroupHomomorphism and IsGroupGeneralMappingByImages ], 0,
function( hom1, hom2 )
return hom2 = hom1;
end );
InstallMethod( ImagesSmallestGenerators,"group homomorphisms", true,
[ IsGroupHomomorphism ], 0,
function(a)
return List(GeneratorsSmallest(Source(a)),i->Image(a,i));
end);
InstallMethod( \<,"group homomorphisms: Images of smallest generators",
IsIdenticalObj, [ IsGroupHomomorphism, IsGroupHomomorphism ], 0,
function(a,b)
if Source(a)<>Source(b) then
return Source(a)<Source(b);
elif Range(a)<>Range(b) then
return Range(a)<Range(b);
else
return ImagesSmallestGenerators(a)<ImagesSmallestGenerators(b);
fi;
end);
#############################################################################
##
#M ImagesSource( <hom> ) . . . . . . . . . . . . . . for group homomorphism
##
InstallMethod( ImagesSource, "for group homomorphism", true,
[ IsGroupHomomorphism ],
# rank higher than the method for IsGroupGeneralMappingByImages,
# as we can exploit more structure here
RankFilter(IsGroupHomomorphism and IsGroupGeneralMappingByImages)
- RankFilter(IsGroupHomomorphism),
function(hom)
local gens, G;
gens := GeneratorsOfGroup(Source(hom));
if Length(MappingGeneratorsImages(hom)[1]) > 2*Length(gens) then
gens := List(gens, i->ImageElm(hom,i));
else
gens := MappingGeneratorsImages(hom)[2];
fi;
G := SubgroupNC(Range(hom), gens);
# Transfer some knowledge about the source group to its image.
if HasIsInjective(hom) and IsInjective(hom) then
UseIsomorphismRelation( Source(hom), G );
elif HasKernelOfMultiplicativeGeneralMapping(hom) then
UseFactorRelation( Source(hom), KernelOfMultiplicativeGeneralMapping(hom), G );
else
UseFactorRelation( Source(hom), fail, G );
fi;
return G;
end);
#############################################################################
##
#M ImagesSource( <hom> ) . . . . . . . . . . . . . . . . . . . . . for GHBI
##
InstallMethod( ImagesSource, "for GHBI", true,
[ IsGroupGeneralMappingByImages ], 0,
hom -> SubgroupNC( Range( hom ), MappingGeneratorsImages(hom)[2] ) );
#############################################################################
##
#M PreImagesRange( <hom> ) . . . . . . . . . . . . . . . . . . . . for GHBI
##
InstallMethod( PreImagesRange, "for GHBI", true,
[ IsGroupGeneralMappingByImages ], 0,
hom -> SubgroupNC( Source( hom ), MappingGeneratorsImages(hom)[1] ) );
#############################################################################
##
#M InverseGeneralMapping( <hom> ) . . . . . . . . . . . . . . . . for GHBI
##
InstallMethod( InverseGeneralMapping, "via generators/images", true,
[ IsGroupGeneralMapping ], 0,
function( hom )
local mapi;
mapi:=MappingGeneratorsImages(hom);
mapi:=GroupGeneralMappingByImagesNC( Range( hom ), Source( hom ),
mapi[2], mapi[1] );
if HasIsSurjective(hom) then
SetIsTotal(mapi,IsSurjective(hom));
fi;
if HasIsTotal(hom) then
SetIsSurjective(mapi, IsTotal(hom));
fi;
if HasIsSingleValued(hom) then
SetIsInjective(mapi, IsSingleValued(hom) );
fi;
if HasIsInjective(hom) then
SetIsSingleValued(mapi,IsInjective(hom));
fi;
SetInverseGeneralMapping( mapi, hom );
return mapi;
end );
InstallMethod( InverseGeneralMapping, "for bijective GHBI", true,
[ IsGroupGeneralMappingByImages and IsBijective ], 0,
function( hom )
local mapi;
mapi:=MappingGeneratorsImages(hom);
mapi:=GroupHomomorphismByImagesNC( Range( hom ), Source( hom ),
mapi[2], mapi[1] );
SetIsBijective( mapi, true );
return mapi;
end );
#############################################################################
##
#F MakeMapping( <hom> ) . . . . . . . . . . . . . . . . . . . . . for GHBI
##
InstallGlobalFunction( MakeMapping, function( hom )
local elms, # elements of subgroup of '<hom>.source'
elmr, # representatives of <elms> in '<hom>.elements'
homelms,homimgs, # intermediate storage
imgs, # elements of subgroup of '<hom>.range'
imgr, # representatives of <imgs> in '<hom>.images'
rep, # one new element of <elmr> or <imgr>
mapi, # generators and images
i, j, k; # loop variables
if HasIsFinite(Source(hom)) and not IsFinite(Source(hom)) then
Error("cannot enumerate an infinite domain");
fi;
# if necessary compute the mapping with a Dimino algorithm
if not IsBound( hom!.elements ) then
homelms := [ One( Source( hom ) ) ];
homimgs := [ One( Range ( hom ) ) ];
mapi:=MappingGeneratorsImages(hom);
for i in [ 1 .. Length( mapi[1] ) ] do
elms := ShallowCopy( homelms );
elmr := [ One( Source( hom ) ) ];
imgs := ShallowCopy( homimgs );
imgr := [ One( Range( hom ) ) ];
j := 1;
while j <= Length( elmr ) do
for k in [ 1 .. i ] do
rep := elmr[j] * mapi[1][k];
if not rep in homelms then
Append( homelms, elms * rep );
Add( elmr, rep );
rep := imgr[j] * mapi[2][k];
Append( homimgs, imgs * rep );
Add( imgr, rep );
fi;
od;
j := j + 1;
od;
SortParallel( homelms, homimgs );
IsSSortedList( homelms ); # give a hint that this is a set
#T MakeImmutable!
od;
hom!.elements:=homelms;
hom!.images:=homimgs;
fi;
end );
#############################################################################
##
#M CoKernelOfMultiplicativeGeneralMapping( <hom> ) . . . . . . . . for GHBI
##
InstallMethod( CoKernelOfMultiplicativeGeneralMapping, "for GHBI", true,
[ IsGroupGeneralMappingByImages ], 0,
function( hom )
local C, # co kernel of <hom>, result
gen, # one generator of <C>
mapi, # generators/images
i, k; # loop variables
# make sure we have the mapping
if not IsBound( hom!.elements ) then
MakeMapping( hom );
fi;
mapi:=MappingGeneratorsImages(hom);
# start with the trivial co kernel
C := TrivialSubgroup( Range( hom ) );
# for each element of the source and each generator of the source
for i in [ 1 .. Length( hom!.elements ) ] do
for k in [ 1 .. Length( mapi[1] ) ] do
# the co kernel must contain the corresponding Schreier generator
gen := hom!.images[i] * mapi[2][k]
/ hom!.images[ Position( hom!.elements,
hom!.elements[i]*mapi[1][k])];
#NC is safe
C := ClosureSubgroupNC( C, gen );
od;
od;
# return the co kernel
return C;
end );
#############################################################################
##
#M KernelOfMultiplicativeGeneralMapping( <hom> ) . . . . . . . . . for GHBI
##
InstallMethod( KernelOfMultiplicativeGeneralMapping,
"for GHBI",
true,
[ IsGroupGeneralMappingByImages ], 0,
hom -> CoKernelOfMultiplicativeGeneralMapping(
InverseGeneralMapping( hom ) ) );
#############################################################################
##
#M IsInjective( <hom> ) . . . . . . . . . . . . . . . . . . . . . for GHBI
##
InstallMethod( IsInjective,
"for GHBI",
true,
[ IsGroupGeneralMappingByImages ], 0,
hom -> IsSingleValued( InverseGeneralMapping( hom ) ) );
#############################################################################
##
#F ImagesRepresentativeGMBIByElementsList( <hom>, <elm> )
##
InstallGlobalFunction( ImagesRepresentativeGMBIByElementsList,
function( hom, elm )
local p,mapi;
if not IsBound( hom!.elements ) then
mapi:=MappingGeneratorsImages(hom);
# catch a few trivial cases
if Length(mapi[1])>0 then
if CanEasilyCompareElements(mapi[1][1]) then
p:=Position(mapi[1],elm);
if p<>fail then
return mapi[2][p];
fi;
else
p:=PositionProperty(mapi[1],i->IsIdenticalObj(i,elm));
if p<>fail then
return mapi[2][p];
fi;
fi;
fi;
MakeMapping( hom );
fi;
p := Position( hom!.elements, elm );
if p <> fail then return hom!.images[ p ];
else return fail; fi;
end );
#############################################################################
##
#M ImagesRepresentative( <hom>, <elm> ) . . . . . . . . . . . . . for GHBI
##
InstallMethod( ImagesRepresentative,
"parallel enumeration of source and range",
FamSourceEqFamElm,
[ IsGroupGeneralMappingByImages,
IsMultiplicativeElementWithInverse ], 0,
ImagesRepresentativeGMBIByElementsList);
#############################################################################
##
#M PreImagesRepresentative( <hom>, <elm> ) . . . . . . . . . . . . for GHBI
##
InstallMethod( PreImagesRepresentative,
"for GHBI and mult.-elm.-with-inverse",
FamRangeEqFamElm,
[ IsGroupGeneralMappingByImages,
IsMultiplicativeElementWithInverse ], 0,
function( hom, elm )
if IsBound( hom!.images ) and elm in hom!.images then
return hom!.elements[ Position( hom!.images, elm ) ];
else
return ImagesRepresentative( InverseGeneralMapping( hom ), elm );
fi;
end );
#############################################################################
##
#M ViewObj( <hom> ) . . . . . . . . . . . . . . . . . . . . . . . for GHBI
##
InstallMethod( ViewObj, "for GHBI", true,
[ IsGroupGeneralMappingByImages ], 0,
function( hom )
local mapi;
mapi:=MappingGeneratorsImages(hom);
View(mapi[1]);
Print(" -> ");
View(mapi[2]);
end );
#############################################################################
##
#M String( <hom> ) . . . . . . . . . . . . . . . . . . . . . . . for GHBI
##
InstallMethod( String, "for GHBI", true,
[ IsGroupGeneralMappingByImages ], 0,
function( hom )
local mapi;
mapi:=MappingGeneratorsImages(hom);
return Concatenation(String(mapi[1])," -> ",String(mapi[2]));
end );
#############################################################################
##
#M PrintObj( <hom> ) . . . . . . . . . . . . . . . . . . . . . . . for GHBI
##
InstallMethod( PrintObj, "for group general mapping b.i.", true,
[ IsGroupGeneralMappingByImages ], 0,
function( hom )
local mapi;
mapi:=MappingGeneratorsImages(hom);
Print( "GroupGeneralMappingByImages( ",
Source( hom ), ", ", Range( hom ), ", ",
mapi[1], ", ", mapi[2], " )" );
end );
InstallMethod( PrintObj, "for GHBI", true,
[ IsGroupGeneralMappingByImages and IsMapping ], 0,
function( hom )
local mapi;
mapi:=MappingGeneratorsImages(hom);
Print( "GroupHomomorphismByImages( ",
Source( hom ), ", ", Range( hom ), ", ",
mapi[1], ", ", mapi[2], " )" );
end );
#############################################################################
##
## 3. Functions for conjugation action
##
#############################################################################
##
#M ConjugatorOfConjugatorIsomorphism(<hom>)
##
InstallOtherMethod(ConjugatorOfConjugatorIsomorphism,
"default -- try RepresentativeAction",true,
[IsGroupHomomorphism and IsConjugatorIsomorphism],0,
function(hom)
local gi,x,p;
gi:=MappingGeneratorsImages(hom);
p:=Parent(Source(hom));
# in the case of permutation group there is the natural parent S_n which
# is used by `IsConjugatorIsomorphism'.
if IsPermGroup(p) then
p:=SymmetricGroup(MovedPoints(p));
fi;
x:=RepresentativeAction(p,gi[1],gi[2],OnTuples);
if x=fail then TryNextMethod();fi;
return x;
end);
#############################################################################
##
#M ConjugatorIsomorphism( <G>, <g> )
##
InstallMethod( ConjugatorIsomorphism,
"for group and mult.-elm.-with-inverse",
IsCollsElms,
[ IsGroup, IsMultiplicativeElementWithInverse ], 0,
function( G, g )
local fam, hom;
fam:= ElementsFamily( FamilyObj( G ) );
hom:= Objectify( NewType( GeneralMappingsFamily( fam, fam ),
IsConjugatorIsomorphism
and IsSPGeneralMapping
and IsAttributeStoringRep ),
rec() );
SetConjugatorOfConjugatorIsomorphism( hom, g );
SetSource( hom, G );
SetRange( hom, ConjugateGroup( G, g ) );
return hom;
end );
#############################################################################
##
#M ConjugatorAutomorphismNC( <G>, <g> )
##
InstallMethod( ConjugatorAutomorphismNC,
"group and mult.-elm.-with-inverse",
IsCollsElms,
[ IsGroup, IsMultiplicativeElementWithInverse ], 0,
function( G, g )
local fam, hom;
fam:= ElementsFamily( FamilyObj( G ) );
hom:= Objectify( NewType( GeneralMappingsFamily( fam, fam ),
IsConjugatorAutomorphism
and IsSPGeneralMapping
and IsAttributeStoringRep ),
rec() );
SetConjugatorOfConjugatorIsomorphism( hom, g );
SetSource( hom, G );
SetRange( hom, G );
return hom;
end );
#############################################################################
##
#F ConjugatorAutomorphism( <G>, <g> )
##
InstallGlobalFunction( ConjugatorAutomorphism, function( G, g )
local rep;
if IsCollsElms( FamilyObj( G ), FamilyObj( g ) )
and IsNormal( Group( g ), G ) then
# ensure that g is chosen in G if possible
if not g in G then
rep:=RepresentativeAction(G,GeneratorsOfGroup(G),
List(GeneratorsOfGroup(G),x->x^g),OnTuples);
if rep<>fail then
Info(InfoPerformance,2,"changed conjugator to make it inner");
g:=rep;
fi;
fi;
return ConjugatorAutomorphismNC( G, g );
else
return fail;
fi;
end );
#############################################################################
##
#M InnerAutomorphismNC( <G>, <g> ) . . . . . . . . . . . inner automorphism
##
InstallMethod( InnerAutomorphismNC,
"for group and mult.-elm.-with-inverse",
IsCollsElms,
[ IsGroup, IsMultiplicativeElementWithInverse ], 0,
function( G, g )
local hom;
hom:= ConjugatorAutomorphismNC( G, g );
SetIsInnerAutomorphism( hom, true );
return hom;
end );
#############################################################################
##
#F InnerAutomorphism( <G>, <g> )
##
InstallGlobalFunction( InnerAutomorphism, function( G, g )
if g in G then
return InnerAutomorphismNC( G, g );
else
return fail;
fi;
end );
#############################################################################
##
#M MappingGeneratorsImages( <hom> ) . . . for conjugator isomorphism
##
InstallMethod( MappingGeneratorsImages,
"for conjugator isomorphism", true, [ IsConjugatorIsomorphism ], 0,
function( hom )
local gens;
gens:= GeneratorsOfGroup( Source(hom) );
return [gens,OnTuples( gens, ConjugatorOfConjugatorIsomorphism( hom ) )];
end );
#############################################################################
##
#M AsGroupGeneralMappingByImages( <hom> ) . . . for conjugator isomorphism
##
InstallMethod( AsGroupGeneralMappingByImages,
"for conjugator isomorphism", true, [ IsConjugatorIsomorphism ], 0,
function( hom )
local G, gens, map;
G:= Source( hom );
gens:= GeneratorsOfGroup( G );
map:= GroupHomomorphismByImagesNC( G, Range( hom ), gens,
OnTuples( gens, ConjugatorOfConjugatorIsomorphism( hom ) ) );
SetIsBijective( map, true );
return map;
end );
#############################################################################
##
#M InverseGeneralMapping( <hom> ) . . . . . . . for conjugator isomorphism
##
InstallMethod( InverseGeneralMapping,
"for conjugator isomorphism",
true,
[ IsConjugatorIsomorphism ], 0,
hom -> ConjugatorIsomorphism( Range( hom ),
Inverse( ConjugatorOfConjugatorIsomorphism( hom ) ) ) );
#############################################################################
##
#M InverseGeneralMapping( <hom> ) . . . . . . . for conjugator automorphism
##
InstallMethod( InverseGeneralMapping,
"for conjugator automorphism",
true,
[ IsConjugatorAutomorphism ], 0,
hom -> ConjugatorAutomorphismNC( Range( hom ),
Inverse( ConjugatorOfConjugatorIsomorphism( hom ) ) ) );
#############################################################################
##
#M InverseGeneralMapping( <inn> ) . . . . . . . . . for inner automorphism
##
InstallMethod( InverseGeneralMapping,
"for inner automorphism",
true,
[ IsInnerAutomorphism ], 0,
inn -> InnerAutomorphismNC( Source( inn ),
Inverse( ConjugatorOfConjugatorIsomorphism( inn ) ) ) );
#############################################################################
##
#M CompositionMapping2( <hom1>, <hom2> ) . . for two conjugator isomorphisms
##
InstallMethod( CompositionMapping2,
"for two conjugator isomorphisms",
true,
[ IsConjugatorIsomorphism, IsConjugatorIsomorphism ], 0,
function( hom1, hom2 )
if not IsIdenticalObj( Source( hom1 ), Range( hom2 ) ) then
TryNextMethod();
fi;
return ConjugatorIsomorphism( Source( hom2 ),
ConjugatorOfConjugatorIsomorphism( hom2 )
* ConjugatorOfConjugatorIsomorphism( hom1 ) );
end );
#############################################################################
##
#M CompositionMapping2( <aut1>, <aut2> ) . for two conjugator automorphisms
##
InstallMethod( CompositionMapping2,
"for two conjugator automorphisms",
true,
[ IsConjugatorAutomorphism, IsConjugatorAutomorphism ], 0,
function( aut1, aut2 )
if not IsIdenticalObj( Source( aut1 ), Range( aut2 ) ) then
TryNextMethod();
fi;
return ConjugatorAutomorphismNC( Source( aut2 ),
ConjugatorOfConjugatorIsomorphism( aut2 )
* ConjugatorOfConjugatorIsomorphism( aut1 ) );
end );
#############################################################################
##
#M CompositionMapping2( <inn1>, <inn2> ) . . . . for two inner automorphisms
##
InstallMethod( CompositionMapping2,
"for two inner automorphisms",
IsIdenticalObj,
[ IsInnerAutomorphism, IsInnerAutomorphism ], 0,
function( inn1, inn2 )
if not IsIdenticalObj( Source( inn1 ), Source( inn2 ) ) then
TryNextMethod();
fi;
return InnerAutomorphismNC( Source( inn1 ),
ConjugatorOfConjugatorIsomorphism( inn2 )
* ConjugatorOfConjugatorIsomorphism( inn1 ) );
end );
#############################################################################
##
#M ImagesRepresentative( <hom>, <g> ) . . . . . for conjugator isomorphism
##
InstallMethod( ImagesRepresentative,
"for conjugator isomorphism",
FamSourceEqFamElm,
[ IsConjugatorIsomorphism, IsMultiplicativeElementWithInverse ], 0,
function( hom, g )
return g ^ ConjugatorOfConjugatorIsomorphism( hom );
end );
#############################################################################
##
#M ImagesSet( <hom>, <U> ) . . . . . . . . . . . for conjugator isomorphism
##
InstallMethod( ImagesSet,
"for conjugator isomorphism, and group",
CollFamSourceEqFamElms,
[ IsConjugatorIsomorphism, IsGroup ], 0,
function( hom, U )
return U ^ ConjugatorOfConjugatorIsomorphism( hom );
end );
#############################################################################
##
#M PreImagesRepresentative( <hom>, <g> ) . . . . for conjugator isomorphism
##
InstallMethod( PreImagesRepresentative,
"for conjugator isomorphism",
FamRangeEqFamElm,
[ IsConjugatorIsomorphism, IsMultiplicativeElementWithInverse ], 0,
function( hom, g )
return g ^ ( ConjugatorOfConjugatorIsomorphism( hom ) ^ -1 );
end );
#############################################################################
##
#M PreImagesSet( <hom>, <U> ) . . . . . . . . . for conjugator isomorphism
##
InstallMethod( PreImagesSet,
"for conjugator isomorphism, and group",
CollFamRangeEqFamElms,
[ IsConjugatorIsomorphism, IsGroup ], 0,
function( hom, U )
return U ^ ( ConjugatorOfConjugatorIsomorphism( hom ) ^ -1 );
end );
#############################################################################
##
#M ViewObj( <hom> ) . . . . . . . . . . . . . . for conjugator isomorphism
##
InstallMethod( ViewObj, "for conjugator isomorphism",
true, [ IsConjugatorIsomorphism ], 0,
function( hom )
Print("^");
View( ConjugatorOfConjugatorIsomorphism( hom ) );
end );
#############################################################################
##
#M String( <hom> ) . . . . . . . . . . . . . . for conjugator isomorphism
##
InstallMethod( String, "for conjugator isomorphism",
true, [ IsConjugatorIsomorphism ], 0,
function( hom )
return Concatenation("^",String(ConjugatorOfConjugatorIsomorphism( hom ) ));
end );
#############################################################################
##
#M PrintObj( <hom> ) . . . . . . . . . . . . . . for conjugator isomorphism
##
InstallMethod( PrintObj,
"for conjugator isomorphism",
true,
[ IsConjugatorIsomorphism ], 0,
function( hom )
if IsIdenticalObj( Source( hom ), Range( hom ) ) then
Print( "ConjugatorAutomorphism( ", Source( hom), ", ",
ConjugatorOfConjugatorIsomorphism( hom ), " )" );
else
Print( "ConjugatorIsomorphism( ", Source( hom ), ", ",
ConjugatorOfConjugatorIsomorphism( hom ), " )" );
fi;
end );
#############################################################################
##
#M PrintObj( <inn> ) . . . . . . . . . . . . . . . . for inner automorphism
##
InstallMethod( PrintObj,
"for inner automorphism",
true,
[ IsInnerAutomorphism ], 0,
function( inn )
Print( "InnerAutomorphism( ", Source( inn ), ", ",
ConjugatorOfConjugatorIsomorphism( inn ), " )" );
end );
#############################################################################
##
#M IsConjugatorIsomorphism( <hom> )
##
## There are methods of higher rank for special kinds of groups.
## The default method can only check whether <hom> is an inner automorphism,
## and whether some necessary conditions are satisfied.
##
InstallMethod( IsConjugatorIsomorphism,
"for a group general mapping",
true,
[ IsGroupGeneralMapping ], 0,
function( hom )
if not ( IsBijective( hom ) and IsGroupHomomorphism( hom ) ) then
return false;
elif IsEndoGeneralMapping( hom ) and IsInnerAutomorphism( hom ) then
return true;
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M IsInnerAutomorphism( <hom> )
##
InstallMethod( IsInnerAutomorphism,
"for a group general mapping",
true,
[ IsGroupGeneralMapping ], 0,
function( hom )
local s, gens, rep;
if not ( IsEndoGeneralMapping( hom ) and IsBijective( hom )
and IsGroupHomomorphism( hom ) ) then
return false;
fi;
s:= Source( hom );
gens:= GeneratorsOfGroup( s );
if HasConjugatorOfConjugatorIsomorphism(hom) then
rep:=ConjugatorOfConjugatorIsomorphism(hom);
return rep in s;
else
rep:= RepresentativeAction( s, gens,
List( gens, i -> ImagesRepresentative( hom, i ) ), OnTuples );
if rep <> fail then
SetConjugatorOfConjugatorIsomorphism( hom, rep );
return true;
else
return false;
fi;
fi;
end );
#############################################################################
##
## 4. Functions for ...
##
#############################################################################
##
#M NaturalHomomorphismByNormalSubgroup( <G>, <N> ) check whether N \unlhd G?
##
InstallGlobalFunction( NaturalHomomorphismByNormalSubgroup, function(G,N)
if not (IsSubgroup(G,N) and IsNormal(G,N)) then
Error("<N> must be a normal subgroup of <G>");
fi;
return NaturalHomomorphismByNormalSubgroupNC(G,N);
end );
InstallMethod( NaturalHomomorphismByNormalSubgroupOp,
"for group, and trivial group (delegate to `IdentityMapping')",
IsIdenticalObj, [ IsGroup, IsGroup and IsTrivial ],
SUM_FLAGS, # better than everything else
function( G, T )
return IdentityMapping( G );
end );
#############################################################################
##
#M IsomorphismPermGroup( <G> ) . . . . . . . . . by right regular operation
##
InstallMethod( IsomorphismPermGroup,
"right regular operation",
[ IsGroup and IsFinite ],
function ( G )
if not HasIsAbelian( G ) and IsAbelian( G ) then
# Redispatch to give the special methods for abelian groups a chance.
return IsomorphismPermGroup( G );
# MH: Disabled the following code for now, as computing IsNilpotentGroup
# can be very expensive, depending on the group type. We could
# re-enable it for e.g. pc groups, but I am not sure whether it is
# worth the hassle.
# elif not HasIsNilpotentGroup(G) and IsNilpotentGroup(G) then
# # Redispatch to give the special methods for nilpotents groups a chance.
# return IsomorphismPermGroup( G );
fi;
return RegularActionHomomorphism( G );
end );
# Since permutation groups are finite, IsomorphismPermGroup can only
# work for finite groups. In order to allow IsomorphismPermGroup
# methods to assume that they are invoked with a finite group, we
# redispatch upon that condition.
RedispatchOnCondition(IsomorphismPermGroup,true,[IsGroup],[IsFinite],0);
#############################################################################
##
## The following function computes a compact permutation or pc representation
## for an abelian group using IndependentGeneratorsOfAbelianGroup and
## IndependentGeneratorExponents.
##
## Since the default method for IndependentGeneratorsOfAbelianGroup uses
## IsomorphismPermGroup, we must take care to not end up in an infinite
## loop. In particular, we cannot just install this method for all
## abelian groups, but rather only for those which can easily compute
## IndependentGeneratorsOfAbelianGroup and IndependentGeneratorExponents.
##
## For the computed isomorphism to be effectively computable, the source
## group should be in either the filter KnowsHowToDecompose or the filter
## CanEasilyComputeWithIndependentGensAbelianGroup.
BindGlobal( "IsomorphismAbelianGroupViaIndependentGenerators", function ( filter, G )
local gens, imgs, off, i, n, g, K, inv, nice;
if IsTrivial( G ) then
K := TrivialGroup( filter );
return GroupHomomorphismByImagesNC( G, K, [], [] );
fi;
gens := IndependentGeneratorsOfAbelianGroup( G );
K := AbelianGroup( filter, AbelianInvariants( G ) );
UseIsomorphismRelation( G, K );
imgs := IndependentGeneratorsOfAbelianGroup( K );
if List(gens,Order) <> List(imgs,Order) then
Error("IndependentGeneratorsOfAbelianGroup results inconsistent");
fi;
# Construct the isomorphism.
if KnowsHowToDecompose( G ) then
# G knows how decompose elements in terms of generators, so
# we can use a simple GHBI.
nice := GroupHomomorphismByImagesNC( G, K, gens, imgs );
else
# G does not know how to decompose elements in general. So we
# assume that IndependentGeneratorExponents works effectively,
# and use it to construct a homomorphism.
nice := GroupHomomorphismByFunction( G, K, function ( g )
local exps;
exps := IndependentGeneratorExponents( G, g );
return Product( List( [ 1..Length(exps) ],
i -> imgs[i]^exps[i] ) );
end);
fi;
SetIsBijective( nice, true );
return nice;
end );
# Apply IsomorphismAbelianGroupViaIndependentGenerators if the group can
# easily compute independent abelian generators, and decompose using them.
InstallMethod( IsomorphismPermGroup,
[ IsGroup and IsFinite and IsAbelian and CanEasilyComputeWithIndependentGensAbelianGroup ],
0,
G -> IsomorphismAbelianGroupViaIndependentGenerators( IsPermGroup, G )
);
#############################################################################
##
#M IsomorphismPermGroup( <G> ) . . . . . . . . . for finite nilpotent groups
##
InstallMethod( IsomorphismPermGroup, "for finite nilpotent groups", true,
[ IsNilpotentGroup and IsFinite and KnowsHowToDecompose ], 0,
function ( G )
local S, isoS, gens, imgs, H, i, phi, g, nice;
if IsAbelian(G) and CanEasilyComputeWithIndependentGensAbelianGroup(G) then
# Use the special method for abelian groups
return IsomorphismAbelianGroupViaIndependentGenerators( IsPermGroup, G );
fi;
# This method works by exploiting that finite nilpotent groups
# are the direct product of their Sylow subgroups. For p-groups,
# we for now rely on other code (hopefully) providing a good
# way to find a small permutation presentation.
if IsPGroup(G) then
TryNextMethod();
fi;
# Determine all Sylow subgroups and a permutation presentations for each
S := SylowSystem( G );
isoS := List( S, IsomorphismPermGroup );
# Compute isomorphic image H of G from this
H := DirectProduct( List( isoS, ImagesSource ) );
UseIsomorphismRelation( G, H );
# Construct the actual isomorphism
gens := [];
imgs := [];
for i in [ 1 .. Length( S ) ] do
phi := isoS[i] * Embedding( H, i );
for g in GeneratorsOfGroup( S[i] ) do
Add(gens, g);
Add(imgs, ImageElm(phi, g));
od;
od;
nice := GroupHomomorphismByImagesNC( G, H, gens, imgs );
SetIsBijective( nice, true );
return nice;
end );
#############################################################################
##
#M IsomorphismPcGroup( <G> ) . . . . . . . . via permutation representation
##
InstallMethod( IsomorphismPcGroup, "via permutation representation", true,
[ IsGroup and IsFinite ], 0,
function( G )
local p,a;
p:=IsomorphismPermGroup(G);
a:=IsomorphismPcGroup(Image(p));
if a=fail then
return a;
else
return p*a;
fi;
end);
# Since pc groups are finite, IsomorphismPcGroup can only work for
# finite groups. In order to allow IsomorphismPcGroup methods to assume
# that they are invoked with a finite group, we redispatch upon that
# condition.
RedispatchOnCondition(IsomorphismPcGroup,true,[IsGroup],[IsFinite],0);
#############################################################################
##
#F GroupHomomorphismByFunction( <D>, <E>, <fun> )
#F GroupHomomorphismByFunction( <D>, <E>, <fun>, <invfun> )
##
InstallGlobalFunction( GroupHomomorphismByFunction, function ( arg )
local map,type,prefun;
# no inverse function given
if Length(arg) in [3,5] then
type:=IsSPMappingByFunctionRep and IsSingleValued and IsTotal
and IsGroupHomomorphism;
if Length(arg)=5 and IsFunction(arg[5]) then
prefun:=arg[5];
else
prefun:=fail;
if IsPermGroup(arg[2]) or IsPcGroup(arg[2]) then
type:=type and IsPreimagesByAsGroupGeneralMappingByImages;
fi;
fi;
# make the general mapping
map:= Objectify(
NewType(GeneralMappingsFamily(ElementsFamily(FamilyObj(arg[1])),
ElementsFamily(FamilyObj(arg[2]))),type),
rec( fun:= arg[3] ) );
if prefun<>fail then
map!.prefun:=arg[5];
fi;
# inverse function given
elif Length(arg) = 4 then
# make the mapping
map:= Objectify(
NewType(GeneralMappingsFamily(ElementsFamily(FamilyObj(arg[1])),
ElementsFamily(FamilyObj(arg[2]))),
IsSPMappingByFunctionWithInverseRep
and IsBijective
and IsGroupHomomorphism),
rec( fun := arg[3],
invFun := arg[4],
prefun := arg[4]) );
# otherwise signal an error
else
Error( "usage: GroupHomomorphismByFunction( <D>, <E>, <fun>[, <inv>] )" );
fi;
SetSource(map,arg[1]);
SetRange(map,arg[2]);
# return the mapping
return map;
end );
InstallMethod(RegularActionHomomorphism,"generic",[IsGroup and IsFinite],
function(G)
local hom;
if HasSize(G) and Size(G) > 10^6 then
Info(InfoWarning, 1,
"Trying regular permutation representation of group of order >10^6");
fi;
hom:=ActionHomomorphism(G, G, OnRight, "surjective");
SetIsBijective(hom, true);
# Do not set IsRegular for the range, as the range has not yet been computed
# and we should not needlessly trigger this computation.
# It is comparatively cheap to compute IsRegular anyway.
# SetIsRegular(Range(hom), true);
return hom;
end);
# Since permutation groups are finite, RegularActionHomomorphism can only
# work for finite groups. In order to allow RegularActionHomomorphism
# methods to assume that they are invoked with a finite group, we
# redispatch upon that condition.
RedispatchOnCondition(RegularActionHomomorphism,true,[IsGroup],[IsFinite],0);
#############################################################################
##
#E
|