/usr/share/gap/lib/ghomfp.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 | #############################################################################
##
#W ghomfp.gd GAP library Alexander Hulpke
##
#Y (C) 2000 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
############################################################################
##
#R IsFromFpGroupGeneralMapping(<map>)
#R IsFromFpGroupHomomorphism(<map>)
##
## <ManSection>
## <Filt Name="IsFromFpGroupGeneralMapping" Arg='map' Type='Representation'/>
## <Filt Name="IsFromFpGroupHomomorphism" Arg='map' Type='Representation'/>
##
## <Description>
## is the representation of mappings from an fp group.
## </Description>
## </ManSection>
##
DeclareCategory( "IsFromFpGroupGeneralMapping", IsGroupGeneralMapping
# we want all methods for homs from fp groups to be better. This (slight
# hack) increases the rank of the category of such mappings.
and NewFilter("Extrarankfilter",10));
DeclareSynonym("IsFromFpGroupHomomorphism",
IsFromFpGroupGeneralMapping and IsMapping);
############################################################################
##
#R IsFromFpGroupGeneralMappingByImages(<map>)
#R IsFromFpGroupHomomorphismByImages(<map>)
##
## <#GAPDoc Label="IsFromFpGroupGeneralMappingByImages">
## <ManSection>
## <Filt Name="IsFromFpGroupGeneralMappingByImages" Arg='map'
## Type='Representation'/>
## <Filt Name="IsFromFpGroupHomomorphismByImages" Arg='map'
## Type='Representation'/>
##
## <Description>
## is the representation of mappings from an fp group.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareRepresentation( "IsFromFpGroupGeneralMappingByImages",
IsFromFpGroupGeneralMapping and IsGroupGeneralMappingByImages,
[ "generators", "genimages" ] );
DeclareSynonym("IsFromFpGroupHomomorphismByImages",
IsFromFpGroupGeneralMappingByImages and IsMapping);
############################################################################
##
#R IsFromFpGroupStdGensGeneralMappingByImages(<map>)
#R IsFromFpGroupStdGensHomomorphismByImages(<map>)
##
## <#GAPDoc Label="IsFromFpGroupStdGensGeneralMappingByImages">
## <ManSection>
## <Filt Name="IsFromFpGroupStdGensGeneralMappingByImages" Arg='map'
## Type='Representation'/>
## <Filt Name="IsFromFpGroupStdGensHomomorphismByImages" Arg='map'
## Type='Representation'/>
##
## <Description>
## is the representation of total mappings from an fp group that give images of
## the standard generators.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareRepresentation( "IsFromFpGroupStdGensGeneralMappingByImages",
IsFromFpGroupGeneralMappingByImages, [ "generators", "genimages" ] );
DeclareSynonym("IsFromFpGroupStdGensHomomorphismByImages",
IsFromFpGroupStdGensGeneralMappingByImages and IsMapping);
############################################################################
##
#R IsToFpGroupGeneralMappingByImages(<map>)
#R IsToFpGroupHomomorphismByImages(<map>)
##
## <ManSection>
## <Filt Name="IsToFpGroupGeneralMappingByImages" Arg='map' Type='Representation'/>
## <Filt Name="IsToFpGroupHomomorphismByImages" Arg='map' Type='Representation'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareRepresentation( "IsToFpGroupGeneralMappingByImages",
IsGroupGeneralMappingByImages,
[ "generators", "genimages" ] );
DeclareSynonym("IsToFpGroupHomomorphismByImages",
IsToFpGroupGeneralMappingByImages and IsMapping);
############################################################################
##
#P IsWordDecompHomomorphism(<map>)
##
## <ManSection>
## <Prop Name="IsWordDecompHomomorphism" Arg='map'/>
##
## <Description>
## these homomorphism contain a component <C>!.decompinfo</C> that provides
## functionality to decompose a word into generators. They are primarily
## used for <C>IsomorphismFpGroupBy...Series</C>.
## </Description>
## </ManSection>
##
DeclareProperty( "IsWordDecompHomomorphism",IsGroupGeneralMappingByImages);
#############################################################################
##
#A CosetTableFpHom(<hom>)
##
## <ManSection>
## <Attr Name="CosetTableFpHom" Arg='hom'/>
##
## <Description>
## returns an augmented coset table for an homomorphism from an fp group,
## corresponding to the !.generators component. The component
## <C>.secondaryImages</C> of this table will give the images of all (primary
## and secondary) subgroup generators under <A>hom</A>.
## <P/>
## As we might want to add further entries to the table, its a mutable
## attribute.
## </Description>
## </ManSection>
##
DeclareAttribute("CosetTableFpHom",IsGeneralMapping,"mutable");
#############################################################################
##
#F SecondaryImagesAugmentedCosetTable(<aug>,<gens>,<genimages>)
##
## <ManSection>
## <Func Name="SecondaryImagesAugmentedCosetTable" Arg='aug,gens,genimages'/>
##
## <Description>
## returns a list of images of the secondary generators, based on the
## components <C>homgens</C> and <C>homgenims</C> in the augmented coset table <A>aug</A>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("SecondaryImagesAugmentedCosetTable");
#############################################################################
##
#F TrySecondaryImages(<aug>)
##
## <ManSection>
## <Func Name="TrySecondaryImages" Arg='aug'/>
##
## <Description>
## sets a component <C>secondaryImages</C> in the augmented coset table (seeded
## to a ShallowCopy of the primary images) if having all these images
## cannot become too memory extensive. (Call this function for augmented
## coset tables for homomorphisms once -- the other functions make use of
## the <C>secondaryImages</C> component if existing.)
## </Description>
## </ManSection>
##
DeclareGlobalFunction("TrySecondaryImages");
#############################################################################
##
#F KuKGenerators( <G>, <beta>, <alpha> )
##
## <#GAPDoc Label="KuKGenerators">
## <ManSection>
## <Func Name="KuKGenerators" Arg='G, beta, alpha'/>
##
## <Description>
## <Index>Krasner-Kaloujnine theorem</Index>
## <Index>Wreath product embedding</Index>
## If <A>beta</A> is a homomorphism from <A>G</A> into a transitive
## permutation group, <M>U</M> the full preimage of the point stabilizer and
## <A>alpha</A> a homomorphism defined on (a superset) of <M>U</M>,
## this function returns images of the generators of <A>G</A> when mapping
## to the wreath product <M>(U <A>alpha</A>) \wr (<A>G</A> <A>beta</A>)</M>.
## (This is the Krasner-Kaloujnine embedding theorem.)
## <Example><![CDATA[
## gap> g:=Group((1,2,3,4),(1,2));;
## gap> hom:=GroupHomomorphismByImages(g,Group((1,2)),
## > GeneratorsOfGroup(g),[(1,2),(1,2)]);;
## gap> u:=PreImage(hom,Stabilizer(Image(hom),1));
## Group([ (2,3,4), (1,2,4) ])
## gap> hom2:=GroupHomomorphismByImages(u,Group((1,2,3)),
## > GeneratorsOfGroup(u),[ (1,2,3), (1,2,3) ]);;
## gap> KuKGenerators(g,hom,hom2);
## [ (1,4)(2,5)(3,6), (1,6)(2,4)(3,5) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("KuKGenerators");
#############################################################################
##
#A IsomorphismSimplifiedFpGroup( <G> )
##
## <#GAPDoc Label="IsomorphismSimplifiedFpGroup">
## <ManSection>
## <Attr Name="IsomorphismSimplifiedFpGroup" Arg='G'/>
##
## <Description>
## applies Tietze transformations to a copy of the presentation of the
## given finitely presented group <A>G</A> in order to reduce it
## with respect to the number of generators, the number of relators,
## and the relator lengths.
## <P/>
## The operation returns an isomorphism with source <A>G</A>, range a group
## <A>H</A> isomorphic to <A>G</A>, so that the presentation of <A>H</A> has
## been simplified using Tietze transformations.
## <Example><![CDATA[
## gap> f:=FreeGroup(3);;
## gap> g:=f/[f.1^2,f.2^3,(f.1*f.2)^5,f.1/f.3];
## <fp group on the generators [ f1, f2, f3 ]>
## gap> hom:=IsomorphismSimplifiedFpGroup(g);
## [ f1, f2, f3 ] -> [ f1, f2, f1 ]
## gap> Range(hom);
## <fp group on the generators [ f1, f2 ]>
## gap> RelatorsOfFpGroup(Range(hom));
## [ f1^2, f2^3, (f1*f2)^5 ]
## gap> RelatorsOfFpGroup(g);
## [ f1^2, f2^3, (f1*f2)^5, f1*f3^-1 ]
## ]]></Example>
## <P/>
## <Ref Func="IsomorphismSimplifiedFpGroup"/> uses Tietze transformations
## to simplify the presentation, see <Ref Sect="SimplifiedFpGroup"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("IsomorphismSimplifiedFpGroup",IsSubgroupFpGroup);
#############################################################################
##
#A EpimorphismFromFreeGroup( <G> )
##
## <#GAPDoc Label="EpimorphismFromFreeGroup">
## <ManSection>
## <Attr Name="EpimorphismFromFreeGroup" Arg='G'/>
##
## <Description>
## For a group <A>G</A> with a known generating set, this attribute returns
## a homomorphism from a free group that maps the free generators to the
## groups generators.
## <P/>
## The option <C>names</C> can be used to prescribe a (print) name
## for the free generators.
## <P/>
## The following example shows how to decompose elements of <M>S_4</M> in the
## generators <C>(1,2,3,4)</C> and <C>(1,2)</C>:
## <P/>
## <Example><![CDATA[
## gap> g:=Group((1,2,3,4),(1,2));
## Group([ (1,2,3,4), (1,2) ])
## gap> hom:=EpimorphismFromFreeGroup(g:names:=["x","y"]);
## [ x, y ] -> [ (1,2,3,4), (1,2) ]
## gap> PreImagesRepresentative(hom,(1,4));
## y^-1*x^-1*(x^-1*y^-1)^2*x
## ]]></Example>
## <P/>
## The following example stems from a real request to the &GAP; Forum.
## In September 2000 a &GAP; user working with puzzles wanted to express the
## permutation <C>(1,2)</C> as a word as short as possible in particular
## generators of the symmetric group <M>S_{16}</M>.
## <P/>
## <Example><![CDATA[
## gap> perms := [ (1,2,3,7,11,10,9,5), (2,3,4,8,12,11,10,6),
## > (5,6,7,11,15,14,13,9), (6,7,8,12,16,15,14,10) ];;
## gap> puzzle := Group( perms );;Size( puzzle );
## 20922789888000
## gap> hom:=EpimorphismFromFreeGroup(puzzle:names:=["a", "b", "c", "d"]);;
## gap> word := PreImagesRepresentative( hom, (1,2) );
## a^-1*c*b*c^-1*a*b^-1*a^-2*c^-1*a*b^-1*c*b
## gap> Length( word );
## 13
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("EpimorphismFromFreeGroup",IsGroup);
#############################################################################
##
#F LargerQuotientBySubgroupAbelianization( <hom>,<U> )
##
## <#GAPDoc Label="LargerQuotientBySubgroupAbelianization">
## <ManSection>
## <Func Name="LargerQuotientBySubgroupAbelianization" Arg='hom, U'/>
##
## <Description>
## Let <A>hom</A> a homomorphism from a finitely presented group <M>G</M>
## to a finite group <M>H</M> and <M><A>U</A>\le H</M>. This function will -- if it
## exists -- return a subgroup <M>S\le<A>G</A></M>, such that the core of
## <M>S</M> is properly
## contained in the kernel of <A>hom</A> as well as in <M>V'</M>, where <M>V</M> is the
## pre-image of <A>U</A> under <A>hom</A>. Thus <M>S</M> exposes a larger quotient
## of <M>G</M>.
## If no such subgroup exists, <A>fail</A> is returned.
## <Example><![CDATA[
## gap> f:=FreeGroup("x","y","z");;
## gap> g:=f/ParseRelators(f,"x^3=y^3=z^5=(xyx^2y^2)^2=(xz)^2=(yz^3)^2=1");
## <fp group on the generators [ x, y, z ]>
## gap> l:=LowIndexSubgroupsFpGroup(g,6);;
## gap> List(l,IndexInWholeGroup);
## [ 1, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6 ]
## gap> q:=DefiningQuotientHomomorphism(l[6]);;p:=Image(q);Size(p);
## Group([ (4,5,6), (1,2,3)(4,6,5), (2,4,6,3,5) ])
## 360
## gap> s:=LargerQuotientBySubgroupAbelianization(q,SylowSubgroup(p,3));
## Group(<fp, no generators known>)
## gap> Size(Image(DefiningQuotientHomomorphism(s)));
## 193273528320
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("LargerQuotientBySubgroupAbelianization");
#############################################################################
##
#E
|